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Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and
correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a
linear anionic peptide (50 amino acid residues and net charge −20) present in the venom gland
of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory
properties. The therapeutic application of chelating molecules is related to cases of acute or
chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of
skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of
TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as
well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand
the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form
stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP
can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP
(1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4
(TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change
was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating
biocompatibility, aswell as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical–scavenging activity
of above 70% at all the concentrations tested (1–25 μM), and 89.7% iron-chelating activity at
25 μM and 96% hydroxyl radical–scavenging activity at 73.6 μM. In addition, TanP (12.5 and
25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and
activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and
25 µM) induced the release of TNF-α by murine macrophages, in the absence of
lipopolysaccharides, with a concentration-dependent increase and also stimulated the
migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional
potential, being useful as a prototype for the development of new therapeutic and
biotechnological agents.
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INTRODUCTION

Anionic, or acidic, peptides are a new class of scorpion venom
peptides, which have been rarely identified and poorly
characterized so far but are widely present in the venom
glands of all detected species of scorpions (Shi et al., 2018).
These molecules are peptides without disulfide bonds, rich in
aspartic and glutamic acid residues, with an isoelectric point less
than 5.0, showing high hydrophilic properties and secondary
structures composed by random regions, α-helix domains, and
spiral structures (Nie et al., 2012; Shi et al., 2018).

Regarding Tityus genus, an abundant presence of anionic
peptides has been reported, with the observation that 27.22,
7.75, 4.9, and 3.14% of the total toxins expressed in the venom
of scorpions Tityus stigmurus (Almeida et al., 2012), Tityus
serrulatus (Alvarenga et al., 2012), Tityus bahiensis (Oliveira
et al., 2015), and Tityus obscurus (de Oliveira et al., 2018),
respectively, correspond to anionic peptides. The scorpions
Centruroides tecomanus (Valdez-Velázquez et al., 2013),
Buthus martensii Karsch (Zeng et al., 2005), Centruroides
hirsuti-palpus (Valdez-Velázquez et al., 2020), and Mesobuthus
eupeus (Baradaran et al., 2018) also showed an anionic peptide in
the venom composition.

In a previous study carried out by our research group, an
anionic peptide present in the T. stigmurus scorpion venom
gland, named TanP (T. stigmurus anionic peptide) was
characterized for the first time, with a negative charge of −20
and a theoretical isoelectric point of 2.75. In vitro assays have
demonstrated that TanP has the chelating activity of Cu2+ ions
and revealed an immunomodulatory potential, since it induced
the proliferation of macrophages and reduced the release of nitric
oxide by these cells, in the presence of lipopolysaccharides (LPS)
(Melo et al., 2017).

Anionic peptides from vertebrate and invertebrate animals
have demonstrated antimicrobial, immunomodulatory, and
metal-chelating action (Lai et al., 2002; Silva et al., 2009;
Segura-Ramírez and Silva Júnior, 2018; Zhang et al., 2021),
which are part of the host defense system in scorpions and
other phyla (Valdez-Velázquez et al., 2020). The use of
metallopharmacology techniques (Flora and Pachauri, 2010) is
useful for restoring the normal healthy physiology of the body,
with wide therapeutic applications in cases of acute or chronic
intoxication by metals (Andersen, 2004; Ward et al., 2012; Smith,
2013), neurodegenerative diseases (Ward et al., 2012; Ben-
Shushan and Miller, 2021), hematological diseases (Pretorius
et al., 2014; Leitch and Gattermann, 2019), cutaneous wound
healing (Wright et al., 2014), cardiovascular diseases (Smith,
2013), and cancer (Yu et al., 2012; Antoniades et al., 2013).
The use of small molecules or chelating peptides corresponds to
an attractive strategy both to understand the fundamentals of
biological regulation of the metal and to develop new therapies
(Wang and Franz, 2016; Caetano-Silva et al., 2021; Zeng et al.,
2021).

Recently, some researchers have demonstrated the
multifunctionality of linear peptides present in scorpions
(D’Suze et al., 2010; Gao et al., 2010; Guo et al., 2013; Ortiz
et al., 2015; Daniele-Silva et al., 2016, 2021; Guilhelmelli et al.,

2016; Ojeda et al., 2016; Cesa-Luna et al., 2019), and their
antibacterial, antifungal, hypotensive, anticancer, and
immunomodulatory activities have been identified (Zeng et al.,
2012; Almaaytah et al., 2013; Daniele-Silva et al., 2016, 2021;
Machado et al., 2016; Torres-Rêgo et al., 2019; Furtado et al.,
2020). However, little researches about anionic peptides of these
arachnids have been reported. In this approach, the evaluation of
the chelating activity of TanP was carried out in relation to new
metals of biological importance and expanding the investigation
of its biological potential.

MATERIALS AND METHODS

Tityus stigmurus Anionic Peptide (TanP)
Synthesis
The peptide TanP was deduced from the cDNA clone TSTI0006C
obtained from T. stigmurus transcriptome (Almeida et al., 2012).
The synthetic mature peptide (YPASFDDDFDALDDLDDLDLD
DLLDLEPADLVLLDMWANMMDSQDFEDFE) was obtained
from Aminotech (Minas Gerais, Brazil) with purity higher
than 90% and was maintained at −20°C until the time of use.
The peptide tests were conducted under authorization from the
National System for Management of Genetic Heritage and
Associated Traditional Knowledge (SisGen), under the
registration number AAF17D9 (April 24th, 2018).

TanP—Bivalent Metal Reactivity Assay
The reactivity of TanP with bivalent ions (Fe2+ and Zn2+) was
evaluated by spectroscopy technique, using the methodology
described by Melo et al. (2017). In brief, TanP (25 μM), in the
absence or presence of the ions (Fe2+ and Zn2+) at increasing
concentrations (0–175 μM) was incubated at room temperature
(25°C) for 5 min. Then, the absorbance of the mixture was
measured between 190 and 800 nm in a quartz cuvette (1 cm
optical path), using the spectrophotometer Agilent 8453 UV-
visible Spectroscopy System (Agilent, Santa Clara, California,
United States of America) with a DAD detector. Electronic
spectra were generated for the evaluation of complexation.
The stoichiometric ratio for the complex was obtained from
the extrapolation calculation of the lines, equaling the values
of the y-axis of each of the equations of the lines, thus obtaining
the value of x, corresponding to the concentration of the metal in
the sample.

Fluorescence Emission Spectrophotometry
Fluorescence spectra were recorded with a spectrofluorometer
(RF-5301PC model Shimadzu, Japan), with 280 nm excitation
wavelength. The emission spectrum was recorded in the range of
300–500 nm. All measurements were performed with wide slits of
excitation and emission equal to 1.5 and 15 nm, respectively. The
TanP sample (1.12 µM) was titrated with the increasing
concentrations of Fe2+ (0–47.7 µM) or Zn2+ (0–50 µM) ions,
obtained from FeSO4·7H2O or ZnCl2 solutions, respectively.
After 5 min of the addition of the ions, the fluorescence
emission spectra were obtained, and the results were expressed
as fluorescence intensity vs. wavelength (nm) (Croney, 2001;
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Caetano-Silva et al., 2017). All samples were measured in a quartz
cuvette (path length 1 cm). For the titration of the iron and zinc
ions, 12 and 14 spectra were obtained, respectively.

Computational Methods
Theoretical calculations were focused on proposing a probable
mechanism of interaction between the metallic center and
TanP, particularly through their carboxylate groups
belonging to the side chains of the aspartate and glutamate
residues. Previous experimental results for Cu2+ ions and TanP

indicate that this chelating process takes place via carboxylate
pairs located throughout the tertiary structure (Melo et al.,
2017). Hence, a complexation model, among an acetate pair,
water molecules, and metal ions (Fe2+ and Zn2+), was tried to
support and understand the chelating effect. The use of acetate
to describe the Asp/metals interaction is feasible since the
difference in local electron density is minimal and the
interaction site remains the same. A conformational search
was carried out using the Conformer–Rotamer Ensemble
Sampling Tool CREST version 2.10.2 (Pracht et al., 2020)

FIGURE 1 | Uv-vis absorption spectra of TanP (25 µM) upon the addition of different concentrations of (A) Fe2+ and (B) Zn2+, curves a–o (0–175 μM).

FIGURE 2 | Quenching effects of Fe2+ on TanP (1.12 μM) fluorescence intensity, with λex � 280 nm. (A) Addition of iron ion, curves a–l (0–47.7 μM). (B)
Fluorescence intensity of TanP at 353 nm with increased Fe2+.
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with the xtb program package (Bannwarth et al., 2021). The
semiempirical tight-binding–based quantum chemistry method
GFN2-xTB was used in the framework of meta-dynamics to
globally explore the conformers (Grimme, 2019). The best
conformer for each metal was subjected to density functional
theory (DFT) geometry optimization at the BP86 (Perdew,
1986; Becke, 1988)/def2-TZVP (Perdew, 1986; Becke, 1988;
Weigend and Ahlrichs, 2005) level of theory in an implicit
solvent (water) using the polarizable continuum model
(IEFPCM) (Scalmani and Frisch, 2010). After optimization
calculations, the TD-DFT (Pracht et al., 2020) model for
predicting vertical transition energies of the first excited state
was performed at the CAM-B3LYP (Yanai et al., 2004)/def2-
TZVP. Furthermore, natural bond orbital (NBO) (Foster and
Weinhold, 1980; Reed and Weinhold, 1983) and natural
transition orbital (NTO) (Martin, 2003) analyses were also
carried out to provide a more intuitive picture of the
molecular orbitals. The Gaussian 16 program was used for all
DFT calculations (Frisch et al., 2016).

Hemolytic Activity
The hemolytic effect of TanP was determined previously by de
Menezes et al. (2014), with modifications. In brief, the
suspension of 1% (v/v) healthy human erythrocytes (blood
group O+ Rh+) was incubated with TanP (1.56–50 µM) for 1 h
at 37°C. After this period, the samples were centrifuged at
1,500 rpm for 10 min at 25°C (Eppendorf® 5424 R, Germany).
Then, 200 μl of the supernatant was transferred to a 96-well
microplate, and the absorbance of the hemoglobin was
measured at 540 nm using the microplate reader (Epoch-
Biotek®, Vermont, United States of America). Triton X-100
1% (v/v) and phosphate-buffered saline (137 mMNaCl, 3 mM
KCl, 1.5 mM KH2PO4, and 10 mM Na2HPO4; pH, 7.4) were
used as the positive control (100% hemolysis) and the
negative control (0% hemolysis), respectively. The results
were expressed as the percentage of red cell lysis compared
with the positive control (100% lysis). For the use of blood

from a healthy human donor, the project was previously
approved by the research ethics committee of the Hospital
Universitário Onofre Lopes—Huol/UFRN, under the number
3127063.

In Vitro Antioxidant Activity
1,1-Diphenyl-2-picrylhydrazyl Scavenging Assay
The 1,1-diphenyl-2-picrylhydrazyl (DPPH)
radical–scavenging activity evaluated the ability of TanP to
donate hydrogen or scavenge the DPPH radical in an ethanol
solution. This method is based on the reduction of the DPPH
radical (very unstable nitrogen radical and is purple). When
reacting with reducing substances, that is, antioxidants, it is
transformed into diphenyl-picryl-hydrazine (DPPH-H)
which is yellow. The DPPH radical–scavenging effect was
measured using the method described by Melo-Silveira
et al. (2014), with modifications. In brief, 100 μl of TanP
(1–25 µM) was mixed with 100 μl of ethanol solution of
DPPH (150 µM) and incubated for 30 min, protected from
light, at room temperature (25°C). After incubation, the
absorbance was measured at 517 nm. The DPPH free-
radical–scavenging activity (DPPH-FSA) was determined
using the following equation, where the blank sample is
ethanol solution and the blank control is DPPH solution:

DPPH − FSA (%) � [1 − (absorbance of sample − absorbance of blank sample)
(absorbance of control − absorbance of blank control )]X 100

Hydroxyl Radical–Scavenging Assay
The hydroxyl radical–scavenging effect of TanP was investigated
using Fenton’s reaction (Fe2+ + H2O2 → Fe3+ + OH− + OH•) as
previously described in the literature, with few modifications
(Melo-Silveira et al., 2014). In 96-well microplates, TanP
(1–73.6 µM) was incubated with the reagent solution [10 mM
ferrous sulfate, 10 mM ethylenediaminetetraacetic acid (EDTA),
2 mM sodium salicylate, and 30% hydrogen peroxide in 150 mM
sodium phosphate buffer; pH 7.4], at 37°C for 60 min, leading to
the formation of the hydroxyl radical. Then, the absorbance of
hydroxyl radicals was measured at 510 nm. Tubes in the absence
of hydrogen peroxide were used as blank tubes. The results were
expressed as percentage of scavenging compared to the standard
gallic acid (0.25–2 mg/ml).

Superoxide Radical–Scavenging Assay
The superoxide radical–scavenging activity was determined as
described by Melo-Silveira et al. (2014). The reaction mixture
containing TanP at different concentrations (1–25 µM), 50 mM
sodium phosphate buffer (pH 7.4), 65 mM methionine, 0.5 mM
EDTA, 0.375 nitrotetrazolium blue chloride, and 0.5 mM
riboflavin were exposed to 15-min illumination with a
fluorescent lamp. The change in color was measured (560 nm)
with a spectrophotometer. The control and blank mixtures were
prepared. The blank was protected from light. The results were
expressed as the percentage of hydroxyl radical–scavenging
activity, as shown in the previous equation.

FIGURE 3 | Hemolytic activity of TanP in vitro. TanP was tested
(1.56–50 μM), the statistical significance was performed using ANOVA
followed by Tukey’s test and expressed as mean ± SD (n � 3). ***p < 0.001
compared with the positive control group (Triton-X).
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% radical scavenging � [ (absorbance of control − absorbance of sample)
(absorbance of control − absorbance of blank ) ]X 100

Iron-Chelating Assay
The ability to chelate iron ions was assessed as previously described in
the literature, with modifications (Wang et al., 2008). The samples of
TanP (1–25 µM) were added to the reaction solution (2mM FeCl2
and 5mM ferrozine) and incubated for 10min at 37°C. The
absorbance was measured at 562 nm. The chelating activity was
expressed as the chelation percentage in relation to a blank (absence
of sample). EDTA (0.1 mg/ml) was used as the positive control.

Copper Chelation Assay
The copper chelation test was performed as described previously
(Presa et al., 2018). In brief, 96-well microplates with a reaction
mixture containing different concentrations of TanP (1–25 µM),
pyrocatechol violet (4 mM), and copper II sulfate pentahydrate
(50mg/ml) were homogenized with the aid of a micropipette, and
the absorbance of the solution was measured at 632 nm using a
microplate reader (SpectraMax® M2/M2e, Molecular Devices, São
José, California, United States of America).

Reducing Power Assay
The reducing power of the samples was examined according
to Presa et al. (2018). In brief, different sample concentrations

(1–25 µM) were added to a solution of 200 mM
sodium phosphate buffer (pH 6.6) and potassium
ferricyanide (10 mg/ml). After incubation in a water bath
at 50°C for 20 min, trichloroacetic acid (10% w/v) and iron
III chloride (0.1% w/v) were added. The mixture was stirred,
and the absorbance (700 nm) was measured using a
microplate reader. The results were expressed as the
percentage of activity observed for 0.1 mg/ml (highest
activity) ascorbic acid.

Determination of Anticoagulant Activity
Prothrombin Time Test
The action of TanP on the extrinsic coagulation pathway was
evaluated by prothrombin time (PT) test, as previously described
in the literature, with modifications (Félix-Silva et al., 2014). The
test was carried out using commercial reagent kits (CLOT Bios
Diagnostica®, São Paulo, Brazil). The plasma (70 μl) was mixed
with 30 μl of TanP (2, 12.5, and 25 μM) and incubated at 37°C for
5 min. Then, 200 μl of the PT assay reagent (rabbit brain extract
and calcium chloride) pre-warmed at 37°C for 10 min was added,
and the clotting time was recorded by a digital coagulometer
(“Laser Sensor” Clotimer, CLOT, São Paulo, Brazil). Plasma
alone (only with vehicle) was used as the control (in the
absence of anticoagulant activity). The plasma with heparin
(1 IU/ml) (Cristalia®, São Paulo, Brazil) was used as the
positive control.

FIGURE 4 | Evaluation of antioxidant activity of TanP. (A) DPPH radical scavenging capacity. DPPH solution (150 µM) was used as a control. (B) Iron chelation
capacity. EDTA (0.1 mg/ml) was used as a control. (C) Hydroxyl radical scavenging activity of TanP. Gallic acid (0.25–2 mg/ml) was used as the control. Statistical
significancewas performed using ANOVA followed by Tukey’s test and expressed asmean ± SD (n � 3). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 compared
with the control group.
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Activated Partial Thromboplastin Time Test
The action of TanP in intrinsic and common pathways of the
coagulation cascade was evaluated by activated partial
thromboplastin time (aPTT) assay, as previously described
in the literature, with modifications (Félix-Silva et al., 2014).
The test was carried out using commercial reagent kits (CLOT
Bios Diagnostica). The plasma (70 μl) was mixed with 30 μl of
TanP (2, 12.5, and 25 μM) and incubated at 37°C for 5 min.
Then, 50 μl of the pre-warmed aPTT reagent (rabbit brain
extract and ellagic acid) was added and incubated at 37°C for
3 min. After incubation, pre-warmed (37°C), 50 μl of 25 mM
calcium chloride was added and the clotting time was
recorded by a digital coagulometer (“Laser Sensor”
Clotimer, CLOT). The plasma alone (only with the vehicle)
was used as the control (in the absence of anticoagulant
activity). The plasma with heparin (1 IU/ml) (Cristalia®)
was used as the positive control.

Fibrinogenolytic Activity
The effect of TanP on fibrinogen was evaluated by sodium
dodecyl sulfate–polyacrylamide gel (SDS-PAGE)
electrophoresis (Félix-Silva et al., 2014). The separation
conditions were: voltage of 130 V, amperage of 50 mA, and

power of 90W. The different concentrations of TanP
(2–178 μM) were mixed with 50 μg of the fibrinogen (2 μg/μl)
and then incubated for 240 min at 37°C. The reaction was stopped
by adding 25 μl of sample buffer containing 10% β-
mercaptoethanol and 2% SDS, followed by boiling for 5 min,
and subjected to SDS-PAGE (12%). The fibrinogen-hydrolyzing
pattern was visualized by staining with Coomassie brilliant blue
R-250. Fibrinogen alone was used as the control, for visualization
of the intact fibrinogen profile. The Bothrops leucurus venom
(10 μg) was used as the positive control for the fibrinogenolytic
activity. A sample containing only the peptide in the highest
concentration (178 μM) was used for control. Subsequently, the
gel was digitized and the image was binarized to measure the area
of one of the bands referring to fibrinogen degradation, using
ImageJ 1.44p software (National Institutes of Health, Maryland,
United States of America).

In Vitro Immunomodulatory Activity
Initially, TanP cytotoxicity by the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) reduction method to
RAW 264.7 cells had been evaluated. The immunomodulatory

FIGURE 5 | Evaluation of TanP coagulant activity in vitro. (A) PT and (B)
aPTT assays. Statistical significance was performed using ANOVA followed by
Tukey’s test and expressed as mean ± SD (n � 3). *p < 0.05, **p < 0.01, and
***p < 0.001, compared with the negative control group (plasma without
TanP).

FIGURE 6 | Effect of TanP on pro-inflammatory cytokines levels in
murine macrophage (RAW 264.7) supernatant. The release of cytokines (A)
TNF-α and (B) IL-6 in the presence or absence of LPS. The levels of cytokines
secretion by cells were measured for 24 h after the interaction with LPS
(2 μg/ml) and/or at different concentrations of TanP (0–25 µM). Statistical
significance was performed using ANOVA followed by Tukey’s test and
expressed as mean ± SD (n � 3). *p < 0.05 and ***p < 0.001, compared with
the negative control group (cells without TanP or LPS) or the positive control
group (cells only with LPS).
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activity was evaluated by quantitation of IL-6 and TNF cytokine
levels in the TanP-treated RAW 264.7 macrophage culture
supernatant in the presence and absence of LPS (2 μg/ml,
from Escherichia coli, serotype O111:B4, Sigma-Aldrich®, Saint
Louis, United States of America). In 24-well microplates, the
RAW 264.7 cells (3 × 105 cell/well) were cultivated in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) for 24 h at 37°C at an atmosphere of 5% CO2.
After this period, the medium was aspirated and TanP was added
at different concentrations (2–25 μM) in the absence or presence
of LPS (2 μg/ml). The plate was maintained under the previously
described conditions for 24 h, and the culture medium was
collected for cytokines level quantitation in the supernatant.
The cytokines were quantified by ELISA using the
eBioscience® kit (San Diego, United States of America),
following the methodology described by the manufacturer. The
results were expressed in picograms per milliliter.

Cell Viability of 3T3 Cells (ATCC CCL-92)
The MTT assay was employed to assess the viability of 3T3
fibroblast cells (ATCC CCL-92) in the presence of TanP
(Mosmann, 1983). The 3T3 cell line (ATCC CCL-92) was
kindly provided by Dr. Carmen Ferreira (Department of
Biochemistry, UNICAMP, São Paulo, Brazil). In brief, the 3T3
cells were seeded in a 96-well plate (5 × 103 cell/well) and
incubated in DMEM with 10% FBS, at 37°C with 5% CO2

saturation. After this period, TanP was added at different
concentrations (5–50 μM) and incubated for 24 h. Then, the
peptide was removed, and 100 μl of MTT (5 mg/ml) in
medium was added and further incubated for 4 h at 37°C. The
supernatants were removed and replaced by 100 μl of ethanol to
solubilize formazan crystals. Measurements were carried out at
570 nm using the microplate reader (Epoch-BioTek®). The results
were presented as a percentage of MTT reduction, considering
the absorbance of the negative control (plate without addition of
the peptide) as 100% reduction.

In Vitro Scratch Wound Assay
The 3T3 cells were seeded in a 24-well plate and incubated in
DMEM with 10% FBS until cell confluence reached about
80–90%. The cells were further grown for the next 24 h at
37°C in a 5% CO2 incubator. A uniform scratch wound was
created using a 200-μl sterile pipette tip. To remove loose cells, the
wells were washed with PBS (pH, 7.4). The scratched cells were
then treated with different concentrations of TanP (2–50 µM).
The wells containing only the culture medium were used as the
negative control. To monitor the closure of the lesion, images
were obtained using the Nikon Eclipse inverted microscope with
a 10× objective, at 0, 12, and 24 h, after incubation with TanP. The
scratch area was analyzed using the software NIS-Elements AR,
considering the results as a percentage of closure of the lesion in
relation to the initial area (Balekar et al., 2012; Tonin et al., 2016).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (version 7.0, GraphPad, San Diego, United States of
America). All experiments were conducted at least in triplicates.
The data analysis was performed using one-way analysis of
variance (ANOVA) followed by Tukey’s test. The data were
expressed as mean ± standard deviation (SD) and considered
significant when p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001. For the experimental assay with metals, the program
OriginPro 8.5 was used to plot the graphs.

RESULTS

Metal-Chelating Properties of TanP
The reactivity assays by UV-visible spectrometry of TanP with
different concentrations of metal ions are reported in Figure 1. In
the absence of metal ions, the UV-vis spectrum of TanP showed
the absorption maximum at 255 and 275 nm (Supplementary
Figure S1). When FeSO4·7H2Owas added, changes in the peptide
spectral profile in maximum absorption from 255 to 275 nm
occurred, indicating the formation of a TanP-Fe2+ complex. For
Zn2+ no relevant spectral change was noted. As shown in
Supplementary Figure S2, initially, in the presence of Fe2+,
the absorbance increased linearly and then became stable,
revealing a 1:5 stoichiometry for the complex (TanP: Fe2+).

To propose a mode of interaction of TanP with Fe2+ and Zn2+

ions, the following [Fe(Ac.)2(H2O)4] and [Zn(Ac.)2(H2O)2]
complexes were used after conformational searching. The
obtained geometries for Zn2+ and Fe2+ complexes presenting
tetrahedral and octahedral shapes, respectively (Supplementary
Figure S3). For Zn2+, two water molecules and one oxygen of
each acetate are located on the vertices of a tetrahedral-like
structure. The angles between these four ligands passing by
the metallic central atom have an average of 108.7°, which
characterizes this geometry, and an average distance of 2.0 Å.
As on the Zn2+ complexes, dication iron also interacts with one
oxygen of each acetate carboxylate; however, four water
molecules are present on the first hydration shell and form an
octahedral complex. The average angles between the adjacent and

FIGURE 7 | Cell migration of 3T3 cells treated with TanP after the
Scratch assay. Fibroblast confluence after scratching and treatment with
different concentrations of TanP (0–50 µM) was analyzed at 0, 12, and 24 h.
The areas were measured with the aid of the software NIS-Elements AR.
Statistical significance was performed using ANOVA followed by Tukey’s test
and expressed asmean ± SD (n � 3). *p < 0.05 and **p < 0.01, compared with
the control group (without TanP).
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opposite oxygen atoms were 90.0° and 174.5°, respectively, over an
average distance of 2.0 Å from the central atom.

Theoretical absorption spectra for the two [Fe(Ac.)2(H2O)4]
and [Zn(Ac.)2(H2O)2] complexes are displayed in Supplementary
Figure S4. These spectra were simulated for the spectral range of
wavelengths between 170 and 300 nm, which is consistent with
the spectral window used to obtain the experimental data
(Supplementary Figure S1). All vertical transitions calculated
for the two complexes are characterized (wavelength, oscillator
strength, and types of orbitals involved in the transitions) and
listed in the Supplementary Table S1. As can be observed in
Supplementary Figure S4 and Supplementary Table S1, while
the [Zn(Ac.)2(H2O)2] complex presents nine excited states
(between 172 and 212 nm), the [Fe(Ac.)2(H2O)4] complex has
20 excited states (between 171 and 255 nm). The NTOs of the
main excited state for the [Fe(Ac.)2(H2O)4] and
[Zn(Ac.)2(H2O)2] complexes are displayed in Supplementary
Figure S4.

On the one hand, these nine excited states of the [Zn
(Ac.)2(H2O)2] complex are described mainly from transitions
of the highest occupied molecular orbitals (HOMO, HOMO-1,
and HOMO-2) centered on the carboxylate ligand (orbitals type
n) to the lowest unoccupied molecular orbitals (LUMO,
LUMO+1, and LUMO+2) also associated with the acetate
ligand moiety (type π* orbitals). On the other hand, for the
[Fe (Ac.)2(H2O)4] complex, the most important excited states
describe a low-intensity band (between 185 and 220 nm), which
results mainly from almost isoenergetic transitions originating
from the 3d orbitals (HOMO, HOMO-1, and HOMO-2) located
at the metallic center to the type π* orbitals located at the acetate
ligand (LUMO+3 and LUMO+4).

In fluorescence emission spectra, TanP (1.12 µM) revealed an
intense emission band with λmax around 353 nm when excited at
285 nm, which is in agreement with the tryptophan (Trp)
emission range (Supplementary Figure S5). The fluorescence
intensity of TanP (1.12 µM) decreased after Fe2+ addition
(Figure 2A). The highest ratio of 1:7.4 (TanP: Fe2+) led to the
lowest fluorescence intensity, according to the value obtained in
the graph regarding the spectral variations of the emission band
as a function of the concentration of the metal ion (Figure 2B).
No change in fluorescence emission of TanP was noted by the
addition of Zn2+ (Supplementary Figure S6).

Hemolytic Activity
TanP showed low hemolytic activity for all concentrations tested
(1.56–50 μM), with 3% of hemolytic activity when evaluated at
the highest concentration (50 µM), evidencing that the peptide
did not cause significant hemolysis effect in red blood cells in vitro
(Figure 3).

In Vitro Antioxidant Potential of TanP
TanP showed low activity (less 5%) in three different tests,
reducing power, superoxide radical–scavenging, and copper-
chelating test (data not shown). On the other hand, TanP
exhibited DPPH radical–scavenging activity above 70% at all
concentrations (1–25 μM) (Figure 4A). For the iron ion chelation
test, TanP showed 89.7% activity (Figure 4B) when evaluated at

the highest concentration (25 μM). In addition, TanP (73.6 μM)
displayed 96% of the hydroxyl radical–scavenging activity
(Figure 4C).

Evaluation Anticoagulant Activity In Vitro
The anticoagulant activity of TanP was evaluated by the PT and
aPTT assays, using normal citrated human plasma. In both
assays, TanP revealed the anticoagulant effect at
concentrations of 12.5 and 25 µM (Figure 5). In the TP assay,
a clotting time of 20 and 22.5 s was found for concentrations of
12.5 and 25 μM, respectively (Figure 5A). In the aPTT assay, a
clotting time of 53.4 and 58.4 s was found, for concentrations of
12.5 and 25 μM, respectively (Figure 5B). Plasma with heparin
was used as the positive control and as expected presented
significant anticoagulant activity, with PT higher than 60 s
(seconds of the negative control: 16.27 ± 0.32) and aPTT
higher than 240 s (seconds of the negative control: 35.07 ± 0.03).

In addition to the anticoagulant activity, TanP was also tested
in relation to its capacity to hydrolyze fibrin and fibrinogen, in
view of investigating its potentiality as a thrombolytic agent. At
the concentrations evaluated, TanP did not demonstrate
fibrinogenolytic activity (data not shown).

Effect of TanP on the Release of Cytokines
TanP (2–25 µM) did not reduce the viability of RAW 264.7 cells
when incubated for 24 h, indicating a nontoxic character for this
cell line (Supplementary Figure S7). The peptide induced a
distinct release profile of the pro-inflammatory cytokines
TNF-α and IL-6 in the absence of LPS. An increase in TNF-α
expression of 316.26 and 622.56 pg/ml was observed in the
supernatant of the murine macrophage culture in the presence
of 12.5 and 25 µM of TanP, respectively, revealing a
concentration-dependent relationship (Figure 6A). No
significant changes were observed for IL-6 levels (Figure 6B).
In the presence of LPS, TanP (2–25 µM) did not induce changes
in the release profile of the TNF-α and IL-6 cytokines when
incubated for 24 h.

Cell Viability of 3T3 Cells
TanP (2–50 µM) neither induced the proliferation of 3T3 cells
nor reduced their viability when incubated for 24 h, indicating a
nontoxic character for this cell line (Supplementary Figure S8).

Evaluation of the Healing Potential of TanP
Using Cell Migration Assay
Figure 7 shows the effect of treatment with TanP at different
concentrations (2–50 µM), at times 0, 12, and 24 h, with respect to
the migration of fibroblasts, using the scratch method.

When the measurements of the scratch areas were compared, a
significant increase in the percentage of lesion closure was
observed after 24 h of incubation with the peptide, for all
concentrations evaluated in relation to the group control. In
addition, in the presence of TanP (2 μM, 12.5 and 50 µM),
approximately 50% of the wound was closed after 24 h of
treatment, whereas for the control group, this closure was
only 30%.
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DISCUSSION

High concentrations of Fe2+ and Cu2+ ions cause these metals to
react with molecular oxygen, generating reactive oxygen species
(ROS) that damage DNA, lipids, and proteins (Di Bella et al.,
2017). Furthermore, cancer, diabetes, arteriosclerosis,
inflammatory disease, autoimmunity, cardiovascular disease,
and Alzheimer’s disease have been associated with the increase
of ROS or the inability of the organism to reduce these reactive
species (Nascimento et al., 2013). The development of
multifunctional molecules, including natural products, capable
of simultaneously combating several pathological characteristics,
acting as chelating agents, antioxidants, anti-inflammatories, and
peptide aggregation reducers, among others, is considered a new
perspective for the treatment of neurodegenerative diseases (Sales
et al., 2019). In this context, components present in the scorpion
venom have demonstrated anti-inflammatory (Veloso Júnior
et al., 2019), chelating (Melo et al., 2017), and antioxidant
action (Daniele-Silva et al., 2021), constituting a promising
source for the development of new drugs.

In this study, TanP revealed a significant affinity on iron (II), a
biologically important metal ion, not showing a similar affinity
profile with respect to the zinc (II) metal, in the experimental
conditions observed (Figure 1).

Complexation with Fe2+ ions is commonly related to obtaining
a compound of octahedral geometry. Coordination sites
involving sulfur, nitrogen, and oxygen donors promote this
interaction (Bal et al., 2013; Antonietti et al., 2017). In the
literature, it is suggested that the metal-binding sites in iron-
chelating peptides may also be the carboxyl groups of the aspartic
and glutamic residues (Lv et al., 2009; Caetano-Silva et al., 2018),
terminal amino and carboxylate groups, and the peptide bonds of
the peptide structure, as well as the amino and arginine imine,
lysine amino, and histidine imine. In addition, it was found that
the absence of these amino acid residues in the peptide chain
results in less iron-chelating potential (Wu et al., 2017). Thus, it is
suggested that Fe2+ ions form a complex with TanP possibly by
binding to the oxygen atoms of the carboxylate groups of the
aspartic and glutamic acid side chains.

The tetrahedral geometry obtained for the [Zn(Ac.)2(H2O)2]
complex in the computational assay of this study revealed a
configuration commonly obtained for dication zinc complexes,
mainly bio-complexes since the zinc ion interacts with donors
such as oxygen and nitrogen of enzyme side chains to generate
stronger complexes (Krezel and Maret, 2016). Regarding the
geometry obtained for the [Fe(Ac.)2(H2O)4] complex, this is in
accordance with several iron complexes that generate the
octahedral shape on an aqueous medium, including biological
molecules as the heme group (Poulos, 2014).

Our NBO analyses (Supplementary Figure S9, S10, and S11)
indicate that while for the [Fe(Ac.)2(H2O)4] complex, the 3d
orbitals of the metallic center are set near the HOMO–LUMO
frontier orbitals, for the [Zn(Ac.)2(H2O)2] complex, the 3d
orbitals of zinc are far from the boundary orbitals. Then,
considering the participation of the relevant molecular orbitals,
for the [Zn(Ac.)2(H2O)2] complex, the excited states can be
assigned mainly as transitions involving just orbitals of

aspartate ligand. Differently, for the [Fe(Ac.)2(H2O)4] complex,
the main absorption band can be assigned mainly as a metal-to-
ligand charge transfer. These theoretical results suggest that by
UV-vis spectroscopy: 1) TanP can work as a sensor to identify
and quantify (at the evaluated concentrations) iron (II) ions; and
2) TanP does not seem to have sensibility for bivalent zinc (at the
evaluated concentrations and spectral range considered).

Conformational changes of proteins can be monitored using
fluorescent probes or intrinsic fluorescence, which is caused by
aromatic amino acid residues (tryptophan, tyrosine, and
phenylalanine) (Zhdanova et al., 2015). In the primary
sequence, TanP contains one tyrosine residue, three
phenylalanine residues, and one tryptophan residue, which
contribute to the intrinsic fluorescence of the peptide.

When evaluated by fluorescence spectroscopy, TanP displayed
an intense emission band with λmax around 353 nm, when excited
at 285 nm (Supplementary Figure S5), which corroborates with
the maximum emission length of tryptophan, which varies from
310 to 350 nm, depending on the electrostatic environment
(Adams et al., 2002). For the other chromophores, tyrosine
and phenylalanine amino acids, the emission spectrum is in
the 290 nm range, which overlaps with the absorption
spectrum of tryptophan, causing an energy transfer from these
amino acids to tryptophan, making this the dominant
chromophore in the fluorescence process of peptides and
proteins (Zhdanova et al., 2015).

The changes observed in TanP emission bands, in the presence
of Fe2+, corroborate with the results obtained in UV-vis
spectroscopy. The lower concentration of TanP (1.12 μM)
coordinates more iron ions, 1:7.4 (TanP:Fe2+). A similar
proportion (TanP:metal) was reported in the UV-vis copper
study, for a peptide concentration of 2.11 μM, mentioning a
proportion of 1:7 (TanP:Cu2+) (Melo et al., 2017). In addition,
it can be suggested that the metal is binding to a site close to the
amino acid tryptophan.

The presence of molecules with antioxidant effects in
scorpions has been reported in the literature (Wali et al.,
2020). The Stigmurin (FFSLIPSLVGGLISAFK-NH2), cationic
peptide of T. stigmurus, showed hydroxyl radical scavenging
above 70% at 10 μM (Daniele-Silva et al., 2021). A peptide
fraction isolated from the venom of Buthus occitanus has been
demonstrated to exhibit the antioxidant and free radical
scavenger effects (Bekheet et al., 2013). Antioxidant peptides
from B. martensii Karsch were separated and purified, and
showed the highest ABTS+-scavenging activity and the highest
DPPH-scavenging activity, but the OH-scavenging activities of
these peptides were not significant (Wali et al., 2020).

The substrate oxidation process consists of three stages
(initiation, propagation, and termination). Antioxidants can
act at any of these steps, and the more steps a compound
intervenes at, the better the antioxidant it is (Wali et al.,
2020). Several in vitro antioxidant tests are available to assess
the antioxidant activity of biomolecules (Gulcin, 2020). In this
current study, we used six methods to evaluate the possible effect
of TanP on the initiation (DPPH, iron, and copper chelation),
propagation (reducing power), and termination (superoxide and
hydroxyl radical–scavenging activities) steps.
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In this approach, TanP revealed significant iron-chelating
activity, reaching up to above 90% of chelation (Figure 4B),
being a pioneer in demonstrating the antioxidant potential of
anionic peptides present in the scorpion venom. Chelation of
metal iron has an antioxidant effect because the transition metal
iron, just like copper, catalyzes the generation of ROS, including
hydroxyl radical and superoxide radical, leading to the oxidation
of unsaturated lipids and promoting oxidative damage at
different levels (Nascimento et al., 2013).

Among ROS, the hydroxyl radical is the most reactive in
chemistry. It can abstract hydrogen atoms from biological thiol
molecules and form sulfur radicals capable of combining with
oxygen to generate oxysulfur radicals and damage biological
molecules (Singh and Singh, 2008; Melo-Silveira et al., 2012).

Overall, TanP revealed an antioxidant effect in two different
stages of substrate oxidation process; initiation (DPPH reduction
and ion chelation) and termination (hydroxyl radical scavenging)
(Figure 4).

Different amino acid residues may be responsible for the
antioxidant activity in peptides, which is usually due to
chelation of transition metals and scavenging of free radicals
(Carrasco-Castilla et al., 2012). The high content of hydrophobic
amino acids in peptides was mainly responsible for the
antioxidant activity (Wali et al., 2020). In addition,
nucleophilic sulfur-containing side chains in cysteine and
methionine residues, and aromatic side chains in tryptophan,
tyrosine, and phenylalanine residues can easily donate hydrogen
atoms (Carrasco-Castilla et al., 2012). In its composition, TanP
has 23 hydrophobic residues, including one tyrosine, one
tryptophan, and four phenylalanine.

Many animal venoms have shown the ability to act on the
human hemostatic system as procoagulant or anticoagulant
agents (Brazón et al., 2009). In this study, TanP was able to
prolong the clotting time in PT and aPTT tests in the highest
concentrations (Figure 5), demonstrating anticoagulant activity.

Some scorpion venoms cause blood clotting disorders, but the
number of coagulopathic compounds studied to date is quite less
(Félix-Silva et al., 2014). Dipeptides isolated from Heterometrus
laoticus scorpion venom showed no anticoagulant activity at
concentrations up to 100 µM in PT and aPTT tests with the
human plasma, but they strongly prolonged the bleeding time
from mouse tail and in in vitro clot formation, through the
inhibition of platelet aggregation (Tran et al., 2017).

Discreplasminin, a peptide isolated from Tityus discrepans
venom, showed antifibrinolytic activity, since it inhibits plasmin;
although, a previous study had shown the prolongation of human
plasma PT and aPTT in the presence of the venom (Brazón et al.,
2009). The hydrolyzate from the BmK protein of scorpion (B.
martensii Karsch) exhibited high anticoagulant activity, and this
action has been associated with the presence of negatively charged
amino acids and hydrophobic residues (Ren et al., 2014).

Additionally, TanP did not demonstrate the ability to
hydrolyze fibrinogen in tested concentrations. Differently from
the results obtained in this study, it was identified in T. discrepans
that fibrinogenolytic enzymes are responsible for the degradation
of the fibrinogen Aα and Bβ chains, and these mechanisms were
also related to the prolongation of TP and activated aPTT

produced by the venom of T. discrepans (Brazón et al., 2014),
demonstrating that components present in scorpion venom can
induce a wide variability of effects on hemostasis.

Our results suggest that the observed anticoagulant activity
may be due to an inhibitory action upon clotting factors. Another
hypothesis for the observed anticoagulant action is that the
possible target of peptide intervention may be platelet
aggregation, since peptides isolated from scorpions have this
mechanism already elucidated (Thien et al., 2017).

Although other scorpion venom peptides with anticoagulant
activity are described in the literature, this is the first study that
demonstrates that anionic peptides present in scorpion venom
have this activity. However, given the results that have been
presented, further studies are necessary to elucidate the exact
mechanism of the anticoagulant effects of TanP.

Venoms and toxins are responsible for modulating the
immune response (Petricevich, 2002; Petricevich and Lebrun,
2005). Envenoming by different species of scorpion, even the
Tityus genus, results in the release of pro- and anti-inflammatory
cytokines, and the balance between such cytokines in the
poisoning determines the degree and extent of inflammation,
which can lead to important clinical effects, such as cardiac
dysfunction, pulmonary edema, and shock (Petricevich, 2010).

The macrophages are cells that participate in all stages of the
inflammatory process, since phagocytosis helps in the production
of chemokines, cytokines, and growth factors. In addition, the
macrophages present extensive phenotypic and functional
plasticity, whose regulation critically defines beneficial or
detrimental outcomes in inflammatory responses (Mendes
et al., 2019). TanP promoted the release of TNF-α, in murine
macrophages, in the absence of LPS (Figure 6A). It is not known
whether stimulation of TNF-α cytokine production arises from a
nonspecific interaction of the peptide with the macrophage
membrane or from interaction with a specific receptor.
However, TanP is unlikely to bind to the LPS receptor since
the effects of LPS on cytokine production were not affected in the
presence of the peptide.

Previous studies with T. serrulatus scorpion venom (TSV)
demonstrated that the incubation of macrophages with TSV
provided an increase in the production of IL-6 and IFN- γ,
but there was no detection of TNF-α in the cell supernatant
(Petricevich, 2002). However, when evaluating the activity of
fractions isolated from this venom, it was found that the FII
fraction is a potent activator of the production of macrophage
TNF-α (Petricevich and Lebrun, 2005).

Basic amino acids present in the peptide chain are important
residues for interaction with the target in macrophages. Cationic
peptides isolated from T. serrulatus venom were able to modulate
macrophage responses, increasing the release of IL-6 (Pucca et al.,
2016). ToAP3 and ToAP4, cationic peptides obtained from T.
obscurus venom, have been demonstrated to be a potential in vitro
immunomodulator on murine bone marrow–derived
macrophages stimulated by LPS, being able to reduce the
release of TNF-α. This stimulation is associated with peptide
interaction with toll-like receptor 4 (TLR4). However, no increase
in cytokine levels was observed when both cells were treated with
ToAP3 or ToAP4 alone (Veloso Júnior et al., 2019). Although
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TanP had no basic amino acid residues in its composition and
was rich in acidic and hydrophobic residues, it was able to
modulate cytokine release by macrophages in the absence of
LPS. In murine macrophages, the LPS binds with a carrier of LPS-
binding protein (LBP). The LPS-LBP complex interacts with
some receptors such as CD14, MD2, and TLR-4 proteins that
trigger the activation of an intracellular cascade that induces the
activation of the transcription factor nuclear factor kappa B to the
nucleus, which is responsible for the transcription of pro-
inflammatory genes, resulting in the production of
inflammatory cytokines and the expression of co-stimulatory
molecules (Torres-Rêgo et al., 2016; Zamyatina and Heine,
2020). The mechanism involved in the immunomodulatory
effect by TanP is still unclear, and more tests should be
carried out for elucidation. However, it is possible that TanP
interacts with TLR4, inducing the production of TNF-α. This
interaction is significantly less than the power of the receptor to
recognize LPS, so the presence of the peptide does not interfere
with the activation caused by LPS.

The release of nitrite by RAWmacrophages in the presence of
LPS was inhibited by TanP, indicating that the peptide neutralizes
LPS-induced nitric oxide production. TanP treatment without
LPS stimulation reached the same level as the negative control
(Melo et al., 2017). Thus, it is suggested that TanP has an
immunomodulatory potential because in unstimulated
macrophages, it can increase the release of inflammatory
mediators, while in the presence of LPS, it decreases the
production of nitric oxide, thus preventing exacerbated
inflammatory reactions. There are a few studies involving the
immunomodulatory potential of anionic peptides. To date, no
studies with anionic peptide from scorpion venom in the
approach of the immunomodulatory activity are known.

Considering a skin lesion, wound healing after hemostasis
occurs in three overlapping stages: inflammation, proliferation,
and remodeling. Fibroblasts are critical in all the three phases
(Desjardins-Park et al., 2018). Fibroblast migration can accelerate
the wound’s revitalization process and promote its closure during
healing (Liu et al., 2014; Yang et al., 2019).

In this study, it was demonstrated that TanP (2–50 µM) does
not exhibit the potential to promote the proliferation of 3T3 cells
in vitro, but a significant increase in the percentage of lesion
closure was observed after 24 h of incubation with the peptide in
certain concentrations, due to the action on fibroblast migration
(Figure 7). Thus, it is suggested that TanP may be acting as an
exogenous fibroblast growth factor, or it may potentiate the
activity of existing fibroblast growth factors.

Chronic wounds contain high levels of reactive oxygen and
nitrogen species. The overproduction of free radicals, together
with the accumulation of iron ions, perpetuates the inflammatory
phase, resulting in severe tissue damage. For this reason, the
introduction of antioxidants seems to be a promising strategy to
promote normal wound healing (Pivec et al., 2019).

Iron-chelating molecules, such as deferoxamine, have high
wound healing potential, even when dealing with diabetic
patients, suggesting that iron depletion is beneficial in
endothelial dysfunction in diabetes (Duscher et al., 2018).
Thus, as TanP was able to chelate iron ions, there is a

perspective that this function may contribute to the wound
healing process.

In the inflammation process, at the initial healing stage,
excessive inflammatory mediators, such as radicals, are
released at the wound site, often associated with oxidative
stress and subsequent prolonged inflammation, resulting in
difficulty in healing the wound (Zhao et al., 2019). Therefore,
since TanP also showed significant results with respect to
chelating and antioxidant properties, and anti-inflammatory
capacity, this peptide presents a high potential to be applied as
a prototype to obtain new healing agents.

This is the first study to approach the role of anionic peptides of
scorpions in immunomodulation and the wound healing process.
Furthermore, TanP displayed the ability to chelate Fe2+ ions and
revealed antioxidant and anticoagulant potential. This approach
provides preliminary results regarding the therapeutic potential of
TanP, which serve as a basis for the development of new studies in
search of a prototype of a new drug. Besides, TanP has a potential for
biotechnological application and can be used as a biosensor for
identifying and quantifying Fe2+ ions.
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