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Abstract

Background: Due to the recent advances in deep learning, this model attracted researchers who have applied it to
medical image analysis. However, pathological image analysis based on deep learning networks faces a number of
challenges, such as the high resolution (gigapixel) of pathological images and the lack of annotation capabilities. To
address these challenges, we propose a training strategy called deep-reverse active learning (DRAL) and atrous
DenseNet (ADN) for pathological image classification. The proposed DRAL can improve the classification accuracy of
widely used deep learning networks such as VGG-16 and ResNet by removing mislabeled patches in the training set.

UCSB validation sets, respectively.

models for partially mislabeled training datasets.

As the size of a cancer area varies widely in pathological images, the proposed ADN integrates the atrous
convolutions with the dense block for multiscale feature extraction.

Results: The proposed DRAL and ADN are evaluated using the following three pathological datasets: BACH, CCG,
and UCSB. The experiment results demonstrate the excellent performance of the proposed DRAL + ADN framework,
achieving patch-level average classification accuracies (ACA) of 94.10%, 92.05% and 97.63% on the BACH, CCG, and

Conclusions: The DRAL + ADN framework is a potential candidate for boosting the performance of deep learning

Keywords: Pathological image classification, Active learning, Atrous convolution, deep learning

Background
The convolutional neural network (CNN) has been attrac-
tive to the community since the AlexNet [1] won the
ILSVRC 2012 competition. CNN has become one of the
most popular classifiers today in the area of computer
vision. Due to outstanding performance of CNN, sev-
eral researchers start to use it for diagnostic systems. For
example, Google Brain [2] proposed a multiscale CNN
model for breast cancer metastasis detection in lymph
nodes. However, the following challenges arise when
employing the CNN for pathological image classification.
First, most pathological images have high resolutions
(gigapixels). Figure la shows an example of a ThinPrep
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Cytology Test (TCT) image for cervical carcinoma. The
resolution of the TCT image is 21,163 x 16,473, which is
difficult for the CNN to process directly. Second, the num-
ber of pathological images contained in publicly available
datasets are often very limited. For example, the dataset
used in the 2018 grand challenge on breast cancer his-
tology images (BACH) consists of 400 images in four
categories, with only 100 images available in each cate-
gory. Hence, the number of training images may not be
sufficient to train a deep learning network. Third, most
of the pathological images only have the slice-level labels.
To address the first two problems, researchers usually
crop patches from the whole-slice pathological images
to simultaneously decrease the training image size and
increase their number. As only the slice-level label is
available, the label pertaining to the whole-slice is usu-
ally assigned to the associated patches. However, tumors
may have a mix of structure and texture properties [3],
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BACH dataset. The normal patch is labeled as benign
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Fig. 1 Challenges for pathological image classification. a Gigapixel TCT image for cervical carcinoma. b An example of a mislabeled patch from the

and there may be normal tissues around tumors. Hence,
the patch-level labels may be inconsistent with the slice-
level label. Figure 1b shows an example of a breast can-
cer histology image. The slice label is assigned to the
normal patch marked with red square. Such mislabeled
patches may influence the subsequent network training
and decrease classification accuracy.

In this paper, we propose a deep learning framework to
classify the pathological images. The main contributions
can be summarized as follows:

1) An active learning strategy is proposed to remove
mislabeled patches from the training set for deep learn-
ing networks. Compared to the typical active learning that
iteratively trains a model with the incrementally labeled
data, the proposed strategy - deep-reverse active learning
(DRAL) - can be seen as a reverse of the typical process.

2) An advanced network architecture - atrous DenseNet
(ADN) - is proposed for classification of the pathological
images. We replace the common convolution of DenseNet
with the atrous convolution to achieve multiscale feature
extraction.

3) Experiments are conducted on three pathological
datasets. The results demonstrate the outstanding classi-
fication accuracy of the proposed DRAL + ADN frame-
work.

Active Learning

Active learning (AL) aims to decrease the cost of
expert labeling without compromising classification
performance [4]. This approach first selects the most
ambiguous/uncertain samples in the unlabeled pool for
annotation and then retrains the machine learning model
with the newly labeled data. Consequently, this augmen-
tation increases the size of the training dataset. Wang [4]
proposed the first active learning approach for deep learn-
ing. The approach used three metrics for data selection:
least confidence, margin sampling, and entropy. Rahhal

et al. [5] suggested using entropy and Breaking-Ties (BT)
as confidence metrics for selection of electrocardiogram
signals in the active learning process. Researchers recently
began to employ active learning for medical image analy-
sis. Yang [6] proposed an active learning-based framework
- a stack of fully convolutional networks (FCNs) - to
address the task of segmentation of biomedical images.
The framework adopted the FCNs results as the met-
ric for uncertainty and similarity. Zhou [7] proposed a
method called active incremental fine-tuning (AIFT) to
integrate active learning and transfer learning into a sin-
gle framework. The AIFT was tested on three medical
image datasets and achieved satisfactory results. Nan [8]
made the first attempt at employing active learning for
analysis of pathological images. In this study, an improved
active learning based framework (reiterative learning)
was proposed to leverage the requirement of a human
prediction.

Although active learning is an extensively studied area,
itis not appropriate for the task of patch-level pathological
image classification. The aim of data selection for patch-
level pathological image classification is to remove the
mislabeled patches from the training set, which is differ-
ent from the traditional active learning, i.e., incremental
augmentation of the training set. To address this chal-
lenge, we propose deep-reverse active learning (DRAL)
for patch-level data selection. We acknowledge that the
idea of reverse active learning has been proposed in
2012 [9]. Therefore, we hope to highlight the difference
between the RAL proposed in that study and ours. First,
the typical RAL [9] is proposed for clinical language
processing, while ours is for 2-D pathological images.
Consequently, the criteria for removing mislabeled (neg-
ative) samples are totally different. Second, the typical
RAL [9] is developed on the LIBSVM software. In con-
trast, we adopt the deep learning network as the backbone
of the machine learning algorithm, and remove the noisy
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samples by using the data augmentation approach of deep
learning.

Deep Learning-based Pathological Image Analysis

The development of the deep convolutional network
was inspired by Krizhevsky, who won the ILSVRC 2012
competition with the eight-layer AlexNet [1]. In the fol-
lowing competitions, a number of new networks such
as VGG [10] and GoogLeNet [11], were proposed. He
et al. [12], the ILSVRC 2015 winner, proposed a much
deeper convolutional network, ResNet, to address the
training problem of ultradeep convolutional networks.
Recently, the densely connected network (DenseNet) pro-
posed by Huang [13] outperformed the ResNet on various
datasets.

In recent years, an increasing number of deep learning-
based computer-aided diagnosis (CAD) models for
pathological images have been proposed. Albarqouni [14]
developed a new deep learning network, AggNet, for
mitosis detection in breast cancer histology images. A
completely data-driven model that integrated numerous
biological salient classifiers was proposed by Shah [15]
for invasive breast cancer prognosis. Chen [16] proposed
a framework based on FCN for segmentation of glands.
Li [17] proposed an ultradeep residual network for seg-
mentation and classification of human epithelial type-2
(HEp-2) specimen images. More recently, Liu [18] devel-
oped an end-to-end deep learning system to directly
predict the H-Score for breast cancer tissue. All the
aforementioned algorithms crop patches from patholog-
ical images to augment the training set, and achieve
satisfactory performance on specific tasks. However, we
noticed that few of the presented CAD systems use the
DenseNet state-of-the-art network architecture, which
leaves some margin for performance improvement. In this
paper, we propose a deep neural network called ADN
for analysis of pathological images. The proposed frame-
work significantly outperforms the benchmark mod-
els and achieves excellent classification accuracy on
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two types of pathological datasets: breast and cervical
slices.

Atrous Convolution & DenseNet

The proposed atrous DenseNet (ADN) is inspired by
atrous convolution (or dilated convolution) and the
DenseNet state-of-the-art network architecture [13]. In
this section, we first present the definitions of atrous
convolution and the original dense block.

Atrous Convolution

The atrous convolution (or dilated convolution) was
employed to improve the semantic segmentation per-
formance of deep learning based models [19]. Com-
pared to the common convolution layer, the convolu-
tional kernels in the atrous convolution layer have “holes”
between parameters that enlarge the receptive field with-
out increasing the number of parameters. The size of the
“holes” inserted into the parameters is calculated based on
the dilation rate (y). As shown in Fig. 2, a smaller dilation
rate results in a more compact kernel (the common con-
volution can be seen as a special case with dilation rate =
1), while a larger dilation rate produces an expanded ker-
nel. A kernel with a larger dilation rate can capture more
context information from the feature maps of the previous
layer.

Dense Block

The dense block adopted in the original DenseNet is
introduced in [13]. Let H;(.) be a composite function of
operations such as convolution and rectified linear units
(ReLU), the output of the I layer (x;) for a single image xo
can be written as follows:

X[ =Hz([xo,x1,...,x1,1]) (1)

where [xg, %1, ...,x;_1] refers to the concatenation of the
feature maps produced by layers 0, ...,/ — 1.

If each function H;(.) produces k feature maps, the
layer consequently has ko + k x (I — 1) input feature maps,

lth

y=1

y=2

Fig. 2 Examples of atrous convolutions with different dilation rates. The purple squares represent the positions of kernel parameters

y=3




Li et al. BMC Bioinformatics (2019) 20:445

where k is the number of channels of the input layer. & is
called growth rate of the DenseNet block.

Methods

Deep-Reverse Active Learning

To detect and remove the mislabeled patches, we pro-
pose a reversed process of traditional active learning. As
overfitting of deep networks may easily occur, a simple
six-layer CNN called RefineNet (RN) is adopted for our
DRAL (see the appendix for the architecture). Let M repre-
sent the RN model in the CAD system, and let D represent
the training set with m patches (x). The deep-reverse
active learning (DRAL) processisillustrated in Algorithm 1.

Algorithm 1: Deep reverse active learning

Input:
C: the original training set C =c¢;, i €[1, n] {C has n patches}
Dyg: the augmented training set Dy = x;, jell,s8]
{’rotation’ & 'mirror’ are adopted. Dy has 8n patches}
Mj: RN model pre-trained on DO {RN: a 6-layer CNN}
mx: counter {1 x n matrix }
Output:
Dy: the refined training set at iteration t
M;: fine-tuned RN model at iteration t
Functions:
p < P(x, M) output of M
M; < F(D, M(—1) {fine-tune Mt with D}
argmax(p): find the maximum value of vector p
zeros(mx): initialize all elements in matrix mx to zeros
Initialize:
t < 1, zeros(mx)
repeat
Dt < D(tfl)
for eachx € D;_1) do
pj < P, M)
if argmax(p/{) < 0.5 then
remove x/l from Dy (j €[ 1...8])
mx(i) < mx(@) + 1
end
end
if Vimx(i) > 4 then
remove x]‘ from D;
end
My < F(D¢, Mz-1));
t<—t+1
until validation classification performance is satisfactory;

The RN model is first trained, and then makes pre-
dictions on the original patch-level training set. The
patches with maximum confidence level lower than 0.5
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are removed from the training set. As each patch is aug-
mented to eight patches using data augmentation (“rota-
tion” and “mirror”), if more than four of the augmented
patches are removed, then the remaining patches are
removed from the training set. The patch removal and
model fine-tuning are performed in alternating sequence.
A fixed validation set annotated by pathologists is used
to evaluate the performance of fine-tuned model. Using
DRAL resulted in a decline in the number of mislabeled
patches. As a result, the performance of the RN model on
the validation set is gradually improved. The DRAL stops
when the validation classification accuracy is satisfactory
or stops increasing. The training set filtered by DRAL can
be seen as correctly annotated data, and can be used to
train deeper networks such as ResNet, DenseNet, etc.

Atrous DenseNet (ADN)

The size of cancer areas in pathological images varies
widely. To better extract multiscale features, we propose
a deep learning architecture - atrous DenseNet - for
pathological image classification. Compared to common
convolution kernels [11], atrous convolutions can extract
multiscale features without extra computational cost. The
network architecture is presented in Fig. 3.

The blue, red, orange and green rectangles represent
the convolutional layer, max pooling layer, average pool-
ing layer and fully connected layers, respectively. The
proposed deep learning network has different architec-
tures for shallow layers (atrous dense connection (ADC))
and deep layers (network-in-network module (NIN) [20]).
PReLU is used as the nonlinear activation function. The
network training is supervised by the softmax loss (L), as
defined in Eq. 2 as follows:

1 1 i
L= ﬁ;Li: ﬁzi:—log(izjeﬁ) (2)

where f; denotes the jth element (j €[ 1,K], K is the num-
ber of classes) of vector of class scores f, y; is the label of
i input feature and N is the number of training data.

Our ADC proposes to use atrous convolution to replace
the common convolution in the original DenseNet blocks
and a wider DenseNet architecture is designed by using
wider densely connected layers.

Atrous Convolution Replacement

The original dense block achieved multiscale feature
extraction by stacking 3 x 3 convolutions. As the atrous
convolution has a larger receptive field, the proposed
atrous dense connection block replaces the common con-
volutions with the atrous convolution to extract better
multiscale features. As shown in Fig. 4, atrous convolu-
tions with two dilation rates (2 and 3) are involved in the
proposed ADC block. The common 3 x 3 convolution is
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Fig. 3 Network architecture of the proposed atrous DenseNet (ADN). Two modules (atrous dense connection (ADC) and network-in-network (NIN))
are involved in the ADN. The blue, red, orange and green rectangles represent the convolution, max pooling, average pooling and fully connected
layers, respectively
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Fig. 4 Network architecture of the proposed atrous dense connection (ADC). Convolutions with different dilation rates are adopted for multiscale
feature extraction. The color connections refer to the feature maps produced by the corresponding convolution layers. The feature maps from
different convolution layers are concatenated to form a multiscale feature

Fig. 5 Examples from the BreAst Cancer Histology dataset (BACH). a Normal slice, b Benign slice, € Carcinoma in situ, d Invasive carcinoma slice

Fig. 6 Examples from the Cervical Carcinoma Grade dataset (CCG). a Normal slice, b Cancer-level | slice, € Cancer-level Il slice, d Cancer-level Il slice.
The resolution of the slices is in gigapixels, i.e, 16,473 x 21,163. The areas in red squares have been enlarged for illustration
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Table 1 Detailed information of CCG dataset

Category | Training set  Validation set
Normal 76,576 5,676
Level | 115,164 4,105
Cancer Level I 83,712 5,336
Level I 87,380 4,742

placed after each atrous convolution to fuse the extracted
feature maps and refine the semantic information.

We notice that some studies have already used the stack-
ing atrous convolutions for semantic segmentation [21].
The proposed ADC addresses two primary drawbacks of
the existing framework. First, the dilation rates used in
the existing framework are much larger (2, 4, 8 and 16)
compared to the proposed ADC block. As a result, the
receptive field of the existing network normally exceeds
the patch size and requires multiple zeros as padding for
the convolution computation. Second, the architecture
of the existing framework has no shortcut connections,
which is not appropriate for multiscale feature extraction.

Wider Densely Connected Layer

As the numbers of pathological images in common
datasets are usually small, it is difficult to use them to
train an ultradeep network such as the original DenseNet.
Zagoruyko [22] proved that a wider network may provide
better performance than a deeper network when using
small datasets. Hence, the proposed ADC increases the
growth rate (k) from 4 to 8, 16 and 32, and decreases the
number of layers (1) from 121 to 28. Thus, the proposed
dense block is wide and shallow. To reduce the compu-
tational complexity and enhance the capacity of feature
representation, the growth rate (the numbers in the ADC
modules in Fig. 3) increases as the network goes deeper.

Implementation

To implement the proposed ADN, the Keras toolbox is
used. The network was trained with a mini-batch of 16 on
four GPUs (GeForce GTX TITAN X, 12GB RAM). Due to
the use of batch normalization layers, the initial learning
rate was set to a large value (0.05) for faster network con-
vergence. Following that, the learning rate was decreased
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to 0.01, and then further decreased with a rate of 0.1. The
label for a whole-slice pathological image (slice-level pre-
diction) is rendered by fusing the patch-level predictions
made by ADN (voting).

Results

Datasets

Three datasets are used to evaluate the performance of the
proposed model: the BreAst Cancer Histology (BACH),
Cervical Carcinoma Grade (CCG), and UCSB breast can-
cer datasets. While independent test sets are available for
BACH and CCG, only a training and validation set are
available for UCSB due to the limited number of images.
While training and validation sets for the three datasets
are first used to evaluate the performance of the pro-
posed DRAL and ADN against popular networks such
as AlexNet, VGG, ResNet and DenseNet, the indepen-
dent test sets are used to evaluate the performance of the
proposed approach against the state-of-the-art approach
using public testing protocols.

BreAst Cancer Histology dataset (BACH)

The BACH dataset [23] consists of 400 pieces of 2048 x
1536 Hematoxylin and Eosin (H&E) stained breast his-
tology microscopy images, which can be divided into
four categories: normal (Nor.), benign (Ben.), in situ car-
cinoma (C. in situ), and invasive carcinoma (I. car.).
Each category has 100 images. The dataset is ran-
domly divided with an 80:20 ratio for training and
validation. Examples of slices from the different cate-
gories are shown in Fig. 5. The extra 20 H&E stained
breast histological images from the Bioimaging dataset
[24] are adopted as a testing set for the perfor-
mance comparison of our framework and benchmarking
algorithms.

We slide the window with a 50% overlap over the
whole image to crop patches with a size of 512 x
512. The cropping produces 2800 patches for each
category. Rotation and mirror are used to increase
the training set size. Each patch is rotated by 90°,
180° and 270° and then reflected vertically, result-
ing in an augmented training set with 896,000 images.
The slice-level labels are assigned to the generated
patches.

Benign

) hS

oy u§ be 0% p b a8\
“\ 4 3 i &
B R A

Fig. 7 Examples from the UCSB dataset. The dataset has 32 benign slices and 26 malignant slices
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Table 2 Patch-level ACA (P. ACA, %) of RN on Validation Sets during Different Iterations of DRAL
) BACH CCG ucsB
DRAL(Iteration number K)
Training set P.ACA Training set P. ACA Training set P. ACA

. . o o 89,600 89.16 362,832 77.87 68,640 76.40
trained with originaltraining set (K=0)
K=1 89,026 89.58 361,007 83.88 64,944 94.24
K=2 88,170 89.71 360,563 82.88 64,200 93.23
K=3 87,363 92.81 - - -
K=4 86,858 92.14 - - -

Cervical Carcinoma Grade dataset (CCG)

The CCG dataset contains 20 H&E-stained whole-slice
ThinPrep Cytology Test (TCT) images, which can be clas-
sified in four grades: normal and cancer-level I (L. I), II
(L. II), III (L. II). The five slices in each category are
separated according to a 60:20:20 ration for training, val-
idation and testing. The resolution of the TCT slices is
16,473 x 21, 163. Figure 6 presents a few examples of slices
from the different categories. The CCG dataset is popu-
lated by pathologists collaborating on this project using a
whole-slice scanning machine.

We crop the patches from the gigapixel TCT images
to generate the patch-level training set. For each normal
slice, approximately 20,000 224 x 224 patches are ran-
domly cropped. For the cancer slices (Fig. 6b-d), as they
have large background areas, we first binarize the TCT
slices to detect the region of interest (Rol). Then, the

cropping window is passed over the Rol for patch gen-
eration. The slice-level label is assigned to the produced
patches. Rotation is used to increase the size of training
dataset. Each patch is rotated by 90°, 180° and 270° to
generate an augmented training set with 362,832 images.
The patch-level validation set consists of 19,859 patches
cropped from the validation slices. All of them have been
verified by the pathologists. The detailed information of
patch-level CCG dataset is presented in Table 1.

UCSB Breast Cancer dataset

The UCSB dataset contains 58 pieces of 896 x 768
breast cancer slices, which can be classified as benign
(Ben.) (32) or malignant (Mal.) (26). The dataset
is divided into training and validation sets accord-
ing to a 75:25 ratio. Examples of UCSB images are
shown in Fig. 7. We slide a 112 x 112 window over

Breast Cancer Histology dataset (BACH)

Benign

Carcinoma in situ Invasive carcinoma

",":\

Ly

Cervical Carcinoma Grade dataset (CCG)

Cancer Level I Cancer

Level I Cancer Level IIT

o3

¥

-

)
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UCSB Breast Cancer dataset
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Fig. 8 lllustrations of mislabeled patches. The first, second and third rows

UCSB datasets, respectively. All the patches have been verified by pathologists

list the normal patches mislabeled as cancer from the BACH, CCG, and
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the UCSB slices to crop patches for network train-
ing and employ the same approach used for BACH
to perform data augmentation. As many studies have
reported their 4-fold cross validation results on UCSB
dataset, we also conduct the same experiment for fair
comparison.

Discussion of Preprocessing Approaches for Different
Datasets

As previously mentioned, the settings for the preprocess-
ing approaches (including the size of cropped patches
and data augmentation) are different for each dataset.
The reason is that the image size and quantity in each
dataset are totally different. To generate more training
patches, we select a smaller patch size (112 x 112) for
the dataset with fewer lower resolution samples (UCSB)
and a larger one (512 x 512) for the dataset with high-
resolution images (BACH). For the data augmentation, we
use the same data augmentation approach for the BACH
and UCSB datasets. For the CCG dataset, the gigapixel
TCT slices can yield more patches than the other two
datasets. While horizontal and vertical flipping produce
limited improvements in classification accuracy, they sig-
nificantly increase the time cost of the network training.
Hence, we only adopt three rotations to augment the
training patches of the CCG dataset.
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Evaluation Criterion

The overall correct classification rate (ACA) of all the test-
ing images is adopted as the criterion for performance
evaluation. In this section, we will first evaluate the perfor-
mance of DRAL and ADN on the BACH, CCG, and UCSB
validation sets. Next, the results from applying different
frameworks to the separate testing sets will be presented.
Note that the training and testing of the neural networks
are performed three times in this study, and the average
ACAs are reported as the results.

Evaluation of DRAL

Classification Accuracy during DRAL

The proposed DRAL adopts RefineNet (RN) to remove
mislabeled patches from the training set. As presented in
Table 2, the size of training set decreases from 89,600 to
86,858 for BACH, from 362,832 to 360,563 for CCG, and
from 68,640 to 64,200 for UCSB. Figure 8 shows some
examples of mislabeled patches identified by the DRAL;
most of them are normal patches labeled as breast or
cervical cancer. The ACAs on the validation set during
the patch filtering process are presented in Table 2. It
can be observed that the proposed DRAL significantly
increases the patch-level ACAs of RN: the improvements
for BACH, CCG, and UCSB are 3.65%, 6.01%, and 17.84%,
respectively.

“mislabeled” and “correctly annotated” by our RAL

Fig. 9 Examples of retained and discarded patches of BACH images. The patches marked with red and blue boxes are respectively recognized as
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Fig. 10 The t-SNE figures of the last fully connected layer of RefineNet for different iterations K of the BACH training process. a-e are forK=0, 1, 2, 3,
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To better analyze the difference between the patches
retained and discarded by our DRAL, an example of
a BACH image containing the retained and discarded
patches is shown in Fig. 9. The patches with blue and
red boxes are respectively marked as “correctly annotated”
and “mislabeled” by our DRAL. It can be observed that
patches in blue boxes contain parts of breast tumors, while
those in the red boxes only contain normal tissues.

In Fig. 10, the t-SNE [25] is used to evaluate the
RefineNet’s capacity for feature representation during dif-
ferent iterations of the BACH training process. The points
in purple, blue, green and yellow respectively represent
the normal, benign, carcinoma in situ, and invasive car-
cinoma samples. It can be observed that the RefineNet’s
capacity for feature representation gradually improved
(the different categories of samples are gradually sepa-
rated during DRAL training). However, Fig. 10e shows
that the RefineNet, after the fourth training iteration
(K=4), leads to the misclassification of some carcinoma in
situ (green) and normal samples (purple) as invasive carci-
noma (yellow) and carcinoma in situ (green), respectively.

CNN Models trained with the Refined Dataset

The DRAL refines the training set by removing the mis-
labeled patches. Hence, the information contained in the
refined training set is more accurate and discriminative,
which is beneficial for the training of a CNN with deeper
architecture. To demonstrate the advantages of the pro-
posed DRAL, several well-known deep learning networks

such as AlexNet [1], VGG-16 [10], ResNet-50/101 [12],
and DenseNet-121 [13] are used for the performance
evaluation. These networks are trained on the original
and refined training sets and also evaluated on the same
fully annotated validation set. The evaluation results are
presented in Table 3 (Patch-level ACA) and Table 4 (Slice-
level ACA).

As shown in Tables 3 and 4, for all three datasets, the
classification accuracy of networks trained on the refined
training set are better than those trained on the original
training set. The greatest improvements for the patch-
level ACA that used DRAL is 4.49% for AlexNet on BACH,
6.57% for both AlexNet and our ADN on CCG, and
18.91% for VGG on UCSB. For the slice-level ACA, the
proposed DRAL improves the performance of our ADN
from 88.57% to 97.50% on BACH, from 75% to 100% on
CCQG, and from 90% to 100% on UCSB.

The results show that mislabeled patches in the original
training sets have negative influences on the training of
deep learning networks and decrease classification accu-
racy. Furthermore, the refined training set produced by
the proposed DRAL is useful for general, deep learning
networks such as shallow networks (AlexNet), wide net-
works (VGG-16), multibranch deep networks (ResNet-50)
and ultradeep networks (ResNet-101 and DenseNet-121).

Evaluation of Atrous DenseNet (ADN)
Tables 3 and 4 show that our ADN outperforms all the
listed networks on BACH, CCG, and UCSB with and

Table 3 Patch-level Validation ACA (%) of CNN Models Trained on The Original/Refined Training Sets

BACH CCG UCSB
Original Refined Original Refined Original Refined
AlexNet [1] 86.28 90.77 75.67 82.24 76.51 93.78
VGG-16 [10] 90.83 91.79 84.63 90.02 83.53 9744
ResNet-50 [12] 89.65 92.17 79.88 82.31 78.74 96.82
ResNet-101 [12] 89.05 91.17 80.06 8347 77.82 96.78
DenseNet [13] 90.39 93.29 77.87 84.41 7893 96.79
ADN (ours) 91.93 94.10 85.48 92.05 85.69 97.63

Best accuracy is in Bold.
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Table 4 Slice-level Validation ACA (%) of CNN Models Trained on
The Original/Refined Training Sets

BACH CCG UCSB
original refined original refined original refined
AlexNet [1] 8625 9125 50 75 80 90
VGG-16 [10] 87.50 96.25 75 75 20 100
ResNet-50 [12]  86.25 93.75 75 75 80 100
ResNet-101[12] 86.25 91.25 75 75 80 90
DenseNet [13]  86.25 96.25 50 75 80 90
ADN (ours) 88.75 97.50 75 100 90 100

Best accuracy is in Bold.

without the DRAL. This section presents a more compre-
hensive performance analysis of the proposed ADN.

ACA on the BACH Dataset

The patch-level ACA of different CNN models for each
category of BACH is listed in Table 5. All the models are
trained with the training set refined by DRAL. The aver-
age ACA (Ave. ACA) is the overall classification accuracy
of the patch-level validation set. The Ave. ACA results are
shown in Fig. 11.

As shown in Table 5, the proposed ADN achieves the
best classification accuracy for the normal (96.30%) and
invasive carcinoma (94.23%) patches, while the ResNet-
50 and DenseNet-121 yield the highest ACAs for benign
(94.50%) and carcinoma in situ (95.73%) patches. The
ACAs of our ADN for benign and carcinoma in situ are
92.36% and 93.50%, respectively, which are competitive
compared to the performance of other state-of-the-art
approaches. The average ACA of ADN is 94.10%, which
outperforms the listed benchmarking networks.

To further evaluate the performance of the proposed
ADN, its corresponding confusion map on the BACH val-
idation set is presented in Fig. 12, which illustrates the
excellent performance of the proposed ADN for classify-
ing breast cancer patches.

ACA on the CCG Dataset
The performance evaluation is also conducted on CCG
validation set, and Table 5 presents the experiment results.
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For the patches cropped from normal and level III slices,
the proposed ADN achieves the best classification accu-
racy (99.18% and 70.68%, respectively), which are 0.47%
and 2.03% higher than the runner-up (VGG-16). The best
ACAs for level I and II patches are achieved by ResNet-
50 (99.10%) and ResNet-101 (99.88%), respectively. The
proposed ADN generates competitive results (97.70% and
99.52%) for these two categories.

All the listed algorithms have low levels of accuracy for
the patches from level III slices. To analyze the reasons
for this low accuracy, the confusion map for the proposed
ADN is presented in Fig. 13. It can be observed that some
cancer level III patches are incorrectly classified as nor-
mal. A possible reason is that the tumor area in cancer
level III is smaller than that of cancer levels I and II, so
patches cropped from cancer level III slices usually con-
tain normal areas. Therefore, the level III patches with
large normal areas may be recognized as normal patches
by ADN. We evaluated the other deep learning networks
and again found that they incorrectly classify the level
III patches as normal. To address the problem, a suit-
able approach that fuses the patch-level predictions with
slice-level decisions needs to be developed.

ACA on the UCSB Dataset

Table 5 lists the patch-level ACAs of different deep
learning frameworks on the UCSB validation set. It can
be observed that our ADN achieves the best patch-
level ACAs; 98.54% (benign) and 96.73% (malignant).
The runner-up (VGG-16) achieves patch-level ACAs of
98.32% and 96.58%, which are 0.22% and 0.15% lower than
the proposed ADN. The ResNet-50/101 and DenseNet
yield similar performances (average ACAs are approx-
imately 96%), while the AlexNet generates the lowest
average ACA of 93.78%.

Statistical Validation

A T-test validation was conducted for the results from
VGG-16 and our ADN. The p-values at the 5% signif-
icance level are 1.07%, 2.52% and 13.08% for BACH,
CCG, and UCSB, respectively. The results indicate that

Table 5 Patch-level ACA (%) for Different Categories of Different Datasets

BACH CCG UCsB
Nor. Ben. C.insitu I car. Nor. L1 L L Ben. Mal.

AlexNet [1] 92.13 90.18 89.52 91.25 95.16 93.68 95.82 4243 94.81 92.75
VGG-16 [10] 90.96 93.84 89.46 92.89 98.71 96.36 98.06 65.61 98.32 96.58
ResNet-50 [12] 92.29 94.50 92.29 91.61 87.54 99.10 92.87 50.32 97.48 96.16
ResNet-101 [12] 91.96 89.20 90.66 92.88 85.46 9832 99.88 50.45 98.07 95.49
DenseNet [13] 94.61 91.50 95.73 93.82 92.04 98.05 96.97 50.08 96.97 96.60
ADN (ours) 96.30 92.36 93.50 94.23 99.18 97.70 99.52 70.68 98.54 96.73

Best accuracy is in Bold.
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AlexNet

mBACH

CCG

Fig. 11 Patch-level average ACA of different deep learning models on three datasets

Average ACA on Different Datasets (%)

VGG-16 ResNet-50 ResNet-101 DenseNet AND (ours)

UCSB

the accuracy improvement is statistically significant for
BACH and CCG. As the number of images (58) in UCSB is
quite small, the problem might not be challenging enough.
Therefore, both VGG-16 and our ADN achieve similar
performances. Consequently, the deep learning networks
yield similar classification accuracy levels on the UCSB
dataset; that is, no statistical significance is observed
between the results produced by different models.

Network Size

As previously mentioned, instead of building a deeper net-
work, the proposed ADN adopts wider layers to increase
its feature representation capacity, which is more suitable
for small datasets. To further illustrate the excellent capac-
ity of the proposed ADN, a comparison of network size
between different network architectures is presented in
Table 6.

Normal

Benign

Carcinoma
in situ

Invasive
carcinoma

Normal Benign

Fig. 12 Confusion map of ADN on BACH validation set

160

140

Invasive
carcinoma

Carcinoma
in situ
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Normal
Level |
Level Il
Level I
Normal Level |
Fig. 13 Confusion map of ADN on CCG validation set

Level Il

Level Il

In the experiments, the wider networks - VGG-16 (16
layers) and ADN (28 layers) - achieved better perfor-
mances than the ultradeep networks - ResNet-50/101
(50/101 layers) and DenseNet (121 layers). Since the
VGG-16 and ADN have a much smaller model size
than the ultradeep networks, they require fewer network
parameters and have a lower risk of overfitting to a small
dataset.

Compared to the straightforward VGG-16, the pro-
posed ADN uses multiple atrous convolutions to extract
multiscale features. As shown in Fig. 11, the proposed
ADN outperforms the VGG-16 and produces the best
average ACAs for the BACH (94.10%), CCG (92.05%)
and UCSB (97.63%) datasets. The experiment results also
demonstrate that the proposed ADN can maintain the
balance between network size and feature learning capac-
ity, which is extremely effective for small pathological
datasets.

Table 6 Detailed Information of Different Network Architectures

No. of Layers Model Size
AlexNet [1] 8 54 M
VGG-16 [10] 16 158 M
ResNet-50 [12] 50 270 M
ResNet-101 [12] 101 488 M
DenseNet [13] 121 539M
ADN (ours) 28 132 M

Comparison with State-of-the-art approaches

In this section, we compare the performance of the pro-
posed framework with other state-of-the-art approaches
on the BACH, CCG, and UCSB testing sets. For the UCSB
dataset, the public protocol of 4-fold cross validation is
used to make the results directly comparable. For better
performance evaluation, we include the F-measure (F-
mea.) as an additional evaluation metric for BACH and
CCG, which can be defined as:

2 x Precision x Recall

F — measure = — (3)
Precision + Recall

TP P

—————, Recall= —— (4)
TP + FP TP + FN

where TP, FP and FN stand for true positive, false positive
and false negative, respectively.

Precision =

Patch-level and Slice-level ACA on BACH
The extra 20 H&E stained breast histological images
from a publicly available dataset (Bioimaging [24]) are
employed as the testing set for the frameworks trained
on BACH. As Bioimaging is a publicly available dataset,
the public testing protocol is used and the state-of-the-art
results [24] are directly used for comparison. The results
on the testing set are listed in Table 7 (Precision (Pre.),
Recall (Rec.)).

As shown in Table 7, the proposed ADN achieves
the best average patch-level classification performance
(77.08% on the testing set), which is 0.83% higher than
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Table 7 ACA (%) of Different Frameworks for BACH Testing Set
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Patch-level Slice-level
Nor. Ben. C.insitu | car. Ave. ACA Ave. ACA Pre. Rec. F-mea.
CNN [24] 61.70 56.70 83.30 88.30 72.50 80 79.52 80.00 79.76
CNN-+SVM [24] 65.00 61.70 76.70 88.30 72.93 85 86.61 85.00 85.80
AlexNet [1] 60.00 5833 85.00 95.00 74.58 80 82.86 80.00 81.40
VGG-16 [10] 75.00 61.67 75.00 90.00 7542 85 86.61 85.00 85.80
ResNet-50 [12] 63.33 65.00 80.00 95.00 75.83 85 86.67 85.00 85.83
ResNet-101 [1] 65.00 70.00 75.00 90.00 75.00 85 87.86 85.00 86.41
DenseNet [13] 66.67 76.67 73.33 8833 76.25 85 90.00 80.33 84.89
ADN (ours) 60.00 66.67 88.33 9333 77.08 85 86.67 85.00 85.83
ADN+DRAL (ours) 71.67 73.33 88.33 96.67 82.50 20 92.86 90.00 91.41
Best accuracy is in Bold
Table 8 ACA (%) of Different Frameworks for CCG Testing Set
Patch-level Slice-level
Normal Levell Level ll Level lll Ave. ACA Ave. ACA F-mea.
AlexNet [1] 91.75 4224 69.88 70.91 68.70 50 4167
VGG-16 [10] 97.80 63.65 71.25 7839 7777 75 66.67
ResNet-50 [12] 97.82 46.86 75.05 68.57 72.08 50 50
ResNet-101 [12] 96.64 67.34 7557 58.66 74.55 50 4167
DenseNet [13] 98.81 56.62 72.20 71.04 74.67 75 66.67
ADN (ours) 99.29 71.51 76.51 73.81 80.28 75 66.67
ADN+DRAL (ours) 99.95 80.35 85.31 82.60 87.05 100 100
Best accuracy is in Bold
Table 9 4-Fold Cross Validation (%) of Different Frameworks on UCSB Dataset
Single FV descriptor Combination of FV descriptors
FV-SIFT FV-DBN FV-CNN S+D S+C D+C S+D+C
SVM 879 8238 96.6 86.2 93.1 914 93.1
SDR+SVM [26] 89.7 89.7 983 914 94.8 96.6 94.8
ADN+DRAL (ours) 100

Best accuracy is in Bold.
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Table 10 Architecture of RN

Layer Type Kernel size & number
1 C 3x3,16
2 MP 2x2

3 C 3x3,32
4 MP 2x2

5 C 3 x 3,64
6 MP 2x2

7 C 3 x 3,64
8 MP 2x2

9 C 3x 3,128
10 MP 2x2

11 C 33,128
12 AP 7x7

13 FC 256

14 FC 4

Pipeline consists of convolution layer(C), max pooling layer(MP), average pooling
layer(AP) and fully-connected layer(FC)

the runner-up (DenseNet-121). The ADN trained with the
training set refined by DRAL leads to a further improve-
ment of 5.42% for the final classification accuracy. Accord-
ingly, the slice-level average classification accuracy (90%)
of the proposed ADN + DRAL framework is the highest
among the listed benchmarking algorithms.

Patch-level and Slice-level ACA on CCG

The results for the CCG testing set are presented in
Table 8. The proposed ADN achieved the best patch-level
ACA (80.28%) among the models trained with the origi-
nal training set, which is 2.51% higher than the runner-up
(VGG-16). Furthermore, it has been noticed most of the
listed benchmark algorithms do not perform well for the
cancer level I patches; the highest accuracy produced
by the ultradeep ResNet-101 is only 67.34%. Our ADN
achieves a patch-level ACA of 71.51% with a 28-layer
architecture.

The proposed DRAL refines the training set by remov-
ing the mislabeled patches, which benefits the subsequent
network training. As a result, the DRAL training strategy
yields significant improvements for both average patch-
level ACA (6.77%) and average slice-level ACA (25%)
when using the proposed ADN framework.

Patch-level and Slice-level ACA on UCSB

The 4-fold cross-validation conducted on the UCSB
dataset is presented in Table 9. The baselines are obtained
using Fisher Vector (FV) descriptors of different local
features such as dense SIFT, patchwise DBN, and CNN
features from the last convolutional layer (labeled as FV-
SIFT, FV-DBN, and FV-CNN). The three FV descriptors
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are then combined into longer descriptors: S+D (com-
bining FV-SIFT and FV-DBN), S+C (combining FV-SIFT
and FV-CNN), D+C (combining FV-DBN and FV-CNN),
and S+D+C (combining all three FV descriptors). The
linear kernel SVM without dimensionality reduction and
the SDR method proposed in [26] are used for classifica-
tion. Table 9 shows that, our ADN + DRAL achieves the
best 4-fold cross-validation accuracy (100%), which out-
performs the highest classification accuracy achieved by
the benchmark approaches (98.3% yielded by SDR + SVM
+ FV-CNN).

Conclusions

Due to the impressive performance of deep learning
networks, researchers find it appealing for application
to medical image analysis. However, pathological image
analysis based on deep learning networks faces a num-
ber of major challenges. For example, most of pathological
images have high resolutions - gigapixels. It is difficult for
CNN to directly process the gigapixel images, due to the
expensive computational costs. Cropping patches from a
whole-slice images is the common approach to address
this problem. However, most of the pathological datasets
only have slice-level labels. While the slice-level labels
can be assigned to the cropped patches, the patch-level
training sets usually contain mislabeled samples.

To address these challenges, we proposed a framework
for pathological image classification. The framework con-
sists of a training strategy - deep-reverse active learning
(DRAL) - and an advanced network architecture - atrous
DenseNet (ADN). The proposed DRAL can remove the
mislabeled patches in the training set. The refined train-
ing set can then be used to train widely used deep learning
networks such as VGG-16 and the ResNets. A deep learn-
ing network - atrous DenseNet (ADN) - is also proposed
for the classification of pathological images. The proposed
ADN achieves multiscale feature extraction by combining
the atrous convolutions and dense blocks.

The proposed DRAL and ADN have been evaluated
on three pathological datasets: BACH, CCG, and UCSB.
The experiment results demonstrate the excellent per-
formance of the proposed ADN + DRAL framework,
achieving average patch-level ACAs of 94.10%, 92.05%,
and 97.63% on BACH, CCG, and UCSB validation sets,
respectively.

Appendix A: Architecture of RefineNet

To alleviate the overfitting problem, a simple CNN,
namely RefineNet (RN), is adopted in the iterative
Reverse Active Learning (RAL) process to remove misla-
beled patches. The pipeline of RefineNet is presented in
Table 10, which consists of convolutional (C), max pooling
(MP), averaging pooling (AP) and fully-connected (FC)
layers.
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