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BSTRACT 

n this proof-of-concept study, we developed a single- 
ell method that pr o vides genotypes of somatic al- 
erations found in coding regions of messenger 
NAs and integrates these transcript-based variants 

ith their matching cell transcriptomes. We used 

anopore adaptive sampling on single-cell comple- 
entary DNA libraries to validate coding variants in 

arg et g ene transcripts, and short-read sequencing 

o characterize cell types harboring the mutations. 
RISPR edits for 16 targets were identified using a 

ancer cell line, and known variants in the cell line 

ere validated using a 352-gene panel. Variants in 

rimary cancer samples were validated using tar- 
 et g ene panels ranging from 161 to 529 genes. A 

 ene rearrang ement was also identified in one pa- 
ient, with the rearrangement occurring in two dis- 
inct tumor sites. 
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NTRODUCTION 

ingle-cell genomics has proven to be a highly informa- 
i v e method for analyzing cancer and other disease tissues. 
ingle-cell RNA sequencing (scRNA-seq) provides a gran- 
lar view of an individual cell’s gene expression. One can 

haracterize different cell types, cellular heterogeneity from 

omplex tumor samples and differential gene expression 

mong individual cells. Most scRNA-seq approaches fo- 
us on gene e xpression. Howe v er, single-cell genomic ap- 
roaches can examine other features such as copy number 
nd e v en soma tic muta tions. These additional genomic fea- 
ur es incr ease the ov erall yield of valuab le information from 

ingle cancer cells. Howe v er, identifying cancer mutations 
ased on scRNA-seq is not commonly attempted gi v en spe- 
ific limitations of the current short-read approach. 

Quantitati v e measurement of single-cell messenger RNA 

mRNA), in the form of sequence reads from complemen- 
ary DN A (cDN A), r equir es a combination of cell bar- 
ode and transcript sequence. Single-cell short-read se- 
uencing methods typically r equir e fragmenting the full- 

ength cDNA into lower molecular weight species for li- 
r ary prepar ation. The r esulting short r eads ar e se v eral
undred bases, starting from either the 5 

′ or 3 

′ end of a 

i v en transcript. This sequence information allows one to 

ount the number of transcripts expressed within an indi- 
idual cell. Howe v er, these short reads hav e significant lim- 
tations for the analysis of cancer cell transcriptomes due to 

he fragmenta tion tha t elimina tes transcript sequence fea- 
ures closer to the nonbarcoded end of the molecule. This 
oss can include somatic allelic variants present in the in- 
ernal mRNA coding sequence, chimeric rearrangements 
nd alternati v e splicing e v ents that alter transcript isoform 

tructur e. Overall, short-r ead sequencing leads to a loss of 
aluable transcript information such as genetic variants that 
an only be deri v ed from an intact cDNA molecule. 

Incr easingly, single-molecule long-r ead sequencing is be- 
ng used for genomic studies of gene expression and 
50 725 1420; Email: genomics ji@stanford.edu 
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characterizing cDNAs ( 1–5 ). There are two sequencers in
this class available from Oxford Nanopore or Pacific Bio-
sciences. Both generate long reads with lengths of 1 kb and
higher, all from single DNA molecules. With intact cDNAs
from single cells, the library preparation for long-read se-
quencers does not truncate the molecules. As a result, long
reads can readily cover an entire cDNA molecule. This se-
quence information can be used to identify transcript struc-
ture and genetic variants present in exon sequences ( 5 ). 

For single-cell genomics, targeted sequencing of specific
gene transcripts provides an opportunity to identify tran-
script structure and genetic variant featur es pr esent among
individual cells. Targeted sequencing provides higher cover-
age and reduces the cost of analyzing single cells. There are
a variety of methods used for single-cell sequencing of spe-
cific target cDNAs. For example, polymerase chain reaction
(PCR) amplification of specific targets from single-cell li-
braries with amplicon sequencing provides higher coverage
of genes ( 6 ). Se v eral steps are required for de v eloping PCR
assays to amplify gene targets from scRNA-seq libraries.
Requirements include identifying specific primer sequences
for a gi v en cDNA target and optimizing PCR conditions to
reduce artifacts. When one de v elops assa ys f or multiplexing
PCR, amplification artifacts complicate this method and
place practical limits on the total number of amplification
targets. 

Another common method involves bait capture of single-
cell cDNAs. These assays use biotinylated oligonucleotide
probes that hybridize to a target. This process enriches a
specific cDNA molecule of interest from scRNA-seq li-
braries ( 2 , 3 ). The bait capture approach can be scaled up
to enrich many genes. Howe v er, the de v elopment of these
assays r equir es e xtensi v e testing of probes and optimizing
amplification steps as part of the capture process. In addi-
tion, the e xperimental wor kflow has multiple manipulation
steps that add to the complexity of the process. 

Se v eral studies hav e demonstrated a ne w approach
for targeted single-molecule sequencing that le v erages at-
tributes of the Oxford Nanopore platform ( 7 ). Referred to
as adapti v e sampling, this method involv es directly assess-
ing DNA molecules for specific target sequences ( 8–10 ). A
r efer ence file with a set of target genomic coordinates is
pr ovided. The pr ocess involves on-the-fly base calling fr om
each DNA molecule per gi v en nanopore, sequence align-
ment of data, real-time control of the nanopore voltage and
selection of those molecules with an extended long read of
the target sequence. Once the target sequence is identified,
the nanopore instrument proceeds to sequence the remain-
der of the molecule. This method enables direct sampling
and enrichment of specific DNA molecules without prior
preparati v e steps. It does not require library manipulation
for selecti v e PCR amplification or bait hybridization enrich-
ment of the target molecule of interest. Importantly, this ap-
proach reduces any potential biases in library content by
not requiring any pre-amplification step. 

We conducted a proof-of-concept study to determine the
feasibility of a ppl ying nanopore ada pti v e sampling for tar-
geted scRNA-seq. The objecti v e was to conduct targeted
sequencing of specific single-cell gene cDNAs and geno-
type somatic genetic alterations among individual cells from
a cancer line and primary tumors. For this approach, one
introduces the single-cell cDNA library into the nanopore
sequencer, with the controller evaluating for matching se-
quences of a gi v en cDNA molecule as it passes through
the pore. Then, the target cDNAs are sequenced with long
r eads, covering the entir e length of the cDNA. Variants that
ar e pr esent in the e xons, e v en when they are positioned
far from the 5 

′ and 3 

′ ends, are detectable. We tested the
ca pability of ada pti v e sampling by targeting cDNAs from
single-cell libraries deri v ed from a cancer cell line. Subse-
quently, we sequenced a set of different cancers, including
metastatic and lymphoid malignancies (Table 1 ). These tu-
mors had previously undergone diagnostic cancer gene se-
quencing and the clinical reports of coding cancer muta-
tions were available for each patient (Table 2 ). From these
cell line and patient samples and using the same scRNA-
seq library, we integrated the scRNA-seq short- and long-
read data. The long-read data were used to identify the prior
reported cancer mutations or the induced CRISPR edits
among single cells. We determined whether pr eviously r e-
ported cancer mutations could be mapped among the sin-
gle cells from different tumor sites. We observed that mu-
tation genotypes can be identified if there is sufficient ex-
pression of the target gene. Overall, our study demonstrated
the feasibility of single-cell identification of genetic alter-
ations with adapti v e long-read sequencing of cDNAs for
genes with sufficiently high nati v e e xpression. 

MATERIALS AND METHODS 

Patient samples and processing 

Pa tients with metasta tic appendiceal cancer were consented
on IRB protocol 44036 approved by Stanford Univer-
sity. Tumor tissues were obtained from surgery and stored
in RPMI medium before dissociation. Single-cell suspen-
sions were obtained from tissue fragments using enzymatic
and mechanical dissociation. Cells were washed twice in
RPMI + 10% fetal bovine serum (FBS), filtered through
70 �m (Flowmi, Bel-Art SP Scienceware , Wayne , NJ), fol-
lowed by 30 �m (Miltenyi) or 40 �m filter (Flowmi). Cry-
ofrozen cells were ra pidl y thawed in a bead bath at 37 

◦C fol-
lowed by above washing and filtering steps. Li v e cell counts
were obtained on a Bio-Rad TC20 Cell Counter (Bio-Rad,
Hercules, CA) or a Countess II FL Automated Cell Counter
(Thermo Fisher Scientific) using 1:1 trypan blue dilution.
Cells were concentrated between 500 and 1500 li v e cells / �l
for subsequent single-cell libr ary prepar a tion. The pa tient
with follicular lymphoma was consented on IRB protocol
13500 approved by Stanford University. Fine needle aspi-
rate specimens from two spatially separated nodal tumor
sites were obtained and prepared as previously described
( 11 ). 

Cell lines and induction of CRISPR mutations 

The Jurkat cell line (ATCC TIB-152) and a Cas9-stable ver-
sion of Jurkat (SL555, GeneCopoeia, Inc., Rockville, MD)
were maintained in RPMI medium supplemented with 10%
FBS at 37 

◦C under standard CO 2 conditions. We produced
an oligonucleotide pool for the guide RN A (gRN A) li-
brary (IDT, Coralville, IA). Amplified gRNAs were cloned
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Table 1. Cancer samples used for single-cell adapti v e sequencing 

Source ID 

or cell line 
Tumor 

ID Tumor type 

Tumor site or 
experimental 
condition 

Mutation and 
somatic variant 
discovery 

Number of 
gene targets 

Number of 
gene targets 

detected 

Number of coding 
substitution 
mutations or 

CRISPR targets 

Jurkat C1 T-cell leukemia Cell line Exome sequencing 352 352 
C2 Cell line transduced 

with CRISPR 

Amplicon 
sequencing 

16 16 (targets) 

8605 T1 Appendiceal 
carcinoma 

Primary appendix 
tumor 

UCSF cancer 
sequencing panel 

529 498 5 

T2 Metastasis in the left 
ovary 

496 5 

8629 T3 Appendiceal 
carcinoma 

Metastasis in the 
omentum 

STAMP- 
FoundationOne 
sequencing panel 

330 312 4 

T4 Metastasis in the 
small intestine 

319 4 

6408 T5 B-cell lymphoma Metastasis in the 
right inguinal lymph 
node 

Heme-STAMP 

cancer sequencing 
panel 

161 154 9 

T6 Metastasis in the 
right cervical lymph 
node 

155 9 

Table 2. Substitution cancer mutations 

ID Tumor type Sample Gene Coordinates Mutation AA change Clinical significance 

8605 Appendix carcinoma T1 APC chr5:112839667 C > T A1358V Uncertain significance 
GNAS chr20:58909365 C > A R844S Pathogenic 
KMT2D chr12:49031792 C > T V4305I Likely benign 
KRAS chr12:25245350 C > A G12V Pathogenic 
POLD1 chr19:50406302 G > A V455M Uncertain significance 

8629 Appendix carcinoma T3, T4 GNAS chr20:58909365 C > T R844C Pathogenic 
KRAS chr12:25245350 C > T G12D Pathogenic 
SF3B1 chr2:197402110 T > C K700E Likel y patho genic 
SMAD2 chr18:47841840 G > C|T S464* Nonsense 

6408 Follicular lymphoma T7 a BCL2 chr18:63318582 C > T E29K Deleterious 
BCL2 chr18:63318653 C > A G5V Benign 
BCL2 chr18:63318494 T > C H58R Benign 
BCL2 chr18:63318411 G > A L86F Benign 
BCL2 chr18:63318320 G > A S116F Benign 
CREBBP chr16:3736766 A > G Y1482H Deleterious 
DNMT3A chr2:25300227 T > G E30A Likely benign 
EP300 chr22:41151887 A > G S958G Benign 
NF1 chr17:31358550 A > G I2681V Likely benign 

a Targeted cancer sequencing done on right axillary node (not T5 or T6). 
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o lentiGuide-Puro (Addgene plasmid #52963). To trans- 
uce Cas9-expressing Jurkat cell for CRISPR editing, we 
sed the spinoculation method. The lentiviral supernatant 
nd 8 �g of polybrene (Sigma–Aldrich, St Louis, MO) were 
dded to 1.0 × 10 

5 Cas9-stable Jurkat. The mixture was 
entrifuged at 800 × g at 32 

◦C for 30 min. Cell pellets 
er e r esuspended to fr esh media, and after 72 h, transduced 

ells were selected by puromycin (Life Technologies, Carls- 
ad, CA). Additional details about this CRISPR-edited cell 

ine are fully described by Kim et al. ( 6 ). 
To identify specific CRISPR mutations, we generated 

ingle-cell full-length cDNAs from transduced Jurkat cells 
s previously described ( 6 ). One nanogram of single-cell 
DNA library was used to amplify transcripts with a set of 
rimers flanking the CRISPR edit site. KAPA HiFi Hot- 
tart ReadyMix (Roche, Basel, Switzerland) was used for 
mplification. Extension time was 60 s. Amplicons were 
ooled at equimolar concentrations. The libraries were pre- 
ared with 900 fmol of pooled amplicon for PromethION 

low Cell FLO-PRO002 (Oxford Nanopore Technologies) 
sing Nati v e Barcoding Expansion and Ligation Sequenc- 

ng Kit (Oxford Nanopore Technologies) as per the man- 
facturer’s protocol. Libraries were sequenced on Oxford 

anopore PromethION for 72 h. 

ingle-cell library preparation and short-read sequencing 

equencing libraries were prepared using Chromium 

extGEM Single Cell 5 

′ Library & Gel Bead Kit v1.1 

r v2 (10X Genomics, Pleasanton, CA) as per the 
anufactur er’s protocol. gRNA dir ect captur e for Jurkat 
RISPR assay has been performed as previously described 

sing 6 pmol of scaffold binding oligonucleotides ( 6 ). The 
DNA and gene expression libraries were amplified with 

ither 14 or 16 cycles of PCR, depending on the starting 

mount. The size distribution of gene expression libraries 



4 NAR Cancer, 2023, Vol. 5, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was confirmed via gel electrophoresis (Thermo Fisher Sci-
entific, Waltham, MA). The libraries were quantified using
a Qubit fluorescent assay (Invitrogen). Short-read sequenc-
ing was performed on Illumina sequencers (Illumina, San
Diego, CA). 

Nanopor e long-r ead sequencing of single-cell libr aries 

We amplified the entire single-cell cDNA material us-
ing the following primer sequences: partial read 1:
CTA CA CGA CGCT CTT CCGAT CT and non-poly(dT):
AA GCA GTGGTATCAACGCA GA G. KAPA HiFi Hot-
Start 2X ReadyMix (Roche, Basel, Switzerland) was used
for PCR amplification with 250 nM of each primer. Fol-
lowing PCR, the amplicons were purified using 1.5 × vol-
ume equivalents of Ampure XP beads. Libraries were quan-
tified with Qubit (Thermo Fisher Scientific). The library
was diluted to a total concentration of 600 fmol and loaded
onto a MinION R9.4.1 Flow Cell and sequenced for 72 h
as per the manufacturer’s instructions (LSK-110, Oxford
Nanopore Technologies). For the PromethION runs, 900
fmol of pooled amplicon was loaded onto a PromethION
Flow Cell FLO-PRO002 (Oxford Nanopore Technologies)
and sequenced for 72 h. 

Our patient samples included hematologic and solid ep-
ithelial tumors. Each patient had one of their tumor sites
analyzed with one of three different cancer gene panels
used for diagnostic tumor sequencing. The number of tar-
get genes per gene panel ranged from 130 to 529. For each
gene panel, the canonical exon coordinates for each gene
were identified and organized into a bed file. For adapti v e
sequencing of each sample, we uploaded the genomic bed
file corresponding to their diagnostic sequencing, into the
instrument control software. Li v e base calling was based on
the ‘fast’ model enabled rapid alignment and subsequent en-
richment of reads that overlapped the target regions. 

Bioinformatic analysis 

Shor t-r ead pr ocessing and cell type assignment. Cell
Ranger (10X Genomics) version 3.1.0 ‘mkfastq’ and ‘count’
commands were used with default parameters and align-
ment to GRCh38 to generate matrix of unique molecular
identifier (UMI) counts per gene and associated cell bar-
code. We constructed Seurat objects from each dataset us-
ing Seurat (version 4.0.1) ( 12 , 13 ) to a ppl y quality control
filters. Quality controls included removing cells that ex-
pressed < 200 genes, had > 30% mitochondrial genes or had
UMI counts > 6000 indicating potential doublets. Genes de-
tected in < 3 cells were removed. We normalized data using
‘SCTransform’ and used the first 20 principal components
with a resolution of 0.8 for clustering. We then removed
computationally identified doublets from each dataset us-
ing DoubletFinder (version 2.0.2) ( 14 ). The ‘pN’ value was
set to default value of 0.25 as the proportion of artificial
doublets. The ‘pK’ value r epr esenting the PC neighbor-
hood size was calculated using 20 principal components.
The ‘nExP’ value was set to expected doublet rate accord-
ing to Chromium Single Cell 3 

′ v2 Reagent Kit User Guide
(10X Genomics). These parameters were used as input to
the ‘doubletFinder v3’ function to identify doublet cells. 
For determining cell type, clusters were annotated based
on cell type-specific marker genes as indicated below.
Among our tumor biopsies, we had appendiceal carcino-
mas that are epithelial in origin and lymphomas that are
B cell deri v ed. For the appendiceal cancers, we identi-
fied epithelial cells ( EPCAM , TFF3 , MUC2 ), fibroblasts
( DCN , COL1A1 , LUM ), endothelial cells ( VWF , PLVAP ,
PECAM1 ), T cells ( CD3D , IL7R , CD8A ), natural killer
(NK) cells ( NKG7 , GNLY ), B or plasma cells ( MS4A1 ,
CD79A), mast cells ( TPSAB1 ) and macrophages or den-
dritic cell lineages ( CD68 , CD14 , FCGR3A , HLA-DRA ). 

For the lymphoma samples, we included MS4A1 , CD19 ,
CD79A (B cells), CD3E , CD3D , CD2 (T cells), CD8A ,
CD8B (CD8 

+ T cells), CD4 (CD4 

+ T cells), LEF1 , CCR7 ,
NOSIP (na ̈ıve T cells), IL7R , SELL (memory T cells), CD4 ,
IL2RA , FOXP3 (T regulatory cells), GZMA, NKG7 (T ef-
fector cells), GNLY, NCAM1 (NKT / NK cells), and CD14
and LYZ (myeloid cells). The classification of malignant
versus nonmalignant B cells was based on calculating the
av erage e xpression of each kappa and lambda variable re-
gion gene for the different clusters ( 15 ). The expression of a
clonal light chain provided assignment for the malignant B-
cell clusters. In contrast, the normal B-cell cluster expressed
heterogeneous BCR light chain variable genes. 

Adaptive long-r ead pr ocessing. The adapti v e sequencing
runs from the Oxford Nanopore and their sequence out-
put were filtered to include just the reads within one of
the targeted regions, per the gene panel bed file. This
step involved using the log file provided by the sequencer.
The log file indicates whether each read was ejected (‘un-
block’) or accepted (‘stop receiving’ –– enriched). The ac-
cepted reads, which contain full-length cDNA, were bioin-
formatically selected using the fast5 subset command from
the ont fast5 api package. These da ta were itera ti v ely pro-
cessed using the ‘super-accuracy’ base calling mode with
Guppy (v5.0.16) and were aligned to the r efer ence genome
GRCh38 using minimap2 (v2.22) ( 16 ). To infer the presence
of a full-length cDNA transcript, the first 65 bases of soft-
clipped sequence closest to the aligned bases were evaluated
for A or T homopolymers (depending on the orientation of
the alignment). A homopolymer of length ≥12 was assessed
as being a polyA tail, indicati v e of a full-length transcript. 

Integr ation of shor t and long r eads fr om single-cell cDNA.
As previously described, we developed a method to match
the short and long reads from overlapping single cells ( 6 ).
The Cell Ranger processing of short reads provides a list
of cell barcodes. We compared this whitelist of known bar-
codes to barcode sequences extracted from the soft-clipped
sequences in the aligned long reads. The Python pysam
module was used to identify soft-clipped portions of aligned
reads. The next step was a machine learning approach uti-
lizing a cosine similarity function (CountVectorizer from
scikit-learn Python module, with k -mer length of 8) to
identify potential barcode matches within the soft-clipped
sequences. Using the fiv e highest ranking cosine similarity
scores per read, the edit distance between the long-read bar-
code sequence and the whitelisted barcode was calculated.
Barcode matches with the lowest edit distance were selected.
Then, the highest cosine similarity score was selected for
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nal evaluation. If the paired barcode edit distance was < 3, 
t was considered a successful match, otherwise the read was 
ot considered a match to any of the barcodes identified in 

hort-read sequencing and was excluded from further inte- 
rated analysis. From the resulting file, any exactly matched 

ar code / UMI combinations wer e r emoved as PCR 

uplicates. 

RISPR genotyping analysis 

sing the long-read data from targeted cDNAs, we identi- 
ed the genotypes of CRISPR mutations from the Jurkat 
ell line. After aligning each nanopore read and confirm- 
ng the coordinates of the target, we evaluated a 2-bp slid- 
ng window that was tiled across the putati v e cleavage site. 
nsertions, deletions or base substitutions were identified 

mong the long reads. We performed this analysis for each 

RNA target per gi v en cell and summarized the mutation 

requency of the CRISPR target. 

RISPR-induced e x on skipping analysis 

or each read, we used the e xon coor dinates for the SRSF5
ene, to determine which exons were present in the long- 
ead transcript ( 6 ). Exon coordinates were based on the 
nsembl canonical transcripts from the GENCODE ver- 

ion 38 GTF file ( 17 ). Transcripts that began at exon 1 

nd included exon 5 were evaluated and considered to have 
kipped exon 4 if < 12 bases were aligned to that exon. 

ingle-cell analysis of cancer mutations from tumor biopsies 

e had a set of tumor samples originating from patients 
ith metastatic cancer. These patients had one of their tu- 
or sites undergo diagnostic cancer genome sequencing. 
he clinical sequencing reports provided a list of mutations 

hat led to amino acid changes, frameshifts or pr ematur e 
tops –– this information was compiled for our study. For 
utations reported in GRCh37 coordinates, we conducted 

 liftover procedure to convert to GRCh38 coordinates. For 
utations reported as amino acid changes, we conducted 

n analysis with the CADD application to lift these muta- 
ions to the GRCh38 r efer ence coordinates ( 18 ). We used 

he pileup command from the Python pysam module to 

dentify the specific nanopor e r eads that had the reported 

utations ( 19 , 20 ). As an additional validation of the tu-
or mutation calls, we used Longshot to call variants ( 21 ). 
ongshot is designed for germline variant calling of long 

eads, so some parameters were adjusted to provide more 
ensiti v e variant calling appropriate for somatic mutations. 
ongshot was run with variant phasing disabled, a strand 

ias P -value cutoff of 0.0001 and variant density filter set 
o 10:100:50 (10 variants within 100 bp with genotype qual- 
ty ≥50) to filter out any variants in a very dense cluster. 
he cell barcode for each long read was identified as de- 

cribed in the ‘Adapti v e long-read processing’ section, and 

sing this information the cells in the short-read Seurat ob- 
ect were annotated as having either reference or alternate 
ase values. Standard Seurat functions such as DimPlot and 

lnPlot were then used to visualize the differences in cell 
ype distribution and gene expression level, for those cells 
ith the variant versus the wild type. 
To determine whether there w ere rearrangements, w e 
sed cuteSV ( 22 ). The following parameters were applied: 
aximum distance to cluster reads together for insertion or 

eletion: 100; maximum base pair identity to merge break- 
oints for insertion or deletion: 0.3. 

ESULTS 

v ervie w of the approach 

e determined whether one could apply nanopore adap- 
i v e sampling for single-cell genotyping of somatic genetic 
ariants and identification of rearrangements (Figure 1 A). 
or this study, we used a cancer cell line and se v eral dif-

erent tumors across different anatomic sites. These tumors 
ad prior targeted deep sequencing results from diagnostic 
NA testing; we then checked for these same results in the 

ong-read cDNA transcripts from single cells. 
This scRNA-seq genotyping approach involved the fol- 

owing steps: (i) We generated single-cell cDNAs (10X Ge- 
omics) from the sample (see the ‘Materials and Methods’ 
ection). (ii) A portion of the single-cell cDNA underwent 
ibr ary prepar ation f or con ventional Illumina short-read se- 
uencing that r equir es fragmenting the cDNA. (iii) A pro- 
ortion of the same single-cell cDNA library, without frag- 
entation, was pr epar ed f or Oxf ord Nanopore sequencing. 

i v) Adapti v e sampling was used to target the cDNA of spe-
ific genes. (v) The long reads were pre-processed, aligned 

nd evaluated for CRISPR edits, cancer mutations and re- 
rrangements among the individual cells. (vi) The presence 
f a variant was identified by direct examination of the al- 
ered genomic position among the sequence reads and also 

 y v ariant calling on the long-read data (see the ‘Materials 
nd Methods’ section). (vii) To infer cell type, we integrated 

he scRNA-seq short- and long-read data by matching the 
ell barcodes. This step allowed us to assign each mutation 

o specific cell types, which is an important step for analyz- 
ng primary tumor samples. The long-read coding variants 

atched those identified from deep targeted diagnostic se- 
uencing with the exception of genes with low expression 

nd lacked sufficient sequence coverage. 

ingle-cell mutation mapping of a cancer cell line 

e first analyzed the Jurkat cell line that is deri v ed from a
-cell leukemia. This cell line has undergone prior genome 
equencing with reported mutations ( 23 ). The cells were 
rown without any CRISPR genome modifications and 

hen underwent single-cell cDNA preparation and cDNA 

mplification. As noted above, the same library was split 
nto two aliquots and used for both short- and long-read 

equencing. 
We evaluated the accuracy of variant calling from long- 

ead sequencing of the targeted gene set by investigating 

he Jurkat cell line and using the matched short-read se- 
uencing as the ground truth r efer ence. To cr eate a confi- 
ent ground truth r efer ence, we used only those genes for 
hich ther e wer e at least 100 short-r ead transcripts and 

alled the variant if the short-read had a variant frequency 

f > 1%. Two hundred forty-nine genes had sufficient short- 
ead tr anscripts (r ange 107–8052 r eads) and a high per cent-
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Figure 1. An adapti v e sampling method for sequencing target cDNAs from scRNA-seq. ( A ) Ov ervie w of single-cell library preparation, long- and short- 
read sequencing analysis, and integration of results from both modalities. Integrati v e Genomics Viewer (IGV) screenshot of SRSF5 targeting sites from 

cells with gRNAs: ( B ) SRSF5-1 and ( C ) SRSF5-2. ( D ) Boxplot showing CRISPR-induced mutation rate for all genes targeted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

age had consistent mutation calling between long reads and
short reads. 

We demonstrated an overall accuracy of 95.18% with
95% confidence interval (91.73%, 97.49%) for long-read
variant calls if variants are called when the long-read vari-
ant frequency is at least 4%. There were 2 false negati v e calls
and 10 false positi v e calls. The number of long-read tran-
scripts sequenced per gene ranges from 7 to 6679 and the
recall rate is 97.98%. Notably, the false negati v e rate is con-
trolled under 3% when the number of long-read transcripts
per gene is between 7 and 1600 (Supplementary Figure S1).

We used the results from a short-read scRNA-seq anal-
ysis of the Jurkat cells to identify individual cells and their
gene expression levels (see the ‘Materials and Methods’ sec-
tion). Ther e wer e 5881 cells detected, with an average of
38 966 reads per cell (Supplementary Table S1). Next, we
evaluated the expression levels of 319 genes that had been
pr eviously r eported to have mutations in this cell line (Sup-
plementary Table S2) ( 23 ). These genes covered a range of
differ ent expr ession levels that were corroborated by both
the short- and long-read data (Supplementary Figure S2). 

For muta tion identifica tion, we used the same single-cell
cDNA library for nanopore adapti v e sampling with an Ox-
ford MinION sequencer, albeit without fragmenting the
cDNA. For targeting, the adapti v e sampling list covered
319 gene targets (Supplementary Table S2). After alignment
and processing, a total of 5881 cells wer e r ecover ed from the
long-read data (Supplementary Table S1). A total of 1.47
million reads aligned to the target genes, with an average
read length of 944 bp. Ther e wer e an average of 188 long
reads per cell representing an average of 88.2 genes per cell.
Across all cells, each gene had an average of 3733 reads and
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743 cell barcodes. We compared the cell barcodes between 

he short- and long-r ead data. Short-r ead sequencing iden- 
ified 5881 cell barcodes of which 5873 ( > 99%) overlapped 

ith the long-read data. 
Overall, 292 of the 351 mutations in targeted genes were 

hown to be present among the Jurkat cells, representing 

3% of the gene-based mutations that have been previ- 
usly reported. The 58 variants not detected were due to 

ither low coverage or variation in mutations across the 
ell line. Thirty of the 58 had low coverage ( < 20 long-read 

ranscripts); 26 had adequate coverage and variant was not 
etected in either short reads or long reads. The remaining 

wo variants were detected in short reads at < 1% frequency 

ut were not detected in the long reads. In total, we identi- 
ed 910 cells with mutations among 1663 cells. As another 
eneral metric for the appearance of a mutation, we deter- 
ined the transcript allele frequency. This value reflects the 

atio of reads identified with the mutation over the total 
umber of reads per cell. The detected variant frequency 

aried among genes; howe v er, limited conclusions can be 
ade since in general only one transcript was sequenced per 

ell for a gi v en gene. The C466Y mutation in the TOP1MT 

ene had a mean variant allele frequency (VAF) of 90.7% 

ith 95% confidence interval (84.6%, 96.8%), meaning most 
ells had this mutation in at least one allele. In contrast, the 
AF for the L142L mutation in the ACAT2 gene was 32.7% 

ith 95% confidence interval (31%, 34.5%), which suggests 
 lower penetrance for this mutation (Supplementary Table 
3 and Supplementary Figure S3). 

ingle-cell genotyping of somatic CRISPR edits in Jurkat 
ells 

ext, we assessed whether adapti v e sampling and targeted 

equencing could identify de novo CRISPR-introduced edit 
utations from single cells. We used CRISPR-edited Ju- 

ka t cells tha t stab ly e xpr essed Cas9, as pr eviously described
 6 ). We transduced this Jurkat cell line with a multiplexed 

RNA library containing 32 gRNAs targeting 16 genes. 
her e wer e two guides per gene. We also included fiv e
ontrol gRNAs (Supplementary Tables S4 and S5). These 
ransduced cells underwent processing to generate a single- 
ell cDNA library. As part of the short-read analysis, we 
dentified which gRNAs were expressed within a gi v en indi- 
idual cell (see the ‘Materials and Methods’ section). This 
ssay relies on using a primer to polymerase extend over 
he gRNA adjacent to a gi v en cell barcode, followed by se-
uencing in which both gRNA and cell barcode appear in 

he same read ( 24 ). With the paired gRNA and cell barcode 
equence, one determines the distribution of expressed gR- 
As across individual cells. 
The cells expressing a gi v en gRNA were identified and 

atched with the long-read adapti v e sequencing of single- 
ell cDNAs. With the targeted long reads, we identified 

he CRISPR-induced edits among the target gene cDNAs 
mong the single cells that also expressed the specific gRNA 

Figure 1 B–D and Supplementary Figure S4). We have 
valuated CRISPR-induced mutations using both Illumina 

hort-read and nanopore long-read sequencing techniques 
nd demonstrated a high degree of concordance between 

he two methods ( 25 ). This proves that nanopore long-read 
equencing can reliably characterize CRISPR mutations. 
he average number of target long reads matching the gene 

arget was 5.32 per cell. As expected, CRISPR mutations 
ere identified at the target gene site among the cells ex- 
ressing the gRNA. The average target mutation frequency 

rom cells with the guide was 79.0% and significantly higher 
han the wild-type cells ( P = 2.9e −07) (Figure 1 D). 

Furthermore, we detected CRISPR-induced transcript 
soform alterations at single-cell resolution. For example, 
he gRNA SRSF5 -2 introduced skipping of exon 4 in 

4.81% of cells with the gRNA (95% confidence interval: 
.16%, 28.5%) (Figure 1 B and C). All cells skipping exon 

 had zero bases aligned to that exon. Of the cells without 
he gRNA, 99.5% (95% confidence interval: 98.7%, 100%) 
id not skip exon 4 (Supplementary Figure S5). This result 
onfirms that adapti v e long r eads wer e informati v e for iden-
ifying CRISPR edits. 

For validation, we PCR amplified the cDNA targets with 

ong-read sequencing. We generated amplicons of the gene 
argets from the same scRNA-seq library. These amplicons 
nderwent long-read sequencing ( 6 ). We then identified the 
atching cell barcodes between the two datasets. Compar- 

ng the adapti v e v ersus the amplicon sequencing, all iden- 
ified mutations overlapped, further validating the adapti v e 
esults (Supplementary Figure S6). 

dentifying single-cell mutations from tumors 

e applied this adapti v e nanopore sampling to identify so- 
a tic altera tions among single cells from tumors. These 

amples originated from patient biopsies. We analyzed 

atched pairs of tumors from three patients with advanced 

ancer present in different anatomic sites. The first and sec- 
nd patients had metastatic appendiceal cancer. The third 

atient had follicular lymphoma, a B cell-deri v ed tumor, af- 
ecting distinct nodal regions throughout the body. 

Every patient had their tumor tested with diagnostic can- 
er gene sequencing, either from a primary site or from a 

etastatic site (Supplementary Table S2). From the targeted 

equencing of each patient’s cancer, we evaluated the re- 
orted coding variants (Table 2 ). The reports provided all 
onsynonymous variants, including those classified as be- 
ign, pathogenic or of unknown significance. For this study, 
e are genotyping the base detected at a gi v en genomic co- 
rdinate, and ther efor e ex cluded any v ariants that were in- 
ertions, deletions or frameshifts since these tend to have 
ess pr edictable pr esentation within the aligned sequence 
nd are also more prone to be affected by nanopore se- 
uencing errors. There were only two such variants excluded 

cross all the samples and we inspected the variant positions 
n the read data with IGV. One variant was a 1-bp deletion 

ot visible in IGV due to the prevalence of homopolymers 
round the deletion site and the propensity for this type of 
ndel error in nanopore sequencing. The other variant was 
 69-bp splice site deletion that is not directly detectable in 

DNA. The exons on either side of the deletion were not 
resent in the gene transcripts. 
Each tumor sample underwent single-cell library prepa- 

ation and the same single-cell libraries were used for both 

hort- and long-read sequencing (see the ‘Materials and 

ethods’ section). Gene expression profiles from the short- 
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r ead sequencing r e v ealed cell types. For the genes reported
to have mutations via diagnostic sequencing, we used the
long-read sequencing to identify base calls at the genomic
coordinates of these variants. We also performed de novo
variant calling for these same genes using Longshot as
described in the ‘Materials and Methods’ section. Subse-
quently, we matched the cell barcodes between the long- and
short-read sequences to integrate gene expression, cell type
and mutation status. 

Across the six tumor samples, the number of single cells
identified by short-read sequencing ranged from 7748 to
16 219 and the median number of genes per cell ranged from
468 to 1468 (Supplementary Table S1). The spread in me-
dian genes per cell was attributable to differences in the cell
types. Lymphomas are composed of B cells that have a sig-
nificantly higher number of expressed genes per cell com-
pared to epithelial cells such as those originating from ap-
pendiceal cancer. This observation is consistent with what
has been noted from single-cell studies of lymphocytes and
solid tissues ( 15 , 26 ). 

The proportion of full-length transcripts was determined
by detection of a polyA tail within the soft-clipped portion
of the aligned reads. The median percent of full-length tran-
scripts across all genes in the gene panels for each sample
was between 58% and 75%. For most of the clinical diagnos-
tic genes, the percent of full-length transcripts was between
60% and 82%, though se v eral genes e xpressed in the lym-
phoma samples were lower at between 42% and 51% (Sup-
plementary Table S6). 

We determined the number of unique cells in the adap-
ti v e long-read data by matching the cell barcode sequences
with the list of cell barcodes identified by Cell Ranger in the
short-read data. This ranged between 7732 and 15 786 cells
per sample (Supplementary Table S1). The median number
of transcripts per cell ranged from 10 to 83 and the aver-
age number of target genes per cell ranged between 7.6 and
27.0 (Supplementary Table S1). Overall, the yield of reads
was higher from the B-cell lymphoma than from the appen-
diceal epithelial tumors. 

Single-cell mutations among appendiceal cancers 

We analyzed a set of tumors from two patients (P8605
and P8629) with appendiceal cancer. This cancer originates
from the epithelial cells of the appendix, a vestigial organ
connected to the right colon. The target gene list covered
529 genes for P8605 and 330 genes for P8629. 

8605’s appendiceal cancer and metastasis 

Patient 8605 had an appendiceal carcinoma (T1) and a
metastatic site (T2) located in the left ovary (Figure 2 A).
The patient’s primary tumor site underwent diagnostic can-
cer sequencing. Based on the clinical report, the T1 tumor
had fiv e nonsynonymous substitution variants in the can-
cer dri v er genes APC , GNAS , KRAS , KMT2D and POLD1 ,
with only the GNAS and KRAS variants being pathogenic
per ClinVar (Table 2 ) ( 27 ). 

The primary appendiceal cancer and its matched metas-
tasis underwent scRNA-seq with both short and long reads
(Figure 2 B–D). The short-read sequencing provided single-
cell transcriptome information that informed cell identity,
and the sequencing metrics are shown in Supplementary
Table S1. Based on short-read sequencing, the T1 appen-
diceal site had a total of 12 127 cells with an average of 889
genes per cell (Figure 2 C). The T2 metastatic site had 14 214
cells with an average of 655 genes per cell (Figure 2 C). With
this scRNA-seq data, we defined the different cell types in
each sample, including epithelial, stromal and immune cells.
The canonical genes that defined the epithelial cells included
MUC2 , TFF3 and EPCAM (Figure 2 D). 

Using the panel of 529 genes, we generated single-cell
long-read sequence data from these target cDNAs. After
alignment, we identified the long reads of the target genes
tha t ma tched cell barcodes occurring in the short-read data
(see the ‘Materials and Methods’ section). We analyzed the
adapti v e long-read data for both tumor sites (Figure 2 E and
F, and Supplementary Table S1). For the T1 tumor, 67% of
long-read transcripts were matched to a short-read cell bar-
code, resulting in identification of 11 914 cells and 498 of
the 529 genes targeted. For the T2 metastasis, 69% of long-
read transcripts were matched to a short-read cell barcode
with 14 077 cells and 496 of the 529 targeted genes identi-
fied. Transcripts not matched to a short-read cell barcode
are due to either errors in sequencing of the long-read bar-
code or the cDNA library sampling process (i.e. cells sam-
pled for short-read sequencing but not long reads, or vice
v ersa). The av erage number of target genes per cell for the
T1 tumor was 11.5 and for the T2 metastasis was 12.8. 

Variants in all clinically identified genes were found in
the T1 and T2 tumors, albeit with v ery fe w cells detected
expressing the tumor suppressor genes APC , KMT2D
or POLD1 (Table 3 ). In examining the single-cell short-
read data for the T1 tumor, the gene e xpression le v els of
KMT2D , POLD1 and APC were generally low with tran-
script counts between 0.01 and 0.04 per cell (Supplementary
Figure S7). The low coverage could be due to loss of func-
tion in these genes, or due to just low nati v e e xpression, and
is not determinable with cDN A anal ysis methods. There is
insufficient power to form any conclusion on cell type and
muta tion sta tus for these variants. 

We examined the GNAS R844S mutation in the T1 and
T2 tumors –– for general visualization, we combined the
data from both tumors for UMAP and violin plots (Fig-
ure 2 E). GNAS is a proto-oncogene that represents the Gs �
subunit of heterotrimeric G proteins and is involved in pro-
duction of cyclic AMP-based signal transduction ( 28 ). For
the T1 tumor, there were 526 cells with long reads of the
GNAS transcript, and short-read transcriptome data (Ta-
ble 3 ). Among the 110 epithelial cells with GNAS long-
read transcripts covering the variant site, 76 cells had an
R844S mutation allele. Most cells only had one GNAS
transcript sequenced, and since somatic variants are typ-
ically heterozygous it is likely that all or most epithelial
cells harbored the mutation. Of the remaining 416 cells that
were not classified as epithelial cells, 95% of the GNAS
alleles were wild type. The nonepithelial cells with mu-
tated alleles likely indicate either a misclassification of cell
type from the short-read data or a false positi v e variant
call. 

Ne xt, we e valuated the T2 metastasis for this same GNAS
mutation (Figure 2 E). There were 505 cells that had long
reads of the GNAS transcript and matching short-read tran-
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Table 3. Single-cell identifica tion of cancer muta tions 

Epithelial cells Other cell types Epithelial cells Other cell types 

Source 
ID Tumor type Gene 

Amino 
acid 
change 

Tumor 
ID 

Cells w / 

transcript 
coverage 

Cells w / 

variant 

Cells w / 

transcript 
coverage 

Cells w / 

variant % Mut 
Tumor 
ID 

Cells w / 

transcript 
coverage 

Cells w / 

variant 

Cells w / 

transcript 
coverage 

Cells w / 

variant % Mut 

8605 Appendiceal 
cancer 

APC A1358V T1 0 0 2 1 50% T2 0 0 1 1 100% 

KRAS G12V 48 42 218 2 17% 1 0 204 2 1% 

KMT2D V4305I 1 1 0 0 100% 0 
POLD1 V455M 0 0 2 2 100% 0 0 2 2 100% 

GNAS R844S 110 76 416 13 17% 11 5 494 3 2% 

8629 Appendiceal 
cancer 

SF3B1 K700E T3 6 0 15 0 0% T4 0 0 9 0 0% 

KRAS G12D 62 27 134 3 15% 15 5 221 1 3% 

SMAD2 S464* 19 17 14 0 52% 2 2 31 0 6% 

GNAS R844C 108 0 214 0 0% 17 0 330 1 0% 

GNAS R844H 126 59 256 8 18% 23 11 406 8 4% 

B cells Other cell types B cells Other cell types 

Source 
ID 

Tumor type Gene Amino 
acid 
change 

Tumor 
ID 

Cells w / 

transcript 
coverage 

Cells w / 

variant 
Cells w / 

transcript 
coverage 

Cells w / 

variant 
% Mut Tumor 

ID 

Cells w / 

transcript 
coverage 

Cells w / 

variant 
Cells w / 

transcript 
coverage 

Cells w / 

variant 
% Mut 

6408 B-cell 
lymphoma 

DNMT3A E30A T5 46 19 11 3 39% T6 22 13 56 21 44% 

CREBBP Y1482H 96 37 16 1 34% 72 34 64 3 27% 

NF1 I2681V 23 14 6 4 62% 18 11 3 2 62% 

BCL2 S116F 870 831 14 6 95% 563 497 57 20 83% 

BCL2 L86F 839 796 13 6 94% 549 482 54 17 83% 

BCL2 H58R 745 696 11 5 93% 499 475 55 19 89% 

BCL2 E29K 798 711 11 4 88% 520 479 54 19 87% 

BCL2 G5V 845 1 12 0 0% 545 1 59 0 0% 

EP300 S958G 51 14 7 4 31% 18 9 22 12 53% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were stromal and 8355 were immune cells. 
scriptome data (Table 3 ). We identified 11 epithelial cells,
and sampling of ∼1 allele per cell identified fiv e mutation
transcripts and six wild-type transcripts, consistent with
heterogeneous expression of the mutation in each cell. Of
the remaining 494 nonepithelial cells, over 99% of the tran-
script alleles were GNAS wild type. 

We then identified cells in T1 and T2 with the KRAS
G12V mutation (Table 3 and Figure 2 F). This mutation
is a hotspot that enables KRAS activity and acts as an
oncogenic dri v er. For T1, 42 of the 48 epithelial cells with
KRAS transcripts had a G12V allele, indica ting a t least 88%
of these cells had the m utation. Onl y 1 of the 205 T2 cells
with KRAS transcripts was an epithelial cell, so no conclu-
sions on presence or absence of mutation can be drawn. For
the cells not classified as epithelial, < 1% of cells in both T1
and T2 had a G12V allele. The low frequency of observed
mutations in nonepithelial cells would be consistent with a
false positi v e variant call. Alternati v ely, the cells with the
mutation may be misclassified epithelial cells. 

There was no evidence of muta tion-rela ted transcript in-
stability in either GNAS R844S or KRAS G12V epithe-
lial cell transcripts in T1 or T2. Transcripts harboring the
GNAS or KRAS mutations had stable gene expression com-
pared to their respecti v e wild-type transcripts (Figure 2 E
and F). 

As validation of positi v e variant calls, we ran the Long-
shot program (Supplementary Table S7; see the ‘Materials
and Methods’ section). The KRAS and GNAS mutations
were called for T1 but were not called for T2 gi v en the low
VAF for these genes. No mutations were called for APC ,
KMT2D and POLD1 due to low read depth in both sam-
ples (Table 3 ). 
As targeted negati v e controls for T1 and T2, we geno-
typed the variant calls from other patient samples. Cover-
age ranged from 2 to 45 transcripts per gene, and there were
no variants detected in T1, or in six of the se v en genes for
T2 (Supplementary Table S8). There was one variant tran-
script out of eight total transcripts for the EP300 gene in
T2, indicating a false positi v e sequencing error. 

8629’s appendiceal metastasis 

For patient 8629, we had biopsies from two metastatic sites
(T3 and T4) of an appendiceal cancer (Figure 3 A). These
implants were located on the omentum (T3), a tissue cover-
ing the abdominal viscera and in the small intestine (T4).
Based on the diagnostic tumor sequencing, the primary
appendiceal tumor had four genes with substitution vari-
ants, including GNAS , KRAS , SF3B1 missense variants
and a SMAD2 nonsense mutation, with all variants being
patho genic or likel y patho genic (Table 2 ). These samples
underwent both short- and long-read scRNA-seq (Figure
3 B and Supplementary Table S1). Based on the short-read
sRNA-seq, the T3 and T4 metastatic sites had over 10 000
cells, and over 400 genes per cell on average (Figure 3 C).
With this single-cell transcriptome data, we defined the dif-
ferent cell types in each sample, including epithelial, stro-
mal and immune cells (Figure 3 D). After a ppl ying standard
quality control filtering (see the ‘Materials and Methods’
section), the T3 site had 8814 cells of which 1760 were ep-
ithelial, 2142 were stromal and 4912 were immune cells. The
T4 site had 14 511 cells of which 293 were epithelial, 5863
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We analyzed the long-read data for both sites (Supple-
mentary Table S1). The target list consisted of 330 genes
(Supplementary Table S2). For the T3 tumor, 59% of the
long-r ead bar codes matched a short-r ead bar code. These
data define a set of 9929 cells with long-read coverage for
312 of the 330 genes targeted. For the T4 site, 70% of long
reads matched a short-read barcode resulting in 15 786 cells,
with long-read coverage for 319 of the 330 genes targeted.
The average number of target genes per cell for T3 tumor
was 8.4 and for the T4 metastasis was 7.6. 

Ther e wer e long r eads covering the coding mutation sites
for GNAS, KRAS , SMAD2 and SF3B (Table 3 ). For the
T3 and T4 metastases, the KRAS G12D mutation was the
most prevalent. The combined single-cell data for this mu-
tation are shown in the UMAP and violin plots (Figure 3 E).
KRAS G12D is a common hotspot mutation found among
colon and appendiceal cancers and is a critical oncogenic
dri v er. One hundred ninety-six T3 cells and 236 T4 cells
had matching long- and short-read transcriptome data for
KRAS (Table 3 ). The G12D allele was detected in 27 of 62
epithelial cells in T3, and 10 of 15 epithelial cells in T4, sug-
gesting that most or all of the epithelial cells harbored this
mutation. Nonepithelial cells in these samples included T
cells , macrophages , dendritic cells and fibroblasts. Only four
of the 355 nonepithelial cells across T3 and T4 had tran-
scripts with the G12D mutation. 

The SMAD2 S464* truncation was also found in the T3
and T4 samples. This gene is an intracellular signal trans-
ducer and transcriptional modula tor activa ted by trans-
forming growth factor beta ( 29 ). T3 and T4 each had 33
cells with long reads and matching short-read transcrip-
tome data for SMAD2 (Table 3 ). The SMAD2 S464* non-
sense mutation was detected in 17 out of 19 epithelial cells
in T3 and both of the epithelial cells in T4. All nonepithelial
cells in both samples had the SMAD2 wild-type transcript.

Thr ee hundr ed twenty-two cells in T3 and 347 cells in T4
were identified with transcripts covering the GNAS R844C
variant position (Table 3 and Figure 3 F). One hundred
eight and 17 cells, respecti v ely, were classified as epithelial
cells and no R844C mutation was detected in any of the
GNAS transcripts. One of the 330 nonepithelial cells in T4
did have a transcript allele with the R844C transcript, and
may be a false positi v e based on the very low frequency of
this observation and the fact that the cell is not an epithe-
lial cell. Howe v er, visualization in IGV did show evidence of
a GNAS R844H m utation, w hich after genotyping was de-
tected in 59 of 126 epithelial cell transcripts in T3 and 11 of
23 epithelial cell transcripts in T4 (Figure 3 F). This finding
was notable since it was consistent between the two inde-
pendent samples for this patient and suggests a miscall in
the original clinical sequencing report. The mutation found
in long reads was 1 bp away from the clinical sequencing
call, and in the same codon. Ther e wer e no R844C muta-
tions found in T3, and one found in the TME in T4. In con-
trast, ∼50% of the epithelial cells in both T3 and T4 had
the R844H mutation per long-read sequencing, indicating
this is likely to be a true positi v e call. In nonepithelial cells,
the R844H mutation was detected in 3% and 2% of cells
in T3 and T4, respecti v el y, w hich is within the range of ex-
pected sequencing error, or may be misclassification of cell
type. 
SF3B1 transcripts were detected in 21 cells in T3 and 9
cells in T4, and no transcripts had the K700E mutation.
A loss-of-function variant in the tumor suppressor gene
SF3B1 would not be detectable by this method since no
mRNA would be transcribed, and so could account for this
finding. Alternati v ely, this gene may not be highly expressed
and ther efor e ther e is insufficient power for detection of mu-
tations. 

There was no evidence of muta tion-rela ted transcript in-
stability in either the GNAS R844H or KRAS G12D ep-
ithelial cell transcripts in T3 or T4. Transcripts harboring
the GNAS or KRAS mutations had stable gene expression
compared to their respecti v e wild-type transcripts (Figure
3 E and F). 

We applied the Longshot variant caller (see the ‘Mate-
rials and Methods’ section) as a means of cross-validating
variants (Supplementary Table S7). For the T3 metasta-
sis, the KRAS G12D mutation was not identified, but the
SMAD2 S464* truncation was called. Of note, Longshot
did not identify the GNAS R844C but did identify the
GNAS R844H mutation, consistent with our genotyping
analysis. For the T4 metastasis, the mutations were not de-
tected by Longshot due to low gene coverage. The Longshot
caller is not designed to identify variants present at low al-
lelic fractions. 

As targeted negati v e controls for T3 and T4, we geno-
typed the variant calls from other patient samples. Coverage
ranged from 0 to 22 transcripts per gene. For T3, there were
no long-read transcripts for APC , and no variants detected
in any of the other se v en genes (Supplementary Table S8).
For T4, one of the three APC transcripts had the variant,
no transcripts were found for POLD1 and no variants were
detected in the other six genes. 

Single-cell mutations from a multifocal B-cell lymphoma 

For patient 6408, we analyzed follicular lymphoma sam-
ples from two distinct nodal tumor sites (T5 and T6). This
type of lymphoma is deri v ed from germinal center B cells
and affects the lymphatic system, commonly enlarging the
affected lymph nodes. Most patients present with multi-
focal disease involving multiple lymph node regions. The
T5 tumor sample came from a right inguinal lymph node
in the groin and T6 tumor sample from a right cervical
lymph node located in the neck (Figure 4 A). The diagnostic
sequencing was conducted on a distinct, third lymphoma
site from the right axillary lymph node. Coding variants
wer e r eported in fiv e genes that included BCL2 , CREBBP ,
DNMT3A , EP300 and NF1 (Table 2 ). Only the BCL2 E29K
and CREBBP Y1482H variants are predicted to be delete-
rious. BCL2 , CREBBP and EP300 are known to be recur-
r ently alter ed in follicular lymphoma ( 30 ). 

For this analysis, the two lymphoma tumor samples un-
derwent both adapti v e long- and short-read scRNA-seq
(Figure 4 A and B, and Supplementary Table S1). Based on
the short-read sequencing, the T5 site had a total of 7748
cells with an average of 1468 genes per cell (Figure 4 C).
The T6 site had 11 865 cells with an average of 1438 genes
per cell (Figure 4 C). Tumor B cells were identified by re-
stricted expression of the imm uno globulin chains as well
as transcriptional phenotypes, as we hav e pre viously pub-
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Figure 4. Single-cell mutations from the T5 and T6 B-cell lymphomas. ( A ) Location of tumor samples for patient 6408 and location of biopsy taken for 
clinical diagnostic sequencing, plus mutations detected from targeted sequencing having sufficient long-read depth for analysis. ( B ) IGV screenshots for T5 
alignments, covering the length of CREBBP and BCL2 genes. ( C ) UMAP clustered plot showing integration of T5 and T6 samples. ( D ) UMAP clustered 
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lished ( 15 ). These tumor B cells clustered separately from
the macrophages, NK and other T cells (Figure 4 D). 

For adapti v e sampling of the lymphomas, the target list
consisted of 161 genes involved in blood-based malignan-
cies (Supplementary Table S2). We analyzed the adapti v e
long-read data for both tumor sites (Supplementary Table
S1). After matching the cell barcodes between the long- and
short-read data, the T5 tumor had 7732 cells, while the T6
tumor had 11 835 cells. Among the 161 targeted genes, we
identified expression of 154 and 155 genes for T5 and T6,
respecti v ely. The av erage number of target genes per cell for
the T5 right inguinal lymph node was 27 and for the T6
right cervical node was 22. Mutations in BCL2 , CREBBP ,
DNMT3A , EP300 and NF1 were detected among single
cells of these tumors (Table 3 and Figure 4 E and F). The
relati v e number of tumor cells with a mutation in each sam-
ple was similar across the different genes and across the two
sites. 

Mutations in BCL2 were the most prevalent among sin-
gle cells across both tumor sites (Table 3 and Figure 4 E).
BCL2 inhibits apoptosis and its ov ere xpression pre v ents
cancer cell death ( 30 ). BCL2 is typically ov ere xpressed in
follicular lymphoma due to a hallmark t(14;18)(q32;q21)
IGH / BCL2 tr anslocation. This tr anslocation involves the
BCL2 gene on chromosome 18 to the IGH (imm uno globu-
lin heavy chain gene) on chromosome 14, bringing BCL2
close to the potent enhancer sequences of the IGH gene
and driving BCL2 over expr ession ( 30 ). In the presence of
this translocation, BCL2 is also a target of somatic hyper-
m utation. This high m utation rate is a result of activation-
induced cytidine deaminase activity that alters cytosine in
DNA, resulting in mutation-inducing repair processes. The
cluster of BCL2 variants in both T5 and T6 occurred in a
hotspot and were all phased, meaning they wer e order ed in
tandem on the same molecule, as observed in another re-
cent study ( 30 ). This cluster thus r epr esents a somatic mu-
tation haplotype. Of the fiv e BCL2 variants reported from
the targeted sequencing of the third tumor site, our adap-
ti v e sampling results confirmed four, with between 87% and
94% of cells harboring each of the four mutations. The fifth
BCL2 variant was observed in only 1 of 844 cells spanning
that genomic location and is likely a false positi v e sequenc-
ing error. 

Ther e wer e a small number of cells classified as T cells or
macrophages in short-read anal ysis, w hich expressed BCL2
and had transcripts harboring one or more of the variants
(Table 3 ). This could be the result of cell type misclassifica-
tion, an error in the barcode matching process, library arti-
facts or sequencing error. For barcode matching, errors be-
tween short and long reads may be possible since an edit dis-
tance of 2 between short- and long-r ead bar codes is allowed
due to the nanopore sequencing error rate. Manual exami-
nation of the six cells in T5 with S116F variant transcripts
showed that one cell was a misclassified B cell, and four of
the other cells had long-read transcripts that were library
artifacts. The BCL2 transcripts from these four cells pre-
sented as a conca tena tion of transcripts from two different
cells but were not detected as doublets by DoubletFinder.
No determination could be made regarding the other cell
that expressed T-cell canonical markers and could be a false
positi v e sequencing error. 
In the T5 tumor, a CREBBP transcript was detected in
112 cells (Table 3 and Figure 4 F). The Y1482H variant was
found among 37 of 96 tumor B cells and in 1 of 16 cells
not assigned to the tumor cell type. The EP300 S958G,
DNMT3A E30A and NF1 I2681V variants were found at
between 31% and 53% frequency among the tumor B cells
(Table 3 ). As noted, the T6 tumor had a variant pattern like
the T5 tumor albeit with fewer cells, and in general a sim-
ilar or slightly lower percentage of mutation-bearing cells
(Table 3 ). 

There was no evidence of muta tion-rela ted transcript in-
stability in CREBBP Y1482H B-cell transcripts in T5 or
T6. Transcripts harboring the CREBBP variant had stable
gene expr ession compar ed to the wild-type transcript (Fig-
ure 4 E). BCL2 gene expression in tumor B cells was mod-
erately higher in transcripts harboring the S116F variant
compared to the wild-type transcript, with P -value = 0.011
using the Welch two-sample t -test (Figure 4 F). 

We used Longshot to cross-validate variants from the
long-read data. Four of the fiv e BCL2 variants were called
in the T5 lesion, as well as the variants in DNMT3A ,
CREBBP , NF1 and EP300 . Read depth at the fifth BCL2
variant position was high as with the other four variants.
Howe v er, there was no variant present at this position. Since
the diagnostic sequencing was done on a third lesion, this
suggests that the third lesion arose later than T5 and T6 and
acquired an additional variant in the hypermutated BCL2
r egion. In the r egion between the first and fourth BCL2 vari-
ants, three other variants were called by Longshot and sup-
ported by visual inspection of the reads (Figure 5 A). This
result is consistent with somatic hypermutation e v ents in
BCL2 . The positi v e and negati v e calls for the T6 diagnostic
variants were identical to T5: four of the fiv e BCL2 variants
were called, plus the variants in in DNMT3A , CREBBP ,
NF1 and EP300 (Table 3 ). In contrast to T5, only two of
the three additional BCL2 variants were found. The vari-
ant at chr18:63318573 that occurs at ∼50% frequency in T5
was not present in T6, suggesting that the T6 lesion arose
prior to T5. 

As targeted negati v e controls for T5 and T6, we geno-
typed the variant calls from other patient samples. There
were no transcripts for APC , KMT2D , POLD1 or SMAD2
in either sample. Across both samples, there were 386
SF3B1 transcripts, with 1 (0.3%) harboring the variant, and
2250 KRAS transcripts, with 5 (0.2%) harboring the vari-
ant. GNAS was highly expressed in both samples with vari-
ant transcripts occurring at a frequency between 0.9% and
1.4% (Supplementary Table S8), which is consistent with ex-
pected false positi v e rate due to sequencing error. 

Identification of a translocation among single cells in lym-
phoma 

Finally, we used the cuteSV program to call structural vari-
ants from T5 and T6 ( 22 ), since a hallmark IGH / BCL2
translocation is frequently found in follicular lymphoma.
An IGH / BCL2 rearrangement was identified in both the
T5 and T6 tumors and shared the same breakpoints in
both (Figure 5 B). The breakpoints were in IGH-D2 and
∼5 kb downstream from BCL2 3 

′ UTR, both typical for
this translocation ( 31 ). We determined that multiple long
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eads supported the rearrangement. Interestingly, the mu- 
ated BCL2 allele was more highly expressed than the wild- 
ype allele, which is consistent with the IGH:BCL2 translo- 
ation dri ving ov ere xpression of this gene. This result rep- 
esents the first demonstration where single-cell sequencing 

e v eals the presence of a rearranged chimeric transcript. 

ISCUSSION 

his proof-of-concept study demonstrates a new ap- 
roach for single-cell identification of cancer mutations. 
his method integrates nanopore adapti v e sequencing and 

cRNA-seq in order to identify cell type-specific somatic 
 utations. With the ada pti v e sampling feature of Oxfor d 

anopore’s sequencer, one selects specific target cDNAs, 
eri v ed from mRNAs, based on a list of gene coordinates. 
he most e xtensi v e gene list in our study consisted of 529
enes. Adapti v e sampling enabled these targets to be se- 
uenced with an enriched number of reads compared to 

he remainder of the cDNA population. The nanopore long 

eads cover the entire cDN A molecule, w hich enables com- 
rehensi v e determination of coding mutations present in 

he mRNA sequence. The same single-cell cDNA library 

s also subjected to conventional short-read sequencing, 
hich provides the transcriptome features of the same cells. 
y matching cell barcodes, the long- and short-read data 

re integrated, thus providing both full-length mRNA se- 
uence features and single-cell gene transcriptomes. 
We tested this method on single-cell cDNA libraries ob- 

ained from a cancer cell line and tumor biopsies. For the Ju- 
kat cell line, our approach enabled direct identification of 
RISPR edits, allowing screening for CRISPR genotypes 
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occurring within coding regions, as well as transcript iso-
form changes within noncoding regions. For tumor biop-
sies, previous diagnostic sequencing of the tumor samples
identified substitution variants in coding regions of cancer-
associated genes. Our method successfully detected nearly
all of these coding variants in the single cells from the same
samples. We also identified a translocation resulting in a
chimeric transcript in two tumor sites from a single patient,
highlighting the potential of our approach to identify gene
chimeras resulting from rearrangements. 

One useful aspect of integrating long-read mutation call-
ing with conventional short-read scRNA-seq is the po-
tential improvement in calling cell types. For example, in
the appendiceal cancers, we identified somatic mutations
among cells that did not fall within the classified epithelial
clusters. Howe v er, these mutation-bearing cells were likely
to be cancer epithelial cells. Ther efor e, integrating long- and
short-read scRNA-seq with the addition of somatic variants
may improve classification of certain cell types in cancer. 

Targeted scRNA-seq with adapti v e sampling offers sev-
eral advantages over whole transcriptome sequencing.
First, it is more cost-effecti v e while providing higher read
cover age. Second, the simplified libr ary prepar ation work-
flow eliminates the need for prior enrichment steps as the
cDNA molecules are selected for sequencing based on their
sequence properties. Furthermore, this method does not
r equir e cDNA fragmentation since there is no inherent
limit on the length of the molecule being sequenced. For
CRISPR edits, the direct detection of genotypes is advanta-
geous since the genotype resulting from CRISPR engineer-
ing in a single cell can vary: cells may not be edited at all,
or there may be se v eral potential genotypes resulting from
the edit. In contrast to other methods that rely on the pres-
ence of the single-guide RNA sequence in a cell to infer
CRISPR-induced variants, this method detects the actual
resulting genotype. As CRISPR is increasingly used in var-
ious applications, the direct genotyping among single cells
offered by our approach may prove valuable. 

This study identified specific issues of adapti v e sampling
for identifying transcript-based mutations with scRNA-seq.
Because the sampling depends on the intrinsic expression
le v els of a gi v en mRNA, transcripts with low expression
provide fewer molecules for sequencing. When analyzing
single cells, the transcript yield is alr eady low. Ther efor e,
some transcripts with low expression are missed, which re-
duces their single-cell r epr esentation and leads to a loss of
sensitivity in detecting mutations in these low-abundance
transcripts. One approach to overcome this limitation in-
volves enriching and amplifying the target genes from a
single-cell cDNA library. Our future work will involve inte-
grating adapti v e nanopore sampling and single cDNA tar-
geted amplification. 

Additionally, since this method relies on sequenc-
ing mRNA transcripts, it cannot directly detect loss-of-
function variants that trigger nonsense-mediated decay
(NMD), such as certain frameshift or nonsense variants. In-
ferring NMD based on e xpression le v el is also challenging
due to the inherently variab le e xpression le v el across tran-
scripts. Ther efor e, short-r ead analysis comparing the gene
e xpression le v el of samples with known mutations to those
with wild-type transcript sequences will generally be a more
effecti v e way to infer the presence of NMD in modified
transcripts. 

Ther e ar e man y potential applications f or this approach.
For example, one could identify the specific set of mutations
that define the subclonal populations of a tumor. This type
of analysis may prove useful in the study of other diseases
beyond cancer. For example, clonal hematopoiesis of inde-
terminate potential involves hematopoietic stem cells that
have genetically distinct subpopulations defined by the pres-
ence of somatic mutations. This approach provides a way
to determine which cell types account for mutations with
low allelic fractions that were identified with bulk genomic
DNA sequencing. As we demonstrated, this approach can
also identify gene fusions and may provide a new way of
screening cancers for rearrangements. As we have described
in our previous work ( 6 ), targeted sequencing of specific
cDNAs provides detailed information about transcript iso-
forms that play a key role in regulating cell terminal differ-
entiation. Thus, one could have integrated long- and short-
read analysis to define the associations between alternati v e
isoforms and specific cell types. 

In summary, our study has introduced a powerful single-
cell sequencing and analysis approach that enables the iden-
tifica tion of soma tic muta tions in mRNA coding regions
and their association with specific cell types. Our method
employs nanopore adapti v e sampling of single-cell cDNA
libraries for the detection of CRISPR edits, gene rearrange-
ments and somatic mutations with high accuracy and reso-
lution. By combining the genotype information with single-
cell gene expression data, we can pinpoint which cells and
cell types harbor these genetic alterations. This method has
broad a pplications particularl y in the identification of spe-
cific subclonal populations of tumors and in other diseases
where clonal subpopulations are involved. Our approach
opens new avenues for exploring the complex interplay be-
tween genetic alterations and cellular phenotypes at the
single-cell le v el, providing deeper insights into the funda-
mental mechanisms underlying cellular function and dis-
ease pathogenesis. 

DA T A A V AILABILITY 

The sequencing data for the Jurkat cell line have
been deposited in the NCBI Sequence Read Archi v e
(SRA) database under the accession number PR-
JNA708300 ( 23 ). Tumor sequencing data is available from
the NCBI dbGaP (phs002188.v3 (pending release) and
phs001818.v4). Scripts for analysis are publicly available
on GitHub ( https://github.com/sgtc-stanford/scCRISPR )
( 24 ) and Zenodo ( https://zenodo.org/badge/latestdoi/
365008149 ) ( 25 ) under MIT license. 
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