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Abstract

Background

Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anti-
cancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass
the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recog-
nized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet
been investigated whether multidrug resistant cells have a different ability to induce immu-
nosuppression than chemosensitive ones. We addressed this issue in human and murine
chemosensitive and multidrug resistant cancer cells.

Results

We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which
catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine,
was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the
growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the
basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor
PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-induc-
ers cytokines IL-6, IL-4, IL-1p3, IL-13, TNF-a and CD40L, was increased. The disruption of
the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced
pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes
in STAT-silenced chemoresistant cells.

Conclusions

Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude
than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis,
thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve
the efficacy of chemo-immunotherapy protocols against resistant tumors.
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Introduction

Achieving a good chemotherapy efficacy and inducing a durable anti-tumor immune response
are the main challenges of chemoimmunotherapy. Chemoresistance, in particular the simulta-
neous resistance towards different chemotherapeutic agents known as multidrug resistance
(MDR), is one of the biggest problems encountered by chemotherapy [1]. MDR can be present
at the diagnosis or induced by the selective pressure of chemotherapy; it often relies on the
overexpression of ATP binding cassette (ABC) transporters responsible for the anticancer drug
efflux, such as P-glycoprotein (Pgp), MDR related proteins (MRPs) and breast cancer resis-
tance protein (BCRP). Together, they efflux both classical chemotherapeutic agents (e.g.
anthracyclines, taxanes, Vinca alkaloids, epipodophyllotoxins, topotecan, methotrexate) and
new targeted drugs (e.g. imatinib, dasatinib, lapatinib, gefitinib, sorafenib, erlotinib), limiting
their cytotoxic effects [2].

Specific chemotherapeutic agents, such as anthracyclines and oxaliplatin, induce also pro-im-
munogenic effects, by inducing the translocation on the plasma membrane of specific “eat me”
signals, like the chaperon calreticulin, which triggers the tumor cell phagocytosis and the subse-
quent activation of antitumor CD8" T-lymphocytes [3]. This mechanism does not operate in
cells overexpressing Pgp [4-6], which result at the same time chemo- and immune-resistant.

Moreover, tumor cells may evade the host immunosurveillance by suppressing the activity of
the host immune system. A plethora of mechanisms mediate the tumor-induced immunosup-
pression, including: changes in tumor surface antigens; release of immunosuppressive cytokines
in the tumor microenvironment; expansion of T-helper 2 lymphocytes, T-regulatory (Treg)
cells, myeloid derived suppressor cells and type 2-tumor associated macrophages, which
favor the tumor growth and impair the activity of anti-tumor populations, such as T-helper 1
lymphocytes, CD8" T-lymphocytes, type 1-tumor associated macrophages, natural killer
cells [7].

One of the strongest mediators of the tumor-induced immunosuppression is kynurenine, the
product of tryptophan catabolism via tryptophan dioxygenase (TDO) [8] and indoleamine
2,3-dioxygenase enzymes (IDO1 and IDO2) [9], which are induced by interferon- y (IFN-y)

[10, 11], nitric oxide (NO) [12] and iron [13]. Tryptophan is an essential amino acid for the pro-
liferation and survival of CD8" and CD4" T-lymphocytes; moreover the increased kynurenine/
tryptophan ratio severely compromises the efficiency of the host cellular immunity, because
kynurenine inhibits the activation of T-lymphocytes [7, 14]. IDOL1 is expressed in tumor-infiltrat-
ing dendritic cells [15] and in tumor stromal cells [16], and it has been found constitutively ex-
pressed or up-regulated in several tumor cells [14, 17]. An increased serum kynurenine/
tryptophan ratio has been correlated to a faster progression of lung cancer [18] and the IDO posi-
tivity in tumor samples is usually associated with a poor clinical prognosis [19-21]. IDO1 over-
expression supports tumor growth and progression of lung cancers [22], leading to hypothesize
that kynurenine, besides its immunosuppressive effects, may directly enhance the

tumor development.

We previously demonstrated that multidrug resistant cells are resistant to the immunogenic
death operated by dendritic cells-mediated phagocytosis [4-6]. It has not been investigated
whether multidrug resistant cells differ from chemosensitive ones also for the ability to induce
immunosuppression: we found that multidrug resistant cells had a basally higher production
of the immunosuppressive metabolite kynurenine than chemosensitive cells and we investigat-
ed the molecular basis of this phenotype.
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Materials and Methods
Chemicals

The plasticware for cell cultures was from Falcon (Becton Dickinson, Franklin Lakes, NJ). The
electrophoresis reagents were obtained from Bio-Rad Laboratories (Hercules, CA). The human
recombinant IFN-y was obtained from R&D Systems (Minneapolis, MN). 5-Br-brassinin was
from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). The protein content of cell lysates was
assessed with the BCA kit from Sigma Chemicals Co (St. Louis, MO). When not otherwise
specified, all the other reagents were purchased from Sigma Chemicals Co. Stock solutions of

3 mmol/L ferric nitrilotriacetate (FeNTA) were prepared by mixing 1 volume of 6 mmol/L
nitrilotriacetic acid in 1 eq/L NaOH, and 1 volume of 6 mmol/L FeCl; in 1 eq/L HCI; the pH
was adjusted to neutrality with NaOH.

Cells

The human chemosensitive non small cell lung cancer A549 cells were purchased from Istituto
Zooprofilattico Sperimentale "Bruno Umbertini" (Brescia, Italy). The human chemosensitive
colon cancer HT29 cells, the human chemosensitive chronic myelogenous leukemia K562 cells,
the human chemosensitive mesothelial Met5A cells and the murine constitutively chemoresis-
tant mammary JC cells were from ATCC (Manassas, VA) The resistant sublines A549/dx,
HT29/dx, K562/dx were generated in our laboratory by culturing the above mentioned paren-
tal cells in a medium containing increasing concentrations of doxorubicin, used as a MDR in-
ducer, as reported earlier [4]. The human constitutively chemoresistant malignant
mesothelioma (HMM) cells were collected, after informed written consent from the patients,
by the Biologic Bank of Malignant Mesothelioma (S.S. Antonio e Biagio Hospital, Alessandria,
Italy), where the histological characterization was performed [23]. The experimental protocol
(code: TASK3) was approved on 09/11/2011 by the Bioethics Committee (“Comitato Etico
Interaziendale”) of the S.S. Antonio e Biagio Hospital, Alessandria, Italy. The cells were grown
in the respective culture medium supplemented with 10% v/v fetal bovine serum (FBS), 1% v/v
penicillin-streptomycin, 1% v/v L-glutamine and were maintained in a humidified atmosphere
at 37°C and 5% CO,.

Kynurenine measurement

The IDO activity was determined according to [24], with minor modifications: 200 uL of cell
culture supernatants were added to 100 pL of 30% w/v trichloroacetic acid (TCA) and incubat-
ed for 30 min at 50°C to hydrolyze N-formylkynurenine to kynurenine. After centrifugation at
10,000 x g for 10 min, 100 uL of the supernatant were transferred into a 96-well plate, mixed
with 100 pL of 2% w/v p-dimethylamino benzaldehyde in 99.8% v/v acetic acid, and incubated
for 10 min at room temperature. Kynurenine was detected by measuring the absorbance at 490
nm, using a Synergy HT Multi-Detection Microplate Reader (BioTek, Winooski, VT). The ab-
sorbance of the culture medium alone was considered as a blank and was subtracted from the
values obtained in the presence of the cells. The results were expressed as nmol kynurenine/mg
cell proteins, according to a titration curve previously set. Kynurenine levels in the cell culture
supernatants were measured in parallel by high pressure liquid chromatography (HPLC), as re-
ported in [25], with minor modifications: 400 L of the cell culture supernatants were added to
100 pL of 30% w/v TCA, incubated for 30 min at 50°C and centrifuged at 15,000 x g for 10
min. The clear supernatant was filtered through 0.45 um PTEFE filters (Alltech, Nicholasville,
KY) and analyzed by an Agilent LC system (Palo Alto, CA), equipped with vacuum degasser
(G1322A), quaternary pump (G1311A), manual-injector (Rheodyne, Cotati, CA) and multiple
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wavelength detector (G1365A) integrated in the HP1200 system. The data were acquired and
processed with the Agilent ChemStation software. The injection volume was 20 puL. An Agilent
Eclipse XDB-C18 column (125 mm x 4.0 mm, 5um) was used for the analysis at 30°C. The
chromatographic separation was carried out using the mobile phase consisting of 15 mmol/L
acetate buffer (pH 4.0) and acetonitrile (90:10, v/v) at a flow rate of 0.8 mL/min. The eluate was
monitored at 365 nm, referenced against a 700 nm wavelength. The calibration samples were
prepared by adding kynurenine standards (Sigma Chemical Co.) in the concentration range of
0.50-50 umol/L to the culture medium. The results were expressed as nmol kynurenine/mg
cell proteins.

gRT-PCR and PCR arrays

The total RNA was extracted and reverse-transcribed using the iScript cDNA Synthesis Kit
(Bio-Rad Laboratories). The qRT-PCR was performed with the iTaq Universal SYBR Green
Supermix (Bio-Rad Laboratories). The same cDNA preparation was used to quantify the gene
of interest and the housekeeping gene S-actin. The primer sequences, designed with the qPri-
merDepot software (http://primerdepot.nci.nih.gov/), were: for IDOI: 5°- CAGGCAGATGTT
TAGCAATGA -3’; 5°- GATGAAGAAGTGGGCTTTGC -3’; for S-actin: 5°- GCTATCCAG
GCTGTGCTATC-3; 5- TGTCACGCACGATTTCC-3". The amount of IDOI mRNA was
normalized versus the amount of S-actin mRNA, chosen as housekeeping gene, and was ex-
pressed as IDO1/f-actin ratio, using the Bio-Rad Software Gene Expression Quantitation (Bio-
Rad Laboratories). The PCR arrays were performed on 1 pg cDNA, using the Human JAK/
STAT Signaling Pathway RT? Profiler PCR Array and the Human IL-6/STAT3 Signaling Path-
way Plus RT? Profiler PCR Array (Qiagen, Hilden, Germany), following the manufacturer’s in-
structions. The analysis of data was performed with the RT? Profiler PCR Array Data Analysis
(Qiagen).

Western blotting

The cells were rinsed with the lysis buffer (125 mmol/L Tris-HCI, 750 mmol/L NaCl, 1% v/v
NP40, 10% v/v glycerol, 50 mmol/L MgCl,, 5 mmol/L EDTA, 25 mmol/L NaF, 1 mmol/L
NaVOy,, 10 ug/mL leupeptin, 10 ug/mL pepstatin, 10 pg/mL aprotinin, 1 mmol/L phenyl-
methylsulfonyl fluoride; pH 7.5), sonicated and centrifuged at 13,000 x g for 10 min at 4°C.

20 pg of proteins from cell lysates were subjected to Western blotting and probed with the fol-
lowing antibodies against: IDO1 (rabbit polyclonal, diluted 1:2,000, AG-25A-0029, Adipogen,
San Diego, CA); IDO2 (mouse monoclonal, diluted 1:500, SAB3701447, Sigma Chemical Co.);
TDO (rabbit polyclonal, diluted 1:1,000, SAB2102400, Sigma Chemical Co.); phospho(Tyr
1022/1023)-JAKI1 (rabbit polyclonal, diluted 1:1,000, #3331, Cell Signaling Technology, Dan-
vers, MA); JAK1 (rabbit polyclonal, diluted 1:1,000, #3344, Cell Signaling Technology); phos-
pho(Tyr701)-STAT1 (rabbit polyclonal, diluted 1:1,000, #9167, Cell Signaling Technology);
STAT1 (mouse monoclonal, diluted 1:1,000, clone 15H3, Thermo Scientific, Rockford, IL);
phospho(Tyr705)-STAT3 (rabbit polyclonal, diluted 1:2,000, #9145, Cell Signaling Technolo-
gy); STAT3 (mouse monoclonal, diluted 1:5,000, clone 9D8, Thermo Scientific); Pgp (rabbit
polyclonal, diluted 1:250, sc-8313, Santa Cruz Biotechnology Inc.); MRP1 (mouse monoclonal,
diluted 1:100, ab32574, Abcam, Cambridge, UK); MRP2 (mouse monoclonal, diluted 1:100,
ab3373, Abcam); MRP3 (goat polyclonal, diluted 1:250, sc-5776, Santa Cruz Biotechnology
Inc.); MRP4 (goat polyclonal, diluted 1:250, ab77184, Abcam); MRP5 (goat polyclonal, diluted
1:250, sc-5781, Santa Cruz Biotechnology Inc.); BCRP (rabbit polyclonal, diluted 1:500, sc-
25882, Santa Cruz Biotechnology Inc.); B-tubulin (mouse monoclonal, diluted 1:500, sc-5274,
Santa Cruz Biotechnology Inc.), followed by a secondary peroxidase-conjugated antibody (Bio-
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Rad Laboratories). The proteins were detected by enhanced chemiluminescence (Bio-Rad Lab-
oratories). Nuclear extracts were prepared with the Nuclear Extract Kit (Active Motif, Rixen-
sart, Belgium); 10 pg of nuclear proteins were resolved by SDS-PAGE and probed with the
following antibodies against: PIAS1 (rabbit monoclonal, diluted 1:1,000, ab109388, Abcam);
PIAS3 (rabbit polyclonal, diluted 1:1,000, ab22856, Abcam); phospho(Tyr701)-STAT1;
STAT1; phospho(Tyr705)-STAT3; STAT3; TATA-binding protein (TBP; rabbit polyclonal, di-
luted 1.500, sc-273, Santa Cruz Biotechnology Inc.). To exclude any cytosolic contamination of
nuclear extracts, we verified that B-tubulin was undetectable in nuclear samples (not shown).

In Vivo Tumor Growth

1 x 10° human A549, A549/dx, HT29, HT29/dx cells in 20 uL of culture medium, mixed with
20 pL of Cultrex BME (Trevigen, Gaithersburg, MD), were implanted subcutaneously in the
right flank of 6-8 weeks old female nude BALB/c mice, housed under 12 h light/dark cycle,
with food and drinking provided ad libitum. 1 x 10> murine chemoresistant JC cells, syngeneic
with BALB/c mice [26], were implanted in immunocompetent animals. In a second experi-
mental set, when A549/dx, HT29/dx and JC tumors reached the volume of 100 mm?, the ani-
mals were randomized into two groups: “Control” group (treated with 100 uL of saline
solution per os, 5 days/week for three weeks); “Brassinin” group (treated with 400 mg/kg of the
IDOLI inhibitor 5-Br-brassinin per os, 5 days/week for three weeks), as described in [27]. In
both experimental sets, the tumor growth was measured daily by caliper and was calculated ac-
cording to the equation (LxW?)/2, where L = tumor length and W = tumor width. Mice were
euthanized at day 21. The experimental procedures were approved by the Bioethics Committee
(“Comitato Etico di Ateneo”) of the University of Torino, Italy.

Cytokine production

The production of cytokines was measured in the cell culture supernatant using the following
commercial kits: Human interleukin-6 (IL-6) Duo Set Development Kit (R&D Systems),
Human interleukin-4 (IL-4) DuoSet Development Kit (R&D Systems), Human IL1-beta (IL-
1B) platinum ELISA kit (eBioscience, San Diego, CA), Human interleukin-13 (IL-13) ELISA
Development Kit (Peprotech, London, UK), Human soluble CD40 Ligand (sCD40L) ELISA
Development Kit (Peprotech), Human tumor necrosis factor- o (TNF-o) DuoSet Development
Kit (R&D Systems), Human IFN-y DuoSet Development Kit (R&D Systems). Results were ex-
pressed as ng/mg cell proteins or pg/mg cell proteins, according to the calibration curve of
each kit.

Cell silencing

200,000 cells were transfected with 400 nmol/L of 19-25 nucleotide non targeting scrambled
siRNAs (Control siRNA-A, Santa Cruz Biotechnology Inc.), with a STAT1- or STAT3-specific
siRNAs pool (Santa Cruz Biotechnology Inc.), according to the manufacturer’s instructions. To
verify the silencing efficacy, the cells were lysed and checked for the expression of STAT1 and
STAT3 by Western blotting, as described above.

Immunological assays

1 x 10°/mL of human peripheral blood mononuclear cells (PBMC), isolated from buffy coats of
healthy donors (Blood Bank, A.O.U. Citta della Salute e della Scienza di Torino Hospital, To-
rino, Italy) by centrifugation on Ficoll-Hypaque density gradient, were treated with anti-CD3
(OKTS3, BioLegend, San Diego, CA) and anti-CD28 (BioLegend) antibodies, to induce the
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specific proliferation of T-lymphocytes, and co-cultured with target cells (previously irradiated
with 30 Gy for 15 min) for 72 h at an effector/target ratio of 10:1. The expansion of T-lympho-
cytes, the only PBMC population able to proliferate in these experimental conditions, was as-
sessed by adding 1 uCi of [’H]thymidine (PerkinElmer, Waltham, MA) 18 h before the end of
the co-cultures, then harvesting the plates and counting the radioactivity. To analyze the lym-
phocyte phenotype after the incubation with tumor cells, the cells were harvested, washed and
re-suspended in phosphate buffer saline (PBS) containing 5% v/v FBS. A 3- and 4-color flow
cytometry analysis was performed with the appropriate combinations of fluorescein isothiocya-
nate-, r-phycoerythrin-, tricolor-, peridinin chlorophyll protein complex—or allophycocyanin-
conjugated antibodies for CD3, CD4, CD8, CD25 (all from Miltenyi Biotech, Bergisch Glad-
bach, Germany), and CD127 (BioLegend). Isotype controls were run for each sample. The sam-
ples were read with a FACS Calibur flow cytometer equipped with a CELLQuestPro software
(Becton Dickinson). The use of PBMC from healthy donors and the experimental protocols
were approved by the Bioethics Committee (“Comitato Etico Interaziendale”) of the A.O.U.
Citta della Salute e della Scienza di Torino Hospital, Torino, Italy.

Cell viability assay

The neutral red staining was performed to measure the cell viability, as previously detailed
[28]. The absorbance at 540 nm was read using a Synergy HT Multi-Detection Microplate
Reader. The absorbance of untreated cells was considered as 100% viability; the results were ex-
pressed as percentage of viable cells versus untreated cells.

Nitrite measurement

The level of nitrite, a stable derivative of NO, in the cell culture supernatants was measured by
the Griess method [29]. The results were expressed as nmol nitrite/mg cell proteins.

Iron measurement

100 x 10° cells were washed with PBS, detached with trypsin/EDTA, centrifuged at 12,000 x g
for 2 min, re-suspended in 1 mL PBS and sonicated. The intracellular iron was measured using
a AAnalyst 200 Atomic Absorption Spectrometer (PerkinElmer). The results were expressed as
ng iron/ml cell suspension.

Statistical analysis

All data in text and figures are provided as means + SD. The results were analyzed by a one-
way analysis of variance (ANOVA). A p < 0.05 was considered significant.

Results

Kynurenine synthesis is higher in multidrug resistant cells and is
modulated by 5-Br-brassinin, methyl-DL-tryptophan and interferon-y

We first analyzed the kynurenine production in a panel of chemosensitive and multidrug resis-
tant cancer cells, showing a different pattern of ABC transporters (S1 Fig): HT29, A549, K562,
Met5A were human chemosensitive cells; HT29/dx, A549/dx and K562/dx were models of ac-
quired MDR; HMM and JC were human and murine constitutively chemoresistant cells, re-
spectively. The multidrug resistant cell lines had higher kynurenine levels—detected by HPLC
(S2 Fig) and spectrophotometric assay (Fig 1A)—and increased levels of IDO1 protein com-
pared to chemosensitive cells (Fig 1B). IDO2 was detected at variable amounts in chemosensi-
tive and chemoresistant cells; TDO was detected in all the cell lines analyzed, except in A549/
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Fig 1. Kynurenine production and IDO1 expression in chemosensitive and multidrug resistant cells.
Human chemosensitive lung cancer A549 cells and chemoresistant A549/dx cells, human chemosensitive
colon cancer HT29 cells and chemoresistant HT29/dx cells, human chemosensitive chronic myelogenous
leukemia K562 cells and chemoresistant K562/dx cells, human chemosensitive mesothelial Met5A cells and
human chemoresistant malignant mesothelioma HMM cells, murine chemoresistant mammary JC cells were
subjected to the following investigations. A. The kynurenine levels in the cell culture supernatants were
measured spectrophotometrically. Data are presented as means + SD (n=4). * p<0.05, ** p<0.01, ***

p < 0.001: chemoresistant cells (MDR-positive) versus the corresponding chemosensitive (MDR-negative)
cells. B. Western blot analysis of IDO1, IDO2 and TDO expression. The B-tubulin expression was used as
control of equal protein loading. The figure is representative of 3 experiments with similar results. C. The
expression level of IDO7T mRNA was measured by qRT-PCR. Data are presented as means + SD (n = 4). *

p <0.01, ** p <0.002: chemoresistant cells (MDR-positive) versus the corresponding chemosensitive (MDR-
negative) cells.

doi:10.1371/journal.pone.0126159.g001
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Fig 2. Effects of IDO1 inhibition on the growth of multidrug resistant tumors. A. 1 x 10° human A549, A549/dx, HT29, HT29/dx cells were implanted
subcutaneously in 6-8 weeks old female nude BALB/c mice, 1 x 10° murine JC cells were implanted in immunocompetent BALB/c mice. Tumor growth was
monitored daily by caliper measurement. Data are presented as means + SD of 10 mice/group. * p <0.02, ** p <0.005, *** p < 0.001: A549/dx or HT29/dx
cells versus A549 or HT29 cells, at the corresponding time points. B. Animals bearing A549/dx-, HT29/dx-, JC-tumors were randomized into two groups
when tumors reached the volume of 100 mm?3: “Control” group (treated with 100 uL of saline solution per os, 5 days/week for three weeks; CTRL); “Brassinin”
group (treated with 400 mg/kg of the IDO1 inhibitor 5-Br-brassinin per os, 5 days/week for three weeks; BRA). Tumor growth was monitored daily by caliper
measurement. Data are presented as means + SD of 6 mice/group. ** p < 0.005: BRA-group versus CTRL-group, at the corresponding time points.

doi:10.1371/journal.pone.0126159.9002

dx cells (Fig 1B). IDOI mRNA resulted also higher in multidrug resistant cells than in chemo-
sensitive ones (Fig 1C).

Human chemoresistant A549/dx cells and HT29/dx cells grew faster than the chemosensi-
tive A549 and HT29 cells implanted in nude BALB/c mice (Fig 2A). The murine chemoresis-
tant JC cells had the highest rate of growth (Fig 2A). Interestingly, the IDO1 inhibitor
5-Br-brassinin [27] did not inhibit the growth of A549/dx and HT29/dx tumors, implanted in
immunodeficient mice, but it significantly reduced the progression of JC tumors, implanted in
immunocompetent animals (Fig 2B). These data suggest that IDO activity may support the fast
growth of chemoresistant tumors in immunocompetent hosts.

We next investigated the reason of the difference in kynurenine production between chemo-
sensitive and chemoresistant cells. For sake of simplicity, we focused on the A549 and A549/dx
cells as models of chemosensitive and multidrug resistant cells, respectively, since in these cells
the difference in kynurenine levels and IDO1 expression was very evident. Since the HPLC
measurement and the spectrophotometric assay gave superimposable results for A549 and
A549/dx cells (S2 Fig and Fig 1A), we used the latter assay as a reliable method to evaluate the
differences in the kynurenine levels between these two cell lines.

We analyzed whether kynurenine levels varied differently in response to chemotherapeutic
drugs—to which multidrug resistant cells are insensitive—, to IDO1 activators, such as NO,
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iron and IFN-v, and to IDO1 inhibitors, such as 5-Br-brassinin and methyl-DL-tryptophan
[30].

Doxorubicin, cisplatin, gemcitabine and mitoxantrone, used at concentrations that reduced
to 50% the viability of sensitive A549 cells without affecting the viability of resistant A549/dx
cells (S3A Fig), did not change the kynurenine levels, which remained significantly higher in
A549/dx cells than in A549 cells, either in the absence or in the presence of the chemotherapeu-
tic agents (S3B Fig). Similarly, the NO donors S-nitrosoglutathione and S-nitroso-N-acetylpe-
nicillamine, which increased the levels of NO in chemosensitive and multidrug resistant cells
(S4A Fig), did not modify the kynurenine synthesis compared to untreated cells in both cell
populations (S4B Fig). To modulate the intracellular iron, we treated A549 and A549/dx cells
with the cell permeable iron-releasing compound FeNTA and with the iron chelator desferrox-
amine, which respectively increased and decreased the amount of cell iron (S5A Fig): again,
neither FeNTA nor desferroxamine varied the kynurenine production (S5B Fig).

IFN-y increased the kynurenine levels in both chemosensitive and multidrug resistant cells,
but the extent of such increase was greater in A549/dx cells (Fig 3A). The effect of IFN-y,
which was reduced by the inhibitors methyl-DL-tryptophan and 5-Br-brassinin (Fig 3A), was
associated to the increase of IDOI mRNA (Fig 3B) and protein (Fig 3C). Also in this case, the
increase elicited by IFN-y was more pronounced in A549/dx than in A549 cells (Fig 3B and
3C), suggesting that the multidrug resistant cells were more responsive to the cytokine. Similar
effects of IFN-y, methyl-DL-tryptophan and 5-Br-brassinin were detected in HT29 and HT29/
dx cells, K562 and K562/dx cells, Met5A and HMM cells (data not shown).

Multidrug resistant cells have a higher activity of JAK/STAT signaling
and an increased autocrine production of STAT3-dependent cytokines
than chemosensitive cells

Since IFN-y activates the JAK/STAT1-3 signaling [31], and STAT1 and STAT3 are potent tran-
scriptional activators of the IDOI gene in most mammalian cells [32, 33], we analyzed the ex-
pression levels of key genes of JAK/STAT pathway by a high-throughput PCR screening. As
shown in S1 Table and Fig 4A, A549/dx cells did not differ from A549 cells for the expression
of JAKI-2-3, but exhibited higher expression of STATI and STAT3. In keeping with this trend,
classical STAT1- and STAT3-target genes (A2M, BCL2L1, CDKN1A, CRP, CXCL9, FAS, IRF1I,
JUNB, MMP3, MYC, NOS2, SOCS1) were up-regulated in the multidrug resistant cells (S1
Table). In Western blotting validation, we found similar levels of total JAK1 protein in whole
cell lysates of A549 and A549/dx cells, but higher levels of the active tyrosine-phosphorylated
JAK1 in the multidrug resistant cells (Fig 4B). The amounts of STAT1, phospho(Tyr701)-
STATI, STAT3, phospho(Tyr705)-STAT3 were also higher in the chemoresistant cells (Fig
4B). The mRNA level of the STAT1 inhibitor PIAS1 was not significantly different between
A549 and A549/dx cells (S1 Table and Fig 4A), and the level of PIAS1 protein was the same in
the nuclear extracts (Fig 4C). By contrast, the nuclear amount of the STAT3 inhibitor PIAS3
was lower in A549/dx cells (Fig 4C); this was in line with the lower level of PIAS3 mRNA (S2
Table). Interestingly, STAT1, phospho(Tyr701)-STAT1, STAT3, phospho(Tyr705)-STAT3
were all more translocated into the nucleus of multidrug resistant cells (Fig 4C). This pattern,
which is likely due to the higher amount and phosphorylation of STAT1/STATS3 and to the
lower expression of PIAS3, led us to hypothesize that STAT1- and, in particular, STAT3-target
genes should be up-regulated in the multidrug resistant cells.

Indeed a global up-regulation of the STAT3-dependent genes was detected in A549/dx cells
(S2 Table and Fig 5A). Of note, the mRNAs of the STAT3-target cytokines IL-6, IL-4, IL-1B,
IL-13, CD40L, TNF-o—that are IDO1 inducers [34-38]—were up-regulated more than two-
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Fig 3. Effects of IFN-y on kynurenine synthesis and IDO1 expression in chemosensitive and multidrug resistant cells. A549 and A549/dx cells were
incubated for 48 h in fresh medium (CTRL) or in medium containing the IDO1 inhibitors methyl-DL-tryptophan (1 mmol/L, mTrp) or 5-Br-brassinin (100 pmol/
L, BRA), and the IDO1 inducer IFN-y (100 ng/mL, IFNy), alone or in combination. A. The kynurenine levels in the cell culture supernatants were measured
spectrophotometrically. Data are presented as means + SD (n = 4). * p <0.01: versus A549 CTRL cells; °°° p < 0.001: versus A549/dx CTRL; °° p < 0.005:
IFN-y + mTrp-treated, IFN-y + BRA-treated A549 and A549/dx cells versus the corresponding cells treated with IFN-y alone. B. The expression level of IDO1
mRNA was measured by gRT-PCR. Data are presented as means + SD (n = 4). *** p <0.001: versus A549 CTRL cells; °°° p < 0.001: versus A549/dx CTRL
cells. C. Western blot analysis of IDO1 expression. The B-tubulin expression was used as control of equal protein loading. The figure is representative of 3

experiments with similar results.

doi:10.1371/journal.pone.0126159.9g003

fold in A549/dx cells (S2 Table and Fig 5A). The ELISA assays confirmed the higher autocrine
production of these cytokines in the multidrug resistant cells (Fig 5B), except in the case of
TNF-o, whose level was below the detection limit of the kit (data not shown). Also the IFN-y
mRNA (S1 Table and Fig 4A) and protein (Fig 5B) were higher in A549/dx cells, increasing the
number of the IDO-inducer cytokines produced by these cells.

STAT1/STATS3 silencing decreases the up-regulation of IDO1 and the
kynurenine-induced immunosuppression in multidrug resistant cells

To validate the functional role of STAT1 and STAT3 as IDO1 inducers in multidrug resistant
cells, we produced A549/dx clones transiently silenced for each protein (Fig 6A). STAT3- and,
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Fig 4. Multidrug resistant cells have a higher activity of JAK/STAT signaling than chemosensitive cells. A. The cDNA from A549 and A549/dx cells
was analyzed by a PCR array specific for JAK/STAT signaling, as reported under Materials and methods. The fold regulation of the 83 genes analyzed,
expressed in logarithmic scale, is represented in a colorimetric scale. The figure is the mean of 4 experiments. B. The cells were lysed and subjected to the
Western blot analysis for phospho(Tyr 1022/1023)-JAK1, JAK1, phospho(Tyr701)-STAT1, STAT1, phospho(Tyr705)-STAT3, STAT3. The B-tubulin
expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results. C. The expression of PIAST1,
PIASS, phospho(Tyr701)-STAT1, STAT1, phospho(Tyr705)-STAT3, STAT3 in nuclear extracts was measured by Western blotting. The TBP expression was
used as control of equal protein loading. The figure is representative of 3 experiments with similar results.

doi:10.1371/journal.pone.0126159.g004
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Fig 5. Multidrug resistant cells have a higher activity of IL-6/STAT3 signaling than chemosensitive cells. A. The cDNA from A549 and A549/dx cells
was analyzed by a PCR array specific for IL-6/STAT3 signaling, as reported under Materials and methods. The fold regulation of the 83 genes analyzed,
expressed in logarithmic scale, was represented in a colorimetric scale. The figure is the mean of 4 experiments. B. The levels of IL-6, IL-4, IL-18, IL-13,
CDA40L, IFN-y were measured in the cell culture supernatants by specific ELISAs. Data are presented as means + SD (n = 3). * p <0.02, ** p < 0.005, ***
p < 0.001: A549/dx cells versus A549 cells.

doi:10.1371/journal.pone.0126159.9g005
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Fig 6. The inhibition of the STAT1/STATS3 signaling reverses the kynurenine-dependent immunosuppression in multidrug resistant cells. A549/dx
cells were grown for 48 h in fresh medium (CTRL), treated with a non-targeting scrambled siRNA (scr) or with a specific sSiRNAs pool targeting STAT1 or
STATS, respectively (si STAT1, si STAT3). Untreated chemosensitive A549 cells were used as control. A. The expression of STAT1, STATS, IDO1, IDO2
and TDO was measured in whole cell lysates by Western blotting, 48 h after the transfection. The B-tubulin expression was used as control of equal protein
loading. The figure is representative of 3 experiments with similar results. B. The kynurenine levels in the cell culture supernatants were measured
spectrophotometrically. Data are presented as means + SD (n=4). * p < 0.01: versus A549 CTRL; ° p < 0.005, °° p < 0.001: versus A549/dx CTRL. C. The
proliferation of activated T-lymphocytes collected from PBMC after a 72 h co-incubation with A549 and A549/dx cells was measured with the [2H]thymidine
assay. In the presence of anti-CD3 and anti-CD28 stimulatory antibodies without tumor cells (positive control), the [*H]thymidine incorporation was

28,926 + 1,426 cpm; in the presence of RPMI medium alone (negative control), the [*H]thymidine incorporation was 4,312 + 529 cpm. Data are presented as
means + SD (n =6). * p <0.05: versus A549 CTRL; ° p < 0.01, °° p < 0.005: versus A549/dx CTRL. D. The percentage of CD3* T-lymphocytes collected from
PBMC, co-incubated with tumor cells as reported in C, was measured by flow cytometry. Data are presented as means + SD (n = 6). * p <0.01: versus A549
CTRL; ° p<0.01, °°p <0.002: versus A549/dx CTRL.

doi:10.1371/journal.pone.0126159.g006

to a lower extent, STAT1-silenced cells showed lower levels of IDO1 protein, without changes
in IDO2 and TDO amount (Fig 6A). Silenced cells also had a reduced kynurenine synthesis,
which in STAT3-silenced A549/dx cells was superimposable to the one of A549 cells (Fig 6B).
In keeping with the different expression of IDO1 and kynurenine levels, the chemosensitive
A549 cells stimulated the proliferation of T-lymphocytes more than the multidrug resistant
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A549/dx cells; the silencing of STAT1 and, in particular, of STAT3 in A549/dx cells restored
the proliferation of T-cells to the same level of A549 cells (Fig 6C), which produced less kynur-
enine. In line with these results, the percentages of CD3" cells recovered at the end of the co-in-
cubation of PBMC with tumor cells was lower with A549/dx cells than with A549 cells, but the
silencing of STAT1 and STATS3 significantly increased it (Fig 6D). No changes occurred in the
proportion of CD4" T-helper cells, CD8" T-cytotoxic cells (S6A Fig) and Treg cells (S6B Fig), a
typical subpopulation of T lymphocytes involved in immunotolerance and immunosuppres-
sion [39]. The same increase in T-lymphocyte proliferation (S7A Fig) and CD3" expansion
(S7B Fig) obtained after STAT-silencing was produced by treating A549/dx cells with the
IDOLI inhibitor 5-Br-brassinin. These data suggest that the high kynurenine levels can be re-
sponsible for the reduced expansion of CD3" T-lymphocytes induced by multidrug

resistant cells.

Discussion

In this work we report for the first time that kynurenine production was higher in multidrug
resistant than in chemosensitive cancer cells, independently from the type of chemoresistance
(i.e. chemotherapy-induced or constitutive MDR) and the type of tumor. According to the ex-
pression pattern of IDO1, IDO2 and TDO in chemosensitive and chemoresistant cell lines, the
higher synthesis of kynurenine in resistant cells was mainly due to the higher amount of IDO1.

It has been recently reported that a high intratumor amount of IDO1 favors the growth of
lung cancers [22]. This observation is in keeping with our in vivo experiments, where the che-
moresistant tumors expressing high levels of IDO1 grew faster than the chemosensitive coun-
terparts with low levels of the enzyme. The pharmacological inhibition of IDO1 with 5-Br-
brassinin significantly reduced the growth of chemoresistant tumors in immunocompetent an-
imals, but not in immunodeficient mice. This result, which was in agreement with previous ob-
servations [27], led to the hypothesis that the antitumor effects of IDO1 inhibition require an
active immune system and are mediated by the reduction of immunosuppressive cells and/or
by the restoration of immune cells active against multidrug resistant tumors.

To clarify the molecular mechanisms at the basis of IDO1 overexpression in multidrug re-
sistant cells, we focused on the model of non small cell lung cancer A549 and A549/dx cells,
where the difference of IDO1 expression between sensitive and resistant cells was particularly
pronounced. A recent study demonstrated that the serum kynurenine/tryptophan ratio is
higher in patients affected by non small cell lung cancer compared with healthy controls and
that such difference was further increased by radio-chemotherapy [40]. Differently from what
it was observed in patients, we did not detect any increase of kynurenine production in cells ex-
posed to one dose of chemotherapeutic drugs. We cannot exclude however that repeated expo-
sures to chemotherapeutic agents, as it occurs in patients, might further increase the
kynurenine synthesis also in our in vitro model.

The most striking difference between chemosensitive and multidrug resistant cells was the
constitutive activation of the JAK/STAT axis in resistant cells. Although the expression of
JAK1, a documented activator of STAT1 and STAT3 [31, 41], was not different, the multidrug
resistant cells showed a higher basal amount of STAT1 and STATS3, and of the activated tyro-
sine-phosphorylated forms of JAK1, STAT1 and STAT3. The phosphorylation on tyrosine of
STATs is necessary for their homodimerization and translocation into the nucleus [31]: indeed
nuclear phospho(Tyr701)-STAT1 and phospho(Tyr705)-STAT3, which were undetectable in
chemosensitive cells, were abundant in multidrug resistant ones. These results suggest that
both the increased transcription of STAT1 and STATS3, as revealed by the PCR array analysis,
and the increased activity of the JAK/STAT axis, as indicated by the higher phosphorylation of
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STAT1/3, contribute to the increased activation of STATSs in multidrug resistant cells and to
the transcriptional activation of IDOI gene. Whereas the expression of the STAT1 inhibitor
PIASI was equal in A549 and A549/dx cells, the amount of the STAT3 inhibitor PIAS3 was
lower in A549/dx cells. According to this pattern, STAT3 more than STAT1 should have the
higher transcriptional activity in our multidrug resistant cells. Indeed we found several
STAT3-target genes significantly up-regulated in A549/dx cells; moreover, the selective silenc-
ing of STAT1 or STAT3 demonstrated that both factors were involved in IDOI transcription
in multidrug resistant cells, but STAT3 had a slightly prominent role in this process.

The STAT1 and STATS3 activity is promoted by IFN-y [31], a known IDO1 inducer [10]. In
A549/dx cells the exogenous IFN-y elicited a strong induction of IDO1, more evident than in
A549 cells. This result suggests that the IFN-y-dependent signaling was more promptly activat-
ed in multidrug resistant than in chemosensitive cells: this may be explained by the higher ac-
tivity of JAK/STAT axis in A549/dx cells. Interestingly, we detected an autocrine production of
IFN-v, higher in A549/dx than in A549 cells: although the amount of IFN-y was significantly
lower than the one produced by activated immune system cells [42], it might be sufficient to in-
duce the transcription of IDOI in multidrug resistant cells, owing to their constitutively activat-
ed JAK/STAT axis. Therefore, an autocrine IFN-y/JAK/STAT loop may be the driving force
for the induction of IDO1 in A549/dx cells. The maximal induction of IDO1, however, is often
produced by the cooperation of IFN-y with other cytokines [15]: IL-6, IL-4, IL-1B, IL-13, TNF-
o and CD40L are documented inducers of IDO1, alone or together with IFN-y [34-38]. Ac-
cording to the PCR array analysis, these cytokines were at least two-fold up-regulated in A549/
dx cells, where they may contribute to the transcription of IDO. All the above-mentioned cyto-
kines are STAT3-target genes; moreover, IL-6, IL-4 and IL-13 activate the JAK1/STAT3 axis
with a feed-forward mechanism [43-45]. We might speculate that the higher basal production
of these cytokines feeds multiple autocrine “cytokine/JAK/STAT3” loops, which sustain the
transcription of IDOI in multidrug resistant cells.

The expression of IDO1 in non small cell lung cancer cells has been already related to the
constitutive activation of the IL-6/STAT?3 signaling: kynurenine activates the transcription fac-
tor aryl hydrocarbon receptor, that in turn increases the autocrine synthesis of IL-6 and the
subsequent activation of STAT3 [34]. Although in this work it has not been investigated
whether the cells were chemosensitive or chemoresistant, it is conceivable that a similar loop
works in A549/dx cells. On the other hand, with a feedback mechanism, IL-6 increases the
STAT3-signaling inhibitor protein SOCS3, which induces the proteasomal degradation of
IDOL1 [46]. SOCS3 mRNA was indeed up-regulated in A549/dx cells: this up-regulation may
perhaps bulffer the effect of IL-6 on STAT3 activity and IDOI transcription, limiting the maxi-
mal activation of the enzyme. We believe that the concomitant production of multiple cyto-
kines, more than a single cytokine, contributes to the activation of STAT3 and IDO1 in A549/
dx cells.

To the best of our knowledge, only indirect evidences have correlated the activity of STAT3
and IDOL1 to the chemoresistance. For instance, the disruption of the STAT3 signaling has re-
duced tumor proliferation and angiogenesis [47], and has sensitized resistant breast cancer
cells to doxorubicin [48]. A high production of kynurenine has been associated with resistance
to olaparib, a poly(ADP-ribose) polymerase inhibitor, gamma radiations and cisplatin [49]. On
the other hand, the IDO1 inhibitor methyl-DL-tryptophan has increased the efficacy of pacli-
taxel in endometrial cancer xenografts [50], suggesting that the inhibition of IDO1 may im-
prove the chemosensitivity. Our assays suggest an additional benefit of inhibiting the STAT3/
IDOLI axis in resistant cells, i.e. the restoration of a significant expansion of T-lymphocytes that
would be otherwise suppressed in the presence of multidrug resistant tumor cells.
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Our work is the first demonstration that multidrug resistant cells have a higher endogenous
production of kynurenine, sustained by the constitutive activation of a “cytokine/JAK/STAT3/
IDO1” axis. Such phenotype is paralleled by the reduced expansion of the global population of
T-lymphocytes, a feature that might favor the immune-evasion of multidrug resistant cells.
Some pharmacological inhibitors of IDO1 [51] and the vaccination against IDO1 [52] are
under evaluation in immunotherapy protocols to contrast the development of tumors refracto-
ry to the conventional therapies. In our multidrug resistant cells IDO1, although over-express-
ed, was sensitive to classical inhibitors such as methyl-DL-tryptophan and 5-Br-brassinin. This
observation may be useful in a translational perspective and may represent a strong indication
for the inclusion of IDOLI inhibitors in chemo-immunotherapy protocols against chemoresis-
tant cancers, in order to limit the immunosuppressive attitude of these tumors.

Supporting Information

S1 Fig. Expression of ABC transporters in chemosensitive and multidrug resistant cells.
Human chemosensitive lung cancer A549 cells and chemoresistant A549/dx cells, human che-
mosensitive colon cancer HT29 cells and chemoresistant HT29/dx cells, human chemosensi-
tive chronic myelogenous leukemia K562 cells and chemoresistant K562/dx cells, human
chemosensitive mesothelial Met5A cells and human chemoresistant malignant mesothelioma
HMM cells, murine chemoresistant mammary JC cells were lysed and subjected to the Western
blot analysis for Pgp, MRP1, MRP2, MRP3, MRP4, MRP5, BCRP. The $-tubulin expression
was used as control of equal protein loading. The figure is representative of 3 experiments with
similar results. MDR-: chemosensitive cell lines; MDR +: chemoresistant cell lines.

(TTF)

$2 Fig. HPLC measurement of kynurenine levels in chemosensitive and multidrug resistant
cells. The amount of kynurenine was measured by HPLC in the culture supernatants of human
chemosensitive lung cancer A549 cells and chemoresistant A549/dx cells, human chemosensi-
tive colon cancer HT29 cells and chemoresistant HT29/dx cells, human chemosensitive chron-
ic myelogenous leukemia K562 cells and chemoresistant K562/dx cells, human chemosensitive
mesothelial Met5A cells and human chemoresistant malignant mesothelioma HMM cells, mu-
rine chemoresistant mammary JC cells. Data are presented as means + SD (n = 3). * p < 0.05,
**p <0.01,*** p < 0.001: chemoresistant cells (MDR-positive) versus the corresponding che-
mosensitive (MDR-negative) cells.

(TIF)

S3 Fig. Effects of chemotherapeutic drugs on kynurenine synthesis. A549 and A549/dx cells
were incubated for 48 h in fresh medium (CTRL) or in medium containing 1 pmol/L doxorubi-
cin (DOX), 10 umol/L cisplatin (Pt), 100 nmol/L gemcitabine (GEM), 10 umol/L mitoxantrone
(MXR). A. Cell viability was assessed by the neutral red staining, as reported under Materials
and methods. Data are presented as means + SD (n =4). ** p < 0.005: versus A549 CTRL cells;
°p < 0.05: A549/dx versus A549 cells. B. The kynurenine levels in the cell culture supernatants
were measured spectrophotometrically. Data are presented as means = SD (n=4). * p < 0.01:
A549/dx cells versus A549 cells.

(TIF)

S4 Fig. Effects of nitric oxide on kynurenine synthesis. A549 and A549/dx cells were incubat-
ed for 24 h in the absence (CTRL) or in the presence of 100 pmol/L S-nitrosoglutathione
(GSNO) or S-nitroso-N-acetylpenicillamine (SNAP), chosen as NO donors. A. The amount of
nitrite in the cell culture supernatants was measured spectrophotometrically by the Griess
method. Data are presented as means = SD (n = 3). ** p < 0.005: A549- or A549/dx-treated
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cells versus the respective CTRL cells. B. The kynurenine levels in the cell culture supernatants
were measured spectrophotometrically. Data are presented as means + SD (n = 3). ***

p < 0.001: A549/dx cells versus A549 cells.

(TTF)

S5 Fig. Effects of iron on kynurenine synthesis. A549 and A549/dx cells were incubated for
24 h with fresh medium (CTRL), with the cell permeable iron-releasing compound ferric nitri-
lotriacetate (60 pmol/L, FeNTA) or with the iron chelator desferroxamine (100 umol/L, DEX).
A. The amount of intracellular iron was measured by atomic absorption spectroscopy in the
cell lysate. Data are presented as means + SD (n = 3). *** p < 0.001: A549- or A549/dx-treated
cells versus the respective CTRL cells. B. The kynurenine levels in the cell culture supernatants
were measured spectrophotometrically. Data are presented as means + SD (n = 3). * p < 0.05:
A549/dx cells versus A549 cells.

(TIF)

S6 Fig. T-lymphocytes subclasses after co-incubation with chemosensitive and multidrug
resistant cells. A549/dx cells were grown for 48 h in fresh medium (CTRL), treated with a
non-targeting scrambled siRNA (scr) or with a specific siRNAs pool targeting STAT1 or
STATS3, respectively (si STAT1, si STAT3). Untreated chemosensitive A549 cells were used as
control. The percentage of each subclass of CD3" T-lymphocytes collected from PBMC, after a
72 h co-incubation with A549 and A549/dx cells, was measured by flow cytometry. A. Percent-
age of T-helper (CD3"CD4") and T-cytotoxic (CD3"CD8") lymphocytes. Data are presented
as means * SD (n = 4). B. Percentage of Treg (CD4"CD25"CD127'°%) lymphocytes. Data are
presented as means + SD (n = 4).

(TIF)

S7 Fig. Effects of IDO1 inhibition in multidrug resistant cells on the proliferation of T-
lymphocytes. A. The proliferation of activated T-lymphocytes collected from PBMC after a 72
h co-incubation with A549/dx cells, grown in the absence (CTRL) or in the presence of the
IDOL1 inhibitor 5-Br-brassinin (100 pmol/L, BRA), was measured with the [SH]thymidine
assay. In the presence of anti-CD3 and anti-CD28 stimulatory antibodies without tumor cells
(positive control), the [ H]thymidine incorporation was 27,876 + 2,349 cpm; in the presence of
RPMI medium alone (negative control), the [ H]thymidine incorporation was 3,981 + 705
cpm. Data are presented as means + SD (n =4). *** p < 0.005: BRA-treated cells versus CTRL
cells. B. The percentage of CD3" T-lymphocytes collected from PBMC, co-incubated with
A549/dx cells as reported in A, was measured by flow cytometry. Data are presented as

means = SD (n =4). *** p < 0.005: BRA-treated cells versus CTRL cells.

(TTF)

S1 Table. PCR array of JAK/STAT-signaling genes in A549 and A549-dx cells.
(DOC)

S2 Table. PCR array of IL6/STAT3-signaling genes in A549 and A549-dx cells.
(DOC)
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