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Abstract Accurate detection of low frequency mutations from plasma cell-free DNA in blood

using targeted next generation sequencing technology has shown promising benefits in clinical set-

tings. Duplex sequencing technology is the most commonly used approach in liquid biopsies. Unique

molecular identifiers are attached to each double-stranded DNA template, followed by production

of low-error consensus sequences to detect low frequency variants. However, high sequencing costs

have hindered application of this approach in clinical practice. Here, we have developed an

improved duplex sequencing approach called SinoDuplex, which utilizes a pool of adapters contain-

ing pre-defined barcode sequences to generate far fewer barcode combinations than with random

sequences, and implemented a novel computational analysis algorithm to generate duplex consensus

sequences more precisely. SinoDuplex increased the output of duplex sequencing technology, mak-

ing it more cost-effective. We evaluated our approach using reference standard samples and cell-free

DNA samples from lung cancer patients. Our results showed that SinoDuplex has high sensitivity

and specificity in detecting very low allele frequency mutations. The source code for SinoDuplex is

freely available at https://github.com/SinOncology/sinoduplex.
Introduction

Liquid biopsies are valuable tools for non-invasive diagnostics

and monitoring of diseases such as cancer. These can include
nces and
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sampling of peripheral blood, effusion fluids, and other com-
ponents of body fluids for extraction of circulating tumor cells
(CTCs) [1], tumor-derived cell-free DNA (cfDNA), and other

materials (e.g., exosome, extracellular vesicles) [2]. Although
PCR-based testing is recommended for routine diagnostics of
cancer hotspot mutations [3,4], targeted next-generation

sequencing (NGS) using cfDNA, short DNA fragments in
the plasma released by apoptotic and necrotic cells, has
emerged as the most common approach to assess tumor-

specific alterations [5,6]. For instance, it has been used to deter-
mine the genetic landscape of tumor lesions, monitor treat-
ment responses, track acquired resistance, select existing anti-
resistance targeting therapies, and assess the presence of resid-

ual disease [1,4]. Compared to tissue biopsies, targeted
sequencing in liquid biopsies currently appears to be a highly
promising and revolutionary tool for diagnosing and monitor-

ing cancer. The method has three major advantages: (i) liquid
biopsies enable repeated sampling over a relatively long period
of time to monitor the patient’s clinical condition, whereas tis-

sue biopsies cannot be obtained repeatedly or be taken from a
specific cancerous lesion location; (ii) liquid biopsies overcome
single-biopsy bias, enabling representation of the full extent of

tumor heterogeneity; and (iii) PCR-based assays can only
detect one or a few known genomic hotspot mutations, which
may only apply to a minority of patients. In Asian patients, for
example, 47% of lung cancer patients had EGFR mutations,

compared with only 15% in European patients [7].
Targeted NGS technology can detect genetic alterations in

a wider pool of genomic regions, and has been employed to

screen rare mutations in early-stage cancers [8,9], guide tar-
geted therapy, monitor treatment, and enable prognoses [1].
However, sub-clonal genetic mutations in tumors may be

found in less than 1% of DNA molecules in a plasma sample
[10,11]. In addition, cfDNA extracted from blood samples usu-
ally contain damaged DNA from normal metabolic processes

or as a result of DNA extraction [12–14]. Consequently, these
artefactual mutations might be retained during the PCR ampli-
fication process. Additionally, mutations may be misincorpo-
rated by DNA polymerase during PCR amplification

[15–17]. Therefore, additional refinement for ultrasensitive
profiling of circulating tumor DNA (ctDNA) is essential to
improve ctDNA quantity and quality, and reduce errors intro-

duced during PCR amplification, library construction and
sequencing. To improve sensitivity and minimize errors, differ-
ent approaches have been developed using unique molecular

identifiers (UMIs or molecular barcodes). This allows each
DNA molecule to be labeled and accurately tracked. The first
barcode strategy was developed to track single DNA strands
[18–22]. Recently, duplex sequencing (DS), an improved bar-

coding strategy for tracking double-stranded DNA, was also
reported [10,21]. DS uses randomly generated barcodes to
uniquely tag each DNA fragment in a plasma cfDNA sample.

Tagged fragments are then amplified by PCR before being
used in the preparation of a sequencing library, creating frag-
ment families characterized by unique combinations of bar-

codes at both the 50 and 30 ends. A family contains multiple
reads, each originating from a single input DNA fragment.
A true variant will appear in all reads within a family. In con-

trast, sequencing and amplification errors will manifest them-
selves as ‘‘polymorphisms” within a family, thus allowing
them to be identified and removed by generating consensus
sequences. The consensus of all reads originating from the
same strand reduces errors originating from PCR amplifica-
tion and sequencing. Only mutations present in sequences
obtained from both complementary DNA strands are counted

as true positive mutations. The sequences are referred as
duplex consensus sequences (DCS), whereas mutations present
in only one of the complementary DNA strands (single-strand

consensus sequences, SSCS) are still counted as errors.
Although DS is expected to drive significant advances and

improve sensitivity in detecting rare mutations in ctDNA,

the experimental and computational aspects of this technique
are still evolving [22–25]. In this study, we have developed a
novel, efficient DS approach named SinoDuplex, combining
a special barcoding strategy consisting of pre-defined barcode

sequences with a novel computational algorithm to eliminate
background noise and produce more accurate duplex consen-
sus sequencing data. We evaluated the performance of Sino-

Duplex with a pool of diluted samples using two reference
standard samples, HD701 and HD753, on a targeted panel
of 334 genes. SinoDuplex increases the output of DS while

reducing cost. At an allele frequency cut-off of 0.1%, SinoDu-
plex achieved a high sensitivity of 98.62% and specificity of
97.09%. In addition, we applied this method to samples from

patients with clinical lung cancer and validated low-frequency
hotspot actionable mutations with droplet digital PCR
(ddPCR). Our results show that SinoDuplex significantly
improves the sensitivity and specificity for the detection of

low-frequency variants in plasma ctDNA samples in a cost-
effective manner.

Materials and methods

SinoDuplex adapter synthesis

Our novel duplex adapters (termed SinoDuplex adapters)
employ a pool of at least 16 unique molecular identifiers

(UMIs) at the end of the double-strand portion of the Y-
shaped adapters. The pool of UMIs comprises seven or eight
bases of pre-defined and color-balanced sequences mixed in

certain ratios to avoid sequencing bias on Illumina sequencing
instruments. Every pre-defined UMI differs from all other
UMIs by at least three edit distances. SinoDuplex adapters

are formed by combining and annealing two single strands
of oligonucleotides possessing pre-defined UMI in a pairwise
manner. One oligonucleotide is designated as the P5 strand:

ACACTCTTTCCCTACACGACGCTCTTCCGATCTXXX
XXXX(X)T (where XXXXXXX(X) indicates the position of
a fixed 7- or 8-base UMI sequence), and the other is desig-
nated as the P7 strand: /5phos/ X‘X’X‘X’X‘X’X‘(X’)AGAT

CGGAAGAGCACACGTCTGAACTCCAGTCAC (where
X‘X’X‘X’X‘X’X‘(X’) indicates the reverse complement of
XXXXXXX(X)). (Table S1). Each pair of adapter strands

was synthesized (HPLC and NGS grade, Life Technologies,
Carlsbad, CA) and combined by equimolar amounts to a
final concentration of 100 lM in 1� annealing buffer con-

taining 10 mM Tris, 1 mM EDTA and 0.1 M NaCl. Each
reaction was heated to 95 ℃ for 5 min in an ABI 9700 ther-
mocycler (Applied Biosystems, Foster City, CA) before turn-
ing off the machine and leaving the reaction to gradually cool

for 1 h. The annealed adapters were finally pooled together in
equal volumes and further diluted to 10 lM in Low TE buffer
to form a working solution.
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DNA reference sample preparation

To estimate the performance of our DS strategy, two well-
characterized genomic DNA reference standard samples,
HD701 and HD753 (Horizon Discovery Inc., Cambridge,

UK) were used. These samples are commercially available mix-
tures of DNA from cell lines for which precise allelic frequen-
cies (AFs) of several hotspot actionable mutations have been
validated by digital PCR, covering a wide range of mutations

including single nucleotide variants (SNVs), indels, fusions,
and copy number variation. Allele frequencies of the verified
variants in these references were between 1% and 41.5% (de-

tails of each variant are provided in Table S2). A dilution series
of these two reference samples (HD701M1, HD701M2,
HD753M1, and HD753M2) with the HapMap normal cell line

NA18536 were generated to simulate different ranges of allele
frequencies and assess the performance and limit of detection
of our assay. Diluted DNA mixtures were further sheared

using a focused-ultrasonicator (S220, Covaris, Woburn, MA)
with a target size around 170 bp to mimic the size distribution
of cfDNA.

Patient plasma samples and cfDNA extraction

A number of liquid biopsy specimens were collected to assist in
validation experiments. For each sample, 8–10 mL peripheral

blood was collected in a cell-free DNA BCT tube (Catalog
No. 218962, Streck, La Vista, NE) and centrifuged for
10 min at 1600g at room temperature within three days of

drawing blood. The supernatant containing the plasma was
further centrifuged at 16,000g for 10 min at room temperature
to remove any residual cells. cfDNA was extracted from 4 to
5 mL of plasma and eluted into 50 mL of buffer AVE using

the QIAamp Circulating Nucleic Acid Kit (Catalog No.
5114, Qiagen, Hilden, Germany) according to manufacturer’s
instructions. Quantification of extracted cfDNA was per-

formed using the Qubit 3.0 (Thermo Fisher Scientific, Wal-
tham, MA).

Panel design

To apply SinoDuplex in a clinical setting, we designed three
different targeted gene panels to detect low-allele-frequent

mutations in plasma ctDNA samples. The smallest panel is a
specially designed panel for lung cancer named LungCore
which covers 10 core genes that have targeted drugs approved
by the US FDA for lung cancer and actionable fusion events.

The second panel, ActionAll, covers 73 genes with actionable
mutations in targeted clinical therapy for all solid tumors.
The third panel is a pan cancer panel covering the exons of

334 genes and is capable of estimating blood tumor mutational
burden (TMB) to select cancer patients suitable for
immunotherapy. The genes in this pan-caner panel are selected

to cover variants associated with targeted cancer therapies (i)
approved by the FDA or listed in the NCCN guidelines, (ii)
reported as responsive to therapy in public databases and the

literature. Hotspot actionable fusion introns were also
included in these three panels to identify actionable fusion
events. Capture probes were ordered from Integrated DNA
Technologies, Coralville, IA. Gene lists and hotspot introns

of these three panel are provided in Table S3.
Targeted library construction and sequencing

Pre-capture library preparation was performed using the
KAPA Hyper Prep kit (Catalog No. K8504, Roche, Basel,
Switzerland) with SinoDuplex adapters. In brief, 20–33 ng

cfDNA or sheared reference DNA mixture, representing
6000–10,000 haploid genomic equivalents, was used for end
repair and A-tailing, followed by ligation of SinoDuplex adap-
ters. Ligated products were bead-purified and further amplified

for seven cycles using KAPA HiFi HotStart ReadyMix with
unique dual indexes (UDIs), primers that mitigate sample
mis-assignment due to index hopping. For each library,

500 ng DNA with different UDIs were pooled together. Up
to 2 lg of total library was used as input for in-solution cap-
ture enrichment with xGen Lockdown Reagents kit (Catalog

No. 1072281, Integrated DNA Technologies, Coralville, IA)
and customized xGen lockdown panels. A hybridization mix-
ture of pooled libraries and customized xGen lockdown probes

in xGen Hybridization Buffer was denatured at 95 �C for
5 min, then incubated at 65 �C for 4–16 h with the addition
of human Cot-1 DNA (Catalog No. 15279011, Life Technolo-
gies, Carlsbad, CA) and xGen Universal Blockers-TS Mix

(Catalog No. 1075475, Integrated DNA Technologies, Coral-
ville, IA). After incubation, library-probe duplexes were cap-
tured with Dynabeads M270 Streptavidin (Catalog No.

65306, Invitrogen, Carlsbad, CA) and off-target library frag-
ments were washed off. Bead-captured libraries were further
amplified with universal P5/P7 primers in KAPA HiFi HotS-

tart ReadyMix, followed by purification with beads. Post-
capture libraries were quantified by Qubit 3.0. Fragment size
was determined by a 2100 Bioanalyzer using a High Sensitivity
DNA chip (Catalog No. 5067-4626, Agilent Technologies,

Santa Clara, CA). Paired-End 150 sequencing was performed
using the HiSeq X Ten platform (Illumina, San Diego, CA)
supporting dual indexing with raw sequencing depths over

20,000�.

Duplex consensus sequence generation

The complete computational workflow of the SinoDuplex
approach is illustrated in Figure 1. Firstly, the QC and adapter
trimming step is performed using fastp [26] to remove adapter

contamination and filter out low-quality reads. Simultane-
ously, UMI barcode sequences are extracted from the read
sequences and appended into the read name. Next, read pairs
are mapped to the reference genome hg19 using the BWA mem

algorithm [27] with ‘‘-C” option to set the UMI barcode
sequences as a special ‘‘BC:Z” tag for each alignment in the
bam file. Single-stranded consensus sequences (SSCS) are gen-

erated by loading all read pairs with the same mapping posi-
tions and orientations into memory and grouping them into
different SSCS families with the same UMI barcode sequences

at both ends and the same CIGAR string. Unlike the original
method, which employs the majority-based algorithm [21], we
apply a Bayesian algorithm to determine the final high-quality

base at each position of the SSCS consensus sequence and cal-
culate the corresponding consensus quality score for this base
using the following Equation (1).

P I ¼ bj bi; qið Þf g½ � / 1� 10
�q
10 : b ¼ bi

10
�q
10

3
: b–bi

(
¼ p b; bi; qið Þ ð1Þ



Figure 1 Schematic illustration of SinoDuplex workflow

The flowcharts illustrate the whole workflow of SinoDuplex

approach from raw sequencing data.
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Recall that each base b is associated with a base call and
quality score pair (bi,qi) in the consensus group. The posterior
probability of the consensus base given the entire consensus

group is

P I ¼ bj bi; qið Þf g½ � ¼
Q

ip b; bi; qið ÞP
b02 A;C;G;Tf g

Q
ip b0; bi; qið Þ ð2Þ

The base with maximum posterior probability is taken as
the consensus base and its corresponding quality score is calcu-

lated according to the chosen probability.

qc ¼ �10 log10 1� P I ¼ bcj bi; qið Þf g½ �ð Þ ð3Þ
After construction of the SSCS sequence and quality score

from all SSCS families for each mapping position, our algo-

rithm merges two SSCS read pairs with transposed UMI bar-
code sequences and the same mapping position into one DCS,
if possible. If both bases at the same position in two SSCSs

(forward and reverse strands) match, the given base is used
and an average Phred quality score is assigned to this base.
However, in the case of a mismatch between two bases, the
nucleotide ‘‘N” is placed in final DCS sequence and a pre-

defined low Phred score (10 is used here) is assigned. If the pro-
portion of N bases in the final DCS sequence is greater than a
pre-defined cut-off (50% in this study), this DCS sequence is

filtered out. If the corresponding transposed read pair cannot
be found for one SSCS, this SSCS read pair is also kept when
its family size is greater than 1. The sequence and quality

scores of all SSCS and DCS read pairs are written out into
two intermediate FASTQ files to release memory. These
DCS and SSCS read pairs are then re-mapped onto the human

hg19 reference genome using the BWA mem algorithm after
processing all raw read pairs using the algorithm above. A final
bam file containing both SSCS and DCS read pairs is obtained
for further variant calling.
Variant calling

For variant calling of ctDNA samples, we used an algorithm
based on samtools mpileup [28] developed in-house to detect
somatic SNVs and indels [29,30]. Our calling algorithm can

detect rare somatic mutations with a frequency as low as
0.1%. Briefly, many candidate SNVs/indels were identified in
tumor samples with at least three reads and the required map-
ping quality and base quality score. After querying against a

normal reference sample with filtering conditions, eligible
mutations were categorized as either germline or somatic. In
the calling process, a series of filters were applied on the raw

SNV/indel calls, including noise estimation from known SNPs,
strand bias filtering, and noise filtering from neighboring
regions to ensure reliable variant detection. In our experience,

most false positive variants originate from alignment errors
and repeat regions. These variants can be removed using a
blacklist containing common mistakes from a pool of normal

samples. Final high-confidence variants (SNVs and small
indels) were then annotated with UCSC RefSeq gene informa-
tion, dbSNP [31], 1K Genome [32], ExAC [33], GnomAD [33],
COSMIC [34], and Clinvar [35] using SNPEff [36] and an in-

house database-annotation module based on HTSlib (http://
www.htslib.org/) library.

Performance calculation

To evaluate the detection capability and limitation of our algo-
rithm, we calculated the sensitivity or positive percentage

agreement (PPA) and specificity or positive predictive value
(PPV) using the confirmed somatic mutations in reference
standards HD701 and HD753 with different dilution ratios
using the HapMap normal cell line NA18536. Mutations

called in two undiluted samples of HD701 and HD753 with
a variant allele frequency >1% were treated as a true muta-
tion data-set and were manually reviewed using the Integrative

Genomics Viewer [37]. The allele frequencies of some hotspot
actionable mutations in these two reference samples were
already confirmed by ddPCR assays by Horizon Discovery,

Cambridge, UK. Figure S1 shows a high correlation between
the AFs detected by SinoDuplex and AFs confirmed by
ddPCR for those hotspot actionable mutations in undiluted

samples of HD701 and HD753 (true mutation data-set). Muta-
tions detected in diluted samples that are also present in the
true mutation data-set are treated as true positive (TP); those
that are not, as false positive (FP). Mutation in the true muta-

tion data-set that are not detected in the diluted sample are
classified as false negative (FN). Thus, sensitivity and speci-
ficity are calculated as TP/ (TP + FN) and TP/(TP + FP).

Detailed information of all mutations (TP, FN, TP) for the
diluted samples are provided in Table S4. To determine the
appropriate sequencing depth, we performed in silico down-

sampling of diluted samples and calculated sensitivity and
specificity at different depths using the same procedure.

Droplet digital PCR (ddPCR) validation

Hotspot actionable mutations such as KRAS (G12D) and
EGFR (790M, L858R, and 19Dels) detected in patient cfDNA
samples by SinoDuplex were further validated by ddPCR. In

brief, two probes targeting mutant and wild-type alleles were

http://www.htslib.org/
http://www.htslib.org/


Table 1 The performance of SinoDuplex at different AF cut-offs: 0.1%, 0.2%, and 0.5%

Sample AF Variants TP Ignored FN FP Sensitivity (%) Specificity (%)

HD701M1 0.1% 249 245 0 4 10 98.39 96.08

HD701M2 249 245 0 4 5 98.39 98.00

HD753M1 258 255 0 3 13 98.84 95.15

HD753M2 258 255 0 3 7 98.84 97.33

Total 1014 1000 0 14 30 98.62 97.09

HD701M1 0.2% 249 245 0 4 5 98.39 98.00

HD701M2 249 244 1 4 1 98.39 99.59

HD753M1 258 255 0 3 5 98.84 98.08

HD753M2 258 250 5 3 4 98.81 98.43

Total 1014 994 6 14 15 98.61 98.51

HD701M1 0.5% 249 242 4 3 2 98.78 99.18

HD701M2 249 238 8 3 1 98.76 99.58

HD753M1 258 247 9 2 3 99.20 98.8

HD753M2 258 189 68 1 3 99.47 98.44

Total 1014 916 89 9 9 99.03 99.03

Note: AF, allele frequency; TP, true positive; FN, false negative; FP, false positive.
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labeled with FAM and VIC dyes, respectively. A TaqMan
PCR reaction using ddPCR Supermix for Probes (Catalog

No. 1863024, Bio-Rad, Hercules, CA) was subjected to droplet
generation using the QX200 Droplet Digital PCR system (Bio-
Rad, Hercules, CA), followed by PCR. Droplets were analyzed

with the QX200 Droplet Reader (Bio-Rad, Hercules, CA) and
QuantaSoft software (Bio-Rad, Hercules, CA) for fluorescent
measurement and allele calling.
Results

Improvement of low-frequency variant identification

To assess the performance of our approach (Figure 1) in

detecting low-frequency variants, we calculated the sensitivity
and specificity for a pool of diluted samples with known vari-
ants in the reference standard samples HD701 and HD753. To

simulate a serial dilution of different allele frequency variants,
HD701M1 and HD701M2 were diluted 3-fold and 6-fold with
the HapMap normal sample NA18536. HD753M1 and
HD753M2 were diluted 5-fold and 10-fold with NA18536.

All diluted samples were sequenced with the pan-cancer panel,
which covers the exons of 334 cancer-related genes and hotspot
fusion introns. Performance results for these four diluted sam-

ples are summarized in Table 1 with allele frequency (AF) cut-
offs of 0.1%, 0.2%, and 0.5%. The SinoDuplex approach
achieved a high sensitivity of 98.62% and specificity of

97.09% at an AF cut-off of 0.1%. Furthermore, a high corre-
lation between the detected AF and expected AF was observed
for all mutations in these four diluted samples (Figure 2).

These performance assessment results demonstrated the ability
of our approach to detect very low-frequency variants in
plasma cfDNA samples.
Better utilization of raw sequencing data

In the process of generating SSCS consensus sequences,
majority-based rule is often adopted to determine the consen-

sus base at each position. At least three member reads in a
SSCS family are needed to form a SSCS sequence in the orig-
inal DS approach [10,21]. However, this majority-based
approach is far from precise and many SSCS families with less

three members are technically thrown away. In our Bayesian-
based algorithm, we used Equation (2) to calculate the proba-
bility of each possible consensus base, selecting the base with

maximum probability. Therefore, in our approach, even if
there were only two reads in one SSCS family, we were still
able to generate high-quality consensus sequences and thus

more SSCS reads compared to the original approach. At the
same time, we calculated the consensus base quality score
using Equation (3). After the consensus sequences were gener-
ated, the mean base phred quality score increased from 38 to

80, indicating a significant reduction in the sequencing error
rate (Figure S2).

In addition to reducing the cut-off of the SSCS family size

from three to two, several modifications were implemented in
the generation of DCS from two complementary SSCS fami-
lies. If an SSCS family with only one read pair can form a

DCS with another SSCS family, it is kept and thus more
DCS consensus reads are produced. Moreover, if an SSCS
family is missing its partner in a generated DCS consensus
(singleton SSCS family), it is also kept when it has at least

two members. To evaluate the performance of these changes,
we compared our approach for all four diluted samples with
the original duplex approach, which has cut-off of three for

SSCS family size and only employs DCS sequences for variant
calling (DCS_only), and an approach utilizing only SSCS
sequences for variant calling (SSCS_only). Figure 3 shows

the performance results of these three approaches for
HD753M1 and HD753M2 at different AF cut-offs (detailed
values are summarized in Table S5). In general, the SSCS_only

approach had the best sensitivity but a low specificity due to its
high mean depth. Unsurprisingly, SSCS_only generated more
false positives due to PCR-amplified errors or DNA damage
in single-strand sequences. In contrast, DCS_only had fewer

false positives, as DCS is much more accurate. However, a
large amount of data were disregarded in the DCS_only
approach, as some low-frequency true mutations were classi-

fied as false negatives due to low depth. By employing both
DCS and SSCS sequences for variant calling, our SinoDuplex
approach achieved a better balance of sensitivity and

specificity.



Figure 2 The correlation of detected AF with expected AF for mutations detected in four diluted samples

Shown in the plots is the high correlation of AF detected by SinoDuplex with expected AF for HD701M1 (A), HD701M2 (B), HD753M1

(C), and HD753M2 (D). The expected AF of mutations in the diluted samples is calculated as the detected AF in the undiluted samples

multiplied by the diluted ratio. For sample HD753M2, as the expected AFs of most of the mutations are relatively low (<3%), an R2

value of 0.595 is still considered a good correlation.
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Impact of sequencing depth and SSCS family size

To determine the appropriate sequencing depth required for
SinoDuplex to detect low-allele-frequency variant calling from

cfDNA samples, we performed in silico downsampling for the
sample HD753M2 at different depths from raw sequencing
data and then calculated sensitivity and specificity after gener-

ating SSCS and DCS reads. Figure 4 shows that, as sequencing
depth decreased, sensitivity dropped dramatically while speci-
ficity increased slightly at a limit of detection of 0.1%. The rea-

son was that some rare mutations would not be detected at low
depth and several other false positive variants appeared at
higher sequencing depth. The best sensitivity and specificity

results using SinoDuplex were achieved at a depth of 1831�.
Obviously, there was an intriguing relationship between depth
and family size. Therefore, we checked the distribution of
SSCS family size with different sequencing depths. At a depth

of 1968x, the family size of HD753M2 peaked expectably at 4,
yielding high quality SSCS with optimal read numbers (Fig-
ure S3). However, a left shift of the peak generally occurred

in the downsampling samples of lower depths. According to
Equations (2) and (3), the SSCS family size itself also has an

impact on the quality of consensus sequences. We counted
the average base quality of the final consensus sequence and
found a similar trend in peak family size. When increasing

family size from 1 to 4, the corresponding base quality
increased from 75 to 86. In contrast, lowering family size
resulted in poorer base quality in the consensus sequences. In

our experience, a reliable SSCS is generated when the read
number in the family is about 3 to 6. More member reads in
the same SSCS family would not contribute to the yield of
SSCS but increase sequencing cost.

Validation results with ddPCR

Although good performance was observed in the reference

standard samples, we also assessed the reliability of SinoDu-
plex in clinical samples and confirmed low-frequency muta-
tions with ddPCR. Using customized panels of different sizes

adapted for the SinoDuplex approach, a number of hotspot
actionable mutations were detected with low frequency in
cfDNA samples from lung cancer patients enrolled in our col-



Figure 3 Comparison of the performance of three different approaches at different AF cut-offs

The plots show the performance of three different approaches (DCS_only, SSCS_only, and SinoDuplex) at different AF cut-offs (0.1%,

0.2%, and 0.5%) for HD753M1 (A. sensitivity; B. specificity) and HD753M2 (C. sensitivity; D. specificity). In general, our SinoDuplex

approach achieves a better balance of sensitivity and specificity value than the other two methods.

Figure 4 Impact of sequencing depth on the performance of SinoDuplex

The plots show the sensitivity (A) and specificity (B) of SinoDuplex at different sequencing depths for the diluted sample HD753M2 at

different AF cut-offs (0.1%, 0.2%, and 0.5%).
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laborating hospitals. Detection of variant allele frequencies
below 5% remains a challenge and a subset of these variants

detected by SinoDuplex with frequencies between 0.1% and
5% were validated by ddPCR. As summarized in Table 2, five
of six actionable mutations from patient cfDNA samples

detected by SinoDuplex were confirmed to have similar AFs
by ddPCR. One mutation, EGFR T790M, had a frequency
of 0.1% in patient P3 and was reported as negative with a very

weak signal, as 0.1% is the limit of detection of ddPCR. Over-
all, our approach was consistent with ddPCR for these low-
frequency hotspot actionable variants.
Discussion

ctDNA refers to the fraction of cfDNA in a patient’s blood

that originates from a tumor. Noninvasive access to cancer-
derived DNA is particularly attractive for solid tumors, allow-
ing repeated sampling without invasive procedures. Advances

in DNA sequencing technologies and our understanding of
tumor molecular biology have resulted in increased interest
in exploiting ctDNA as a tool to facilitate earlier detection
of cancer and thereby improve therapeutic outcomes by



Table 2 Validation of hotspot actionable mutations detected by SinoDuplex with ddPCR assay

Patient Mutation SinoDuplex AF ddPCR AF

P1 EGFR p.T790M 0.3% 0.33%

P2 EGFR p.T790M 2.3% 1.82%

P3 EGFR p.T790M 0.1% –

P4 EGFR p.L858R 0.3% 0.89%

P5 EGFR p.L858R 2.3% 4.6%

P6 KRAS p.G12D 2.0% 1.8%

Note: Due to low AF (0.1%), ddPCR failed to detect mutation EGFR p.T790M in Patient P3.
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enabling early intervention [38]. However, the application of
this method has been challenging due to the low sensitivity

in analyzing trace amounts of ctDNA in blood. Many
sequencing technologies and algorithms have been developed
and optimized to improve the detection accuracy of low fre-

quency variants from ctDNA samples. One of these methods,
DS technology, is particularly sensitive and uses attachment of
unique molecular identifiers (UMI) to DNA templates to

detect and quantify low-frequency genetic alterations in
ctDNA samples [10,21]. Its power comes from pooling
together multiple descendants of both strands of the original
DNA molecules, allowing true variants to be distinguished

from PCR amplification and sequencing artifacts. However,
the method’s reliance on multiple sequencing reads of the same
molecule means that DS requires much larger sequencing

capacity than conventional NGS to produce a given depth of
sequencing data, making it prohibitively expensive for broad
usage in clinical settings. Furthermore, every duplex experi-

ment produces a substantial proportion of singleton SSCS
families that cannot be used in the analysis and are technically
thrown away. Despite the great promise of DS, methods for
both the experimental and computational aspects of this tech-

nique are still evolving.
To process cfDNA DS data more efficiently, we developed

an improved duplex barcoding strategy and a novel computa-

tional analysis algorithm called SinoDuplex to generate low-
error consensus sequences from raw sequencing data. Taking
advantage of degenerate UMIs, our duplex adapters provide

significant advantages over the 12 N duplex adapters originally
described [10,21] and the commercially available 3 N duplex
adapter (Integrated DNA Technologies, Coralville, IA). First,

SinoDuplex adapters are much more cost-effective than com-
mercially available 3 N duplex adapters and can be easily
acquired by annealing each pre-defined UMI pair and pooling
them together. In contrast, synthesis of 12 N duplex adapters

requires a series of enzymatic and purification steps. Second,
SinoDuplex adapters are sufficient to identify most original
nucleic acid molecules possessing the same genomic coordi-

nates (start and end positions) in a sample while using far
fewer barcode combinations compared to 12 N duplex adap-
ters. Finally, pre-defined UMIs with at least three edit dis-

tances ensure improved accuracy for identification, while
degenerate UMIs may be affected by single-base mismatches
introduced by amplification or sequencing errors, leading to

erroneous identification. Figure S4 shows a detailed graphical
depiction of these different duplex adapters. Moreover, com-
pared to DS analysis approaches reported previously
[10,20,21], two major improvements were implemented in

SinoDuplex to generate consensus sequences more precisely
and utilize raw sequencing data more efficiently. The first
one is the adoption of Bayesian theory [Equations (1), (2),
and (3)] to generate SSCS sequences and quality scores. The

other one is a lowering of the read cut-off from three to two
in generating SSC sequences and retaining singleton SSCS
families in subsequent analyses. The consensus sequence gener-

ation step significantly reduced PCR amplification errors and
sequencing errors. Retaining singleton SSCS consensus reads
improved utilization of raw sequencing data and reduced

sequencing costs. SinoDuplex can be easily integrated into
any existing pipelines that analyze DS data.

Conclusions

In this study, we present SinoDuplex, a promising DS method
aimed at improving the sensitivity of detection of low-

frequency mutations in cfDNA. Compared to original DS
approaches, our new computational analysis algorithm
increased the yield of DS data while making it more cost-

effective. The method significantly improves the sensitivity
and specificity in detecting extremely low frequency variants
in plasma cfDNA samples. The potential of our approach
for routine clinical applications will be of great importance

for physicians, providing them with a powerful tool to diag-
nose tumors, monitor tumor dynamics, and evaluate patient
responses to targeted therapy.
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