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Maternal immune activation generates anxiety in
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Abstract
Maternal immune activation (MIA) during pregnancy is recognized as an etiological risk factor for various psychiatric
disorders, such as schizophrenia, major depressive disorder, and autism. Prenatal immune challenge may serve as a
“disease primer” for alteration of the trajectory of fetal brain development that, in combination with other genetic and
environmental factors, may ultimately result in the emergence of different psychiatric conditions. However, the
association between MIA and an offspring’s chance of developing anxiety disorders is less clear. To evaluate the effect
of MIA on offspring anxiety, a systematic review and meta-analysis of the preclinical literature was conducted. We
performed a systematic search of the PubMed, Web of Science, PsycINFO, and Cochrane Library electronic databases
using the PRISMA and World Health Organization (WHO) methodologies for systematic reviews. Studies that
investigated whether MIA during pregnancy could cause anxiety symptoms in rodent offspring were included. Overall,
the meta-analysis showed that MIA induced anxiety behavior in offspring. The studies provide strong evidence that
prenatal immune activation impacts specific molecular targets and synapse formation and function and induces an
imbalance in neurotransmission that could be related to the generation of anxiety in offspring. Future research should
further explore the role of MIA in anxiety endophenotypes. According to this meta-analysis, MIA plays an important
role in the pathophysiological mechanisms of anxiety disorders and is a promising therapeutic target.

Introduction
Maternal immune activation (MIA) during pregnancy is

recognized as an etiological risk factor for various psy-
chiatric and neurological disorders in offspring1. The
highly orchestrated processes of neural development start
with the proliferation and migration of glia and neurons
followed by programmed cell death, the formation of
synapses, myelination, and the establishment of neuronal
circuits2. Therefore, inflammation in the mother during
pregnancy can affect several vulnerable aspects of fetal
brain development3. This disturbance may contribute to a
wide spectrum of neuronal dysfunction and behavioral
phenotypes in the progeny3.
Considering that MIA might lead to altered behavior in

offspring, an alternative model has emerged as an expla-
nation for the etiology of psychiatric disorders: the two-hit

model4–6. In this model, two “hits” are required for the
emergence of disorders in offspring: a first “hit”, which
occurs during prenatal life (such as MIA) and disrupts the
offspring’s central nervous system (CNS) development,
thereby increasing the vulnerability to a second “hit”,
which might occur later in life and leads to the onset of
the disorder7. In many cases, the second “hit” could be an
environmental factor such as psychological stress7,8.
One of the common animal models used to study the two-

hit model of psychiatric disorders is induced by MIA, which
is achieved by exposing a dam to polyinosinic:polycytidylic
acid (PolyI:C) or lipopolysaccharide (LPS), which mimic viral
or bacterial insult, respectively, during pregnancy7. Both of
these agents stimulate the production of many endogenous
proinflammatory cytokines, including interleukin (IL)-1β,
IL-6, and TNFα, which, along with other factors, recruit and
stimulate the production of immune cells9. These mod-
ifications were shown to induce behavioral deficits in off-
spring and elicit changes in gene expression in their brains10.
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Preclinical studies are of greatest translational value
when they focus on clinically relevant mechanisms and
behaviors11. Anxiety symptoms, for instance, might be
evaluated in animals by different tests, namely, the ele-
vated plus-maze and escape behavior test12. The elevated
plus-maze is widely used to analyze the behavior of
rodents, and it has been validated as an assessment of
anxiety in preclinical studies. Briefly, a rat or mouse is
placed at the junction of the four arms of the maze facing
an open arm, and the duration of time spent in each arm
within 5 min is recorded simultaneously by a video-
tracking system and observer. An increase in the duration
of time spent in the open arm reflects anti-anxiety
behavior12. The most common animal species used in
biological psychiatry are mice and rats13, which ade-
quately recapitulate many features of human prenatal
forebrain development (e.g., neurulation, neural differ-
entiation, proliferation, and migration) although on dif-
ferent timescales13 (Fig. 1). MIA in rodents can indirectly
influence postnatal developmental processes through
early impacts13.
The emerging consensus among leaders in the field is that

prenatal inflammation may be relevant to a number of CNS

diseases, and restricting interpretation to any given human
disorder may limit the utility and relevance of the MIA
model14–16. Prenatal immune challenge may serve as a
“disease primer” for alteration of the trajectory of fetal brain
development that, in combination with other genetic and
environmental factors, may ultimately result in the emer-
gence of different CNS pathologies17–19. Consistently, it has
been shown that there is an association between MIA and
an enhanced risk of schizophrenia20–22, autism17,23,24, and
depression11,25,26 in adult offspring. Nevertheless, the asso-
ciation between MIA and an offspring’s chance of devel-
oping anxiety disorders is less clear. Therefore, a systematic
review and meta-analysis of the preclinical literature inves-
tigating the effects of MIA on offspring anxiety symptoms
was conducted. In this framework, we aimed to assess
whether prenatal immune activation impacts anxiety beha-
viors in offspring.

Methods
This systematic review was performed according to the

Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines27 and World
Health Organization (WHO) Review Protocol Template

Fig. 1 Prenatal forebrain development in rodents and humans and the different timescales. Similarities between the time course of key
neurodevelopmental processes in humans and rodents. wk week, E embryonic day.
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Guidelines, where applicable, as presented in Supple-
mentary Materials Section 1.

Search strategy
Databases including PubMed, Web of Science, Psy-

cINFO, and the Cochrane Library were searched from
inception to 25 March 2021. No language or date
restrictions were applied. To avoid publication bias,
non-English-language studies and gray literature (for
example, conference abstracts) were included. The
flowchart of the literature search is presented in Sup-
plementary Fig. 1. A broad but highly structured search
strategy based on the PICOS framework was used28.
Studies were included if they met the following criteria
regardless of design: (a) pregnant animals were used for
the maternal group, and the offspring were evaluated;
(b) during pregnancy, MIA was induced in or a placebo
was administered to the maternal group; and (c) the
anxiety-related behavioral phenotypes (specifically those
assessed by preclinical tests of anxiety disorders12, such
as the elevated plus-maze, elevated T-maze, and/or
analysis of escape behavior induced by electrical/che-
mical stimulation of the periaqueductal gray matter) of
offspring were evaluated. A full list of terms used for the
search strategy can be found in Supplementary Mate-
rials Section 2.

Data collection process
Two authors (L.A.Q. and U.M.) reviewed the titles and

abstracts and excluded studies clearly unrelated to this
review. The search results were evaluated in three con-
secutive stages. First, the titles and abstracts of all elec-
tronic articles were screened. The full test of the articles
that presumably met the inclusion criteria were accessed.
Finally, all studies reporting the outcome of interest were
included in this review. If multiple publications were
identified to have studied the same cohort, the most
recent or most complete publication was used for data
extraction.

Data extraction and quality assessment
The following data were extracted from each included

study independently by two authors in duplicate: title,
name of the first author, year of publication, MIA method,
time window of MIA, sample size, percentage of animals
of each sex, group comparison, age at sample collection,
and outcomes. Two independent reviewers (L.A.Q. and U.
M.) assessed the quality of the studies using the Syrcles
Bias Tool29 (Table S1).

Statistical analysis
Random-effects pairwise meta-analyses using the Der-

Simonian and Laird random-effects model were con-
ducted. The main outcome measure was the presence or
absence of validated preclinical anxiety behavior in the
offspring of dams exposed to MIA versus those not
exposed to MIA, the results were considered statistically
significant at the α= 0.05 level. We used the standardized
mean difference, which was obtained by calculating the
mean (SD) and sample size (n) of the MIA offspring group
versus the non-MIA offspring group, as the summary
statistic. When SDs were not available, we estimated them
based on the other statistical parameters reported in the
study or requested them from the authors. The I2 statistic
was used to quantify heterogeneity, with an I2 value of 0%
indicating no observed heterogeneity and larger values
indicating increased heterogeneity. All statistical analyses
were performed using RevMan 5.3 (RevMan; The
Cochrane Collaboration, Oxford, UK). We assessed pub-
lication bias using funnel plot techniques, Begg’s rank test,
and Egger’s regression test, as appropriate, given the
known limitations of these methods.

Results
The literature search identified 110 potentially relevant

articles for initial screening. Duplications (n= 38) were
identified and excluded by manual screening of the titles.
Forty studies were excluded from the first assessment of
titles and abstracts since they did not meet the selection

Table 1 Studies included in the systematic review and meta-analysis.

Study Species MIA method Time of MIA N (MIA) N (controls) Test Neuropathological outcomes in

adulthood

Abazyan et al. (2010) Double

transgenic mice

Poly I:C GD9 14 14 EPM <Serotonin levels

Depino et al. (2015) C57BL/6J mice LPS GD9 17 17 EPM <Serotonin and noradrenaline levels

Hollins et al. (2018) Wistar rats Poly I:C GD10 6 6 EPM <Serotonin transporter levels

Gumusoglu

et al. (2017)

Mice Poly I:C GD12 9 7 EPM <GABA levels

Babri et al. (2013) NMRI and CB7BL mice LPS GD17 10 10 EPM >Inflammation in hippocampal tissue

GD gestational day, EPM elevated plus-maze.
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criteria mentioned above. In all, 32 full texts, of which 5
met the inclusion criteria for our meta-analysis, were
reviewed (Supplementary Fig. 1). All the studies evaluated
adult progeny and used the elevated plus-maze test to
assess anxiety behavior.
Publications included in the meta-analysis used a total

of 82 animals and investigated the time spent in the open
arm by offspring in the elevated plus-maze test (Table
1)30–34. Adult offspring were evaluated after experiments
that may have induced MIA in their mothers were per-
formed. The main outcome measure of this meta-analysis
was how long the offspring of dams exposed to MIA and
those of dams not exposed to MIA spent in the open arms
in the elevated plus-maze test. The overall effect size of a
reduced time spent in the open arms in the elevated plus-
maze test as a result of MIA was −3.28 [95% CI −3.99 to
−2.57], and no substantial heterogeneity was observed
(I2= 0%, p= 0.70) (Fig. 2). Publication bias was not
assessed, as there was an inadequate number of included
studies to properly assess a funnel plot or to perform
more advanced regression-based assessments.

Discussion
Our meta-analysis demonstrated that progeny exposed

to inflammation in utero spent less time in the open arms
in the elevated plus-maze test than animals that were not
exposed to an inflammatory stimulus during pregnancy.
In this test, a shorter time spent in the open arms indi-
cates greater anxiety. Therefore, our meta-analysis
showed that inflammation during pregnancy generates
anxiety symptoms in adult offspring.
Mechanistically, prenatal exposure to inflammation

might contribute to abnormalities in the CNS, including
GABAergic delay, attenuated serotonin and noradrenaline
neurotransmission, reduced growth of the lateral ven-
tricles, decreased amygdala, and periaqueductal gray
matter volumes, decreased density of dendritic spines on
granule cells in the hippocampus, and increased micro-
glial reactivity30,32,33. However, the specific molecular
mechanisms by which MIA contributes to anxiety in
offspring have yet to be elucidated.
Alterations in neurotransmission are thought to be central

to many psychiatric disorders, including anxiety35,36. To

date, much of our knowledge is related to the role of neu-
rotransmitter systems in the adult brain in anxiety. Never-
theless, evidence has shown that catecholamines play an
important role in neurodevelopment. The catecholamines
serotonin and noradrenaline are involved in neural crest
stem cell migration and proliferation37. Serotonin can reg-
ulate the formation of neuronal microcircuits affecting
Reelin secretion. Reelin is a protein involved in neuronal
migration and positioning during development38. Catecho-
lamines are also critical for neuronal cell survival, growth
and differentiation as well as synaptogenesis37,38. MIA in the
first trimester of pregnancy reduces catecholamine con-
centrations, affecting neurodevelopment.
MIA in the first trimester also delays the GABA switch,

which might be related to the fact that an inflammatory
environment promotes a reduction in K+–Cl− cotran-
sporter 2 (KCC2) transcription39. KCC2 activity maintains
a low intracellular Cl− concentration, a prerequisite for
effective GABA/Gly-mediated inhibition in the nervous
system39. Since MIA promotes elevation of intracellular
chloride concentrations in the offspring brain, GABA
remains excitatory in developmental time windows when
it is normally inhibitory39,40. This process renders neu-
ronal networks hyperexcitable39,41.
Genetic alterations in the KCC2 gene have been reported

to confer increased anxiety susceptibility42. However, the
ability of an environmental stimulus, such as MIA, to modify
KCC2 expression and lead to an anxious phenotype is not
well established in the literature. Of note, a defect in the
depolarizing-to-hyperpolarizing switch, which is responsible
for excitatory/inhibitory imbalance, has been identified as a
key pathophysiological mechanism in several neurodeve-
lopmental disorders, such as autism and schizophrenia42,
which are typically associated with MIA43,44. The delay in
the excitatory-to-inhibitory switch is intrinsically maintained
in neurons isolated from the brain and maintained in pri-
mary cultures independent of the brain environment due to
epigenetic mechanisms that alter neuron developmental
trajectories45. This is consistent with the induction of
behavioral alterations by MIA in the first- generation and
second-generation offspring of immune-challenged ances-
tors, demonstrating the transgenerational nongenetic
inheritance of pathological traits45.

Fig. 2 Forest plot. Forest plot. Comparator: offspring exposed to MIA × offspring not exposed to MIA. Outcome: time spent in the open arms in the
elevated plus-maze.
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In the last trimester of gestation, MIA increases the
transcription of serotoninergic and glutamatergic genes,
which could also contribute to an excitatory–inhibitory
imbalance37 (Fig. 3). Together, these studies suggest that
optimal levels of serotonin, noradrenaline, and GABA
must be maintained during development and that any
deviations from these optimal levels in either direction
can lead to long-lasting behavioral deficits.
Plasticity during the perinatal period is essential for the

developing brain to adapt to a changing environment but
provides the opportunity for external factors to derail
neuronal circuits and lead to maladaptive behaviors46,47.
This perinatal time window is a critical period when
serotonergic, noradrenaline, glutamatergic and GABAer-
gic activity can shape the development of neuronal cir-
cuitry and specifically emotional neurocircuits37,48.
Our review has several limitations. MIA paradigms are

heterogeneous; consequently, the variation in experi-
mental parameters could have an effect on the pheno-
types observed16,49–51. Additional factors such as
housing or the mouse strain may also influence experi-
mental outcomes34,52,53. Therefore, experimental guide-
lines for MIA should be followed so that we can better
understand the specific long-lasting effects of prenatal
LPS or PolyI:C exposure on offspring physiology and
behavior.
Findings from translational rodent models of anxiety

disorders could provide information that may contribute
to our understanding of the pathophysiology of this dis-
order in humans. According to this meta-analysis, MIA
plays an important role in the pathophysiological
mechanisms of anxiety disorders. While there is a clear
need for more studies addressing these issues in primates
and cross-validation between species, MIA could be a
promising therapeutic target for anxiety disorders. Future
studies should focus on investigating the interactions
between inflammation and genetic factors as well as with
other environmental factors, such as diet and drug

exposure, which may be important mediators of the
neural consequences of maternal infection. Studies aimed
at translating findings from animal models to humans
may facilitate the identification of new risk factors,
mechanistic pathways, and interacting genetic mutations
related to MIA and anxiety disorders. Moreover, further
studies may better elucidate the relationships between
MIA and structural and functional brain phenotypes
associated with anxiety disorders.
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