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Cerebral organoids can be used to gain insights into cell type specific processes perturbed by

genetic variants associated with neuropsychiatric disorders. However, robust and scalable

phenotyping of organoids remains challenging. Here, we perform RNA sequencing on

71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework

(Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to

16p11.2 deletions and 15q11–13 duplications, two loci associated with autism spectrum dis-

order, to identify immature neurons and intermediate progenitor cells as critical cell types for

16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our

work presents a quantitative phenotyping framework to integrate multi-transcriptomic

datasets for the identification of cell types and cell type-specific co-expressed driver genes

associated with neuropsychiatric disorders.
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Recent advances in cerebral organoid models differentiated
from human induced pluripotent stem cells (iPSCs)
demonstrated that these in-vitro systems comprise of many

cell types found in the developing human fetal brain1–4, and show
great promise as a system for identifying cell types and cell-type-
specific molecular processes that are perturbed in neurodeve-
lopmental and neuropsychiatric disorders such as microcephaly
and autism spectrum disorders (ASD)2,5,6. Identifying the cell
types and cell type-specific co-expressed genes that are perturbed
in disease-associated loci allows us to perform direct experiments
on relevant cell types to understand molecular processes that are
important in disease.

There are key challenges to the application of cerebral orga-
noids for identifying cell types and cell type-specific processes
that are perturbed in complex neuropsychiatric disorders. Prior
literature has demonstrated that the cerebral organoids are
comprised of many different cell types found in the human brain,
and individual organoids can be heterogeneous in their cell type
compositions detected using single-cell RNA sequencing (scRNA-
seq)1. This poses additional challenges for detecting robust cel-
lular and molecular differences between cerebral organoids dif-
ferentiated from individuals with different genetic backgrounds.
To address this key challenge, we differentiated a large number of
1420 organoids from 25 individuals with diverse backgrounds
(71 samples with 20 organoids per sample), to systematically
quantify and identify the inherent variability in whole-
transcriptome bulk RNA sequence (bRNA-seq) data from the
organoids.

Another challenge is the robust detection of cell type-specific
co-expressed genes that are perturbed in donor-derived cerebral
organoids. One approach is to use scRNA-seq to perform
unbiased discovery of critical cell types and cell type-specific co-
expressed genes associated with diseases1,7–14. However, current
scRNA-seq technologies capture only 10–20% of all transcripts15,
and cell type-specific co-expression of many disease-associated
genes might not be detectable with scRNA-seq. For instance,
within the 16p11.2 locus associated with ASD, the expression for
only 2 of the 29 genes in the locus (QPRT [NCBI Gene ID: 23475]
and ALDOA [NCBI Gene ID: 226]) were detected among the 10
major cell type clusters identified using scRNA-seq on cerebral
organoids1.

Here we developed a quantitative phenotyping framework
(termed Orgo-Seq, Fig. 1), which allows researchers to identify
cell type-specific co-expressed driver genes by integrating bRNA-
seq data from donor-derived organoids with large-scale scRNA-
seq data from brain organoids and fetal brains. This allows us to
overcome the limitations with current scRNA-seq technologies,
and at the same time, leverage on the strengths of large-scale
scRNA-seq datasets that have been previously generated or will be
generated in the future for unbiased discoveries of cell types and
cell type-specific co-expressed driver genes.

We applied Orgo-Seq for two ASD-associated copy number
variants (CNVs) in the 16p11.2 and 15q11–13 loci16–18, by
integrating three sets of transcriptomics datasets: bRNA-seq data
that we generated from donor-derived cerebral organoids, pre-
viously published scRNA-seq data from cerebral organoids and
fetal brains1,13,19,20, and previously published bRNA-seq data
from human post-mortem brain samples in the BrainSpan
Project21. Using an initial scRNA-seq dataset from 66,889 single
cells1, we initially observed that neuroepithelial cells are per-
turbed in donor-derived cerebral organoids from individuals with
deletions in 16p11.2 compared to individuals without the dele-
tions, and that three of the genes in the locus (YPEL3 [NCBI
Gene ID: 83719], KCTD13 [NCBI Gene ID: 253980] and INO80E
[NCBI Gene ID: 283899]) are likely to be cell type-specific can-
didate driver genes functioning in neuroepithelial cells.

Using a larger scRNA-seq dataset comprising of 190,022 cells19

from brain organoids differentiated using eight different proto-
cols and fetal brains1,7–13,22, and two neurodevelopmental maps
constructed from scRNA-seq on brain organoids and fetal brains
to fine-map the critical cell types13,20, we replicated the critical
cell type that was initially discovered, and were able to pinpoint
the identity of the critical cell type more precisely during neu-
rodevelopment to immature neurons and intermediate progenitor
cells for the 16p11.2 locus. We also replicated our initial results
that YPEL3, KCTD13, and INO80E are cell type-specific co-
expressed driver genes for the 16p11.2 locus. Our work presents a
quantitative framework to identify cell types and cell type-specific
driver genes in a complex disease by integrating bRNA-seq and
scRNA-seq from donor-derived cerebral organoids and human
post-mortem brains using Orgo-Seq.

Results
Low variability in bRNA-seq data from pooling individual
cerebral organoids. It has been previously reported that one key
challenge impeding the use of cerebral organoids as a system is the
high variability when comparing single cells from the organoids or
single organoids from a few donors1. To address these issues, we
obtained iPSCs and differentiated 1420 cerebral organoids from 25
individuals: 12 control donors (termed “controls”) and 13 donors
with 16p11.2 deletions or 15q11–13 duplications (termed “cases”),
shown in Table 1. DNA was extracted from the iPSCs and CNV
detection was performed on iPSCs from all donors using array
comparative genomic hybridization or aCGH; whole-exome
sequencing to detect smaller exonic CNVs; and whole-genome
sequencing to detect the breakpoints of the CNVs (Supplementary
Data 1–4). All controls were confirmed not to harbor any CNVs
within the two ASD-associated loci in 16p11.2 and 15q11–13.

We differentiated cerebral organoids using the 25 iPSCs for
46 days, by adapting a previously described method23 (Table 1,
Supplementary Fig. 1), and performed RNA sequencing on 1–3
replicates for each donor, resulting in a total of 71 samples (Fig. 2,
Supplementary Data 1). We compared the standard deviations in
gene expression between replicates for each individual (intra-
individual), as well as across organoids differentiated from
different individuals (inter-individual). We found that there were
860 genes (7.6% of all expressed genes) that showed high intra-
individual variability, and 869 genes (7.7% of all expressed genes)
that showed high inter-individual variability (Supplementary
Figs. 2 and 3A, B). These genes with high intra-individual or
inter-individual variability were enriched in processes involved in
nervous system development, neurogenesis, and cell differentia-
tion (Supplementary Data 5), which might contribute to the
inherent variability in spontaneous differentiation of these
cerebral organoids. These highly variable genes were not enriched
for genes with genetic or genomic associations with ASD24,25. For
our downstream analyses, we removed these highly variable genes
and focused on a smaller, robust group of genes with low
technical variability in expression, and there are 9978 such unique
genes that were detected in the organoids.

We found that there were low variability and high mean intra-
individual correlations r2 of 0.97 and mean inter-individual
correlations r2 of 0.94 in bRNA-seq data generated from the
cerebral organoids using our approach (Supplementary
Fig. 3C–H). Similar to previous reports5,26, we observed
significantly higher intra-individual correlations compared to
inter-individual correlations (Wilcoxon P= 1.03 × 10−7), con-
firming that bRNA-seq data from the cerebral organoids can
reflect biological differences between individuals that are not due
to technical differences between replicates from the same
individual.
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We used variancePartition27 and principal components
analyses to identify the sources of variation in the RNA sequence
data from the organoids (Supplementary Fig. 4A, B), and found
that most of the variation in gene expression (88%) could be
accounted for by the first principal component (PC1) alone
(Supplementary Fig. 5A–G). We further observed that age, the
origin of the sample, and the type of reprogramming are
significantly correlated with PC1 alone, but not with the second
or third principal component (Supplementary Fig. 6).

Transcriptome data in cerebral organoids accurately reflect
copy number changes. It was previously reported that bRNA-seq
data from the cerebral organoids are highly correlated with bRNA-
seq data from fetal brains5, and we similarly observed high corre-
lations between the bRNA-seq data from the cerebral organoids and
fetal brains from the BrainSpan Project (Supplementary Fig. 7). In
the absence of fetal brains with 16p11.2 deletions, we can effectively
use cerebral organoids as a model system for identifying mutation-
specific transcriptomic processes that are important in human
neurodevelopmental diseases. The 16p11.2 locus encompasses 29
genes, and 22 of these genes are expressed in the organoids. In our
study, there are three individuals with ASD and 16p11.2 deletions

(whom we termed as “probands”), six individuals with 16p11.2
deletions but were not clinically diagnosed with ASD (whom we
termed as “resilient” individuals), and 12 control unaffected indi-
viduals without 16p11.2 deletions (Table 1). We further checked the
first two principal components, but did not observe major stratifi-
cation between the cases and controls (Supplementary Fig. 8).

We performed three sets of differential expression analyses on
RNA sequence data from cerebral organoids differentiated from
these individuals. SetA comparing all nine individuals with
16p11.2 deletions with 12 control individuals without 16p11.2
deletions; SetP comparing the three probands with ASD and
16p11.2 deletions with 12 control individuals without 16p11.2
deletions; and SetD analyses comparing only the individuals with
16p11.2 deletions: three probands with 16p11.2 deletions versus
six resilient individuals with 16p11.2 deletions. We observed 2681
genes with FDR ≤ 0.05 in the SetA comparison, and 1853 genes
with FDR ≤ 0.05 in the SetP comparison.

If RNA sequence data from the cerebral organoids can
accurately reflect the underlying genetic mutations in the DNA
(hemizygous deletions in the 16p11.2 locus or duplications in the
15q11–13 locus), then we should be able to reproduce the
observation in peripheral tissue and mouse cortex that many of
the genes in the 16p11.2 locus are down-regulated with fold

Fig. 1 Orgo-Seq framework to identify cell type-specific co-expressed driver genes. A Figure illustrating the strengths and weaknesses of bRNA-seq and
scRNA-seq, and what Orgo-Seq can achieve by integrating both types of datasets. B A schematic of the Orgo-Seq framework to integrate bRNA-seq data
from patient-derived brain organoids with scRNA-seq data from control brain organoids, for the discovery of critical cell types and cell type-specific
driver genes.

Table 1 Details of the iPSC lines used in our study.

Details of iPSC lines Number of iPSC lines

Source/Biorepository Personal Genome Project (1), Coriell (3), ATCC (7), RUDCR (9), Harvard Stem Cell Institute (5)
Ethnicity of donors White (18), Black (3), Asian (2), Hispanic (2)
Biological sex of donors Male (13), Female (12)
Diagnosis of ASD Yes (7), No (18)
Tissue of origin Fibroblast (12), Peripheral Vein (1), Bone Marrow (7), Peripheral Blood Mononuclear Cells (5)
Type of reprogramming Sendai (13), Episomal (12)
CNVs None (12), 16p11.2 deletions (9), 15q11–13 duplications (4)

The table shows the details and numbers of the iPSC lines (1 clone from each line) in our study.
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changes of ~0.5 in the cases compared to controls28. For the SetA
comparison, 19 of the 22 genes in the 16p11.2 locus (excluding
SULT1A4 [NCBI Gene ID: 445329], SULT1A3 [NCBI Gene ID:
6818], and QPRT [NCBI Gene ID: 23475]) are significantly
differentially expressed with FDR ≤ 0.05. The average fold-change
for the 19 significantly differentially expressed genes in the 16p11.2
locus in the SetA comparison is 0.73. Seventeen of these 19 genes
are also significantly differentially expressed in the smaller SetP
comparison, with an average fold-change of 0.64. We did not detect
a second genetic factor outside the 16p11.2 locus that contributes to
increased risk for ASD, in addition to the 16p11.2 deletion
background. Larger numbers of individuals with 16p11.2 deletions
(with or without clinical ASD diagnoses) will be needed to identify

a second genetic hit with small effects, or it might be possible that
the second hit is driven by non-genetic factors or by genes that are
not expressed in cerebral organoids. However, we can exclude the
hypothesis that there is a second genetic hit with large effects given
our current sample sizes (Supplementary Data 6).

Out of the 25 individuals in our study, there are four
individuals with ASD and 15q11–13 duplications, and 12 control
unaffected individuals without 15q11–13 duplications (Table 1),
and we similarly performed whole-transcriptome RNA sequen-
cing on cerebral organoids differentiated from these individuals
in triplicates (Supplementary Data 1). There are 16 genes that are
significantly differentially expressed in the individuals with ASD
and 15q11–13 duplications versus unaffected control individuals

Fig. 2 Expression of the gene products in the 16p11.2 and 15q11-13 loci. All data were analyzed from 71 bRNA-seq samples over 25 donors. A Heatmap
representation of the normalized expression (FPKM) for all samples across the 22 genes in the 16p11.2 locus. The fold change is represented as a green-
yellow heatmap. An asterisk on the “Fold Change” heatmap indicates significant differential expression of the gene with FDR≤ 0.05. B Heatmap
representation of the normalized expression (FPKM) for all samples across the 13 genes in the 15q11–13 locus. The fold change is represented as a green-
yellow heatmap. An asterisk on the “Fold Change” heatmap indicates significant differential expression of the gene with FDR≤ 0.05.
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with FDR ≤ 0.05. Out of the 16 genes, five of them are found in
the 15q11–13 locus (HERC2 [NCBI Gene ID: 8924], TUBGCP5
[NCBI Gene ID: 114791], CYFIP1 [NCBI Gene ID: 23191],
NIPA2 [NCBI Gene ID: 81614] and UBE3A [NCBI Gene ID:
7337]). The average fold-change for the 5 genes in the 15q11–13
locus that are significantly differentially expressed is 1.48, which
closely reflects the 1.5-fold change in copy number across the
locus, suggesting that the RNA sequence measurements are
robust and quantitative. We did not detect smaller duplications
that might encompass only a subset of these genes in the
15q11–13 locus for these individuals with ASD, using aCGH and
whole-exome sequencing (Supplementary Data 2, 3).

Data integration of bRNA-seq data from donor-derived cere-
bral organoids and scRNA-seq data from control organoids
identifies critical cell types for 16p11.2 deletions and 15q11–13
duplications. Deletions in 16p11.2 are significantly associated
with ASD but not with schizophrenia, whereas duplications in
16p11.2 are associated with both ASD and schizophrenia6,29,30.
Clinical studies have shown that individuals with 16p11.2 dele-
tions have increased brain sizes, and individuals with duplications
in the same locus have decreased brain sizes29,31,32. Mouse
models with 16p11.2 deletions or duplications similarly show an
increase or reduction in brain sizes and in the proportions of
neural progenitor cells33–35. A systematic perturbation of all
genes in the 16p11.2 locus using head sizes as the phenotypic
readout in zebrafish identified KCTD13 as the only driver gene in
the locus modulating the proportion of neural progenitor cells36.
However, recent studies in mice and zebrafish with deleted
KCTD13 did not observe increased brain sizes or neurogenesis in
these mutant animal models37,38. In the absence of human fetal
brains with 16p11.2 deletions that could be used to resolve these
conflicting results from animal models39, the use of donor-
derived cerebral organoids could be good models to provide
supporting results.

To accomplish this, we would have to identify which cell-type-
specific co-expressed gene(s) from the donor-derived cerebral
organoids are misregulating the proportions of critical cell types
in cases versus controls (Fig. 1B). We developed a two-step
solution where we first identified the critical cell types that were
disproportionately affected in cases versus controls using bRNA-
seq data from the donor-derived cerebral organoids, and a second
step where we identified which of the genes in the CNV loci were
disproportionately misregulating cell type-specific expression of
genes outside the CNV loci between cases versus controls.

There are two general approaches to identifying critical cell
types from bRNA-seq data: deconvolution methods such as
CIBERSORT and CIBERSORTx, or cell type enrichment methods
such as xCell40,41. Previously, when using bRNA-seq data from
pure cell types as a reference panel, it was shown that a cell type
enrichment approach (xCell) outperforms a deconvolution
approach (CIBERSORT)40. We sought to develop a cell type
enrichment-based approach for bRNA-seq data from cerebral
organoids, by using scRNA-seq data from brain organoids and
fetal brains as a reference panel. We developed a statistic termed
CellScore, which is the difference between the weighted sum of all
cell-type-specific genes and the weighted sum of all non-cell type-
specific genes for each cluster of cell types, and the weights are the
−log10(P-values) from our differential expression results in
cerebral organoids. This allows us to identify transcriptomic
signatures arising from the cell type-specific genes for each
cluster, rather than the non-cell type-specific genes contributing
to multiple clusters. We evaluated the significance of our observed
CellScores using permutations (Supplementary Fig. 9).

We obtained scRNA-seq data from a publication by Quadrato
et al. that found 10 major cell type clusters (c1–10) in 3-month-old
and 6-month-old cerebral organoids from a control individual1. We
separated the lists of genes for each cell-type clusters into a set of cell
type-specific genes (ranging from 47 to 266 genes; Supplementary
Data 7) that uniquely identifies each cluster of cell types, and a set of
non-cell type-specific genes that are found in multiple clusters
(ranging from 12 to 49 genes; Supplementary Data 7). When we
calculated CellScores from the 16p11.2 SetA comparison, we found
that the cluster comprising of neuroepithelial cells (c9) and unknown
cluster (c6) were significantly perturbed (P(CellScore)= 1.4 × 10−3

and P(CellScore) < 1 × 10−6 respectively, Fig. 3A, Supplementary
Data 8).

A recent study by Tanaka et al. had re-analyzed 190,022 cells
from brain organoids differentiated using eight different proto-
cols and fetal brains1,7–13,22, and identified 24 cell type clusters19.
We systematically compared the percentage overlaps among
genes across the 24 cell type clusters to identify 11 unique clusters
(CC1–11; Supplementary Data 9). We calculated CellScores using
the 11 cell type clusters for 16p11.2, and found that there was
only the cell type cluster comprising of cortical excitatory neurons
(CC3) that had an FWER ≤ 0.05 (P(CellScore) < 1 × 10−6,
Fig. 3C). Interestingly, we did not observe any association for
16p11.2 with the neuroepithelial cell cluster (CC7) in the Tanaka
study19 (P(CellScore)= 0.04).

When we calculated CellScores from the 15q11–13 data using
the Quadrato and Tanaka datasets1,19, we found that there were
no clusters that were significantly perturbed with FWER ≤ 0.1
(Fig. 3C, D, Supplementary Data 8).

Comparison to isogenic 16p11.2-derived 2-dimensional models
show that 16p11.2 donor-derived cerebral organoids recapi-
tulate signatures in neural stem cells more closely than induced
neurons. We previously engineered reciprocal deletion and dupli-
cation of 16p11.2 in an isogenic human iPSC line by targeting the
flanking segmental duplications with CRISPR/Cas942. In an inde-
pendent and ongoing study of iPSC-derived neuronal lineage
models and comparisons to mouse tissues, neural stem cells (NSCs)
and NGN2-induced neurons (iNs) were derived from these isogenic
iPSCs. bRNA-seq was completed on the NSCs and iNs and used for
comparisons here. We observed that 9504 genes were expressed in
both the NSCs with 16p11.2 deletion and donor-derived cerebral
organoids (SetA), of which 93 of these genes (0.98%) were differ-
entially expressed with FDR ≤ 0.05 in both the NSCs and organoids,
after excluding the genes in the 16p11.2 locus. In contrast, we
observed that 9526 genes were expressed in both the iNs with
16p11.2 deletion and donor-derived cerebral organoids, out of
which, none of these genes were differentially expressed with
FDR ≤ 0.05 in both the iNs and organoids, after excluding the genes
in the 16p11.2 locus. We observed a similar enrichment of differ-
entially expressed genes between the donor-derived cerebral orga-
noids and NSCs with 16p11.2 duplication (OR= 10.4, 95%
CI= [5.6, 21.5], Fisher’s Exact Test P < 2.2 × 10−16), as well as
when using more stringent criteria.

These observations provide further evidence that the differen-
tially expressed genes from the patient-derived cerebral organoids
are significantly more similar to the differentially expressed genes
from the isogenic NSCs than the isogenic iNs with the same
16p11.2 deletion or duplication than by chance. Transcriptomic
alterations in cortical neural progenitor cells from donors with
16p11.2 deletions or duplications were also reported recently43.
However, it was also previously reported that there was no
significant difference in the proliferation of neural progenitor
cells from donors with 16p11.2 deletions43,44.
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Fig. 3 Prioritized critical cell types for the 16p11.2 and 15q11-13 loci. All data were analyzed from 71 bRNA-seq samples across 25 donors. A CellScore
results with one-sided tests for 16p11.2 (Quadrato dataset1); clusters with FWER≤ 0.1 in pink adjusted for multiple comparisons. B CellScore results with
one-sided tests for 16p11.2 (Tanaka dataset19); clusters with FWER≤ 0.1 in pink adjusted for multiple comparisons. C CellScore results with one-sided tests
for 15q11–13 (Quadrato dataset1). D CellScore results with one-sided tests for 15q11–13 (Tanaka dataset19). E Fine-mapping identities of critical cell types for
16p11.2 (Eze dataset20); sizes of the circles represent mean gene overlaps between cell type clusters. F Fine-mapping identities of critical cell types for
16p11.2 (Velasco dataset13); sizes of the circles represent mean gene overlaps between cell type clusters. G GeneScore results for 16p11.2 (Quadrato
dataset1). H GeneScore results for 16p11.2 (Tanaka dataset19).
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Fine-mapping of cell-type identities using large-scale neuro-
developmental maps point to the role of immature neurons
and intermediate progenitor cells for the 16p11.2 locus. To
ensure consistencies in assigning cell type identities across
different studies, and to fine-map the critical cell types more
precisely during neurodevelopment, we used two neurodeve-
lopmental maps that were reconstituted from scRNA-seq data
on brain organoids and fetal brains. The first neurodevelop-
mental map by Velasco et al. comprised of 12 cell types13, and
we calculated the percentage overlap among genes from each
cell type cluster reported by Quadrato et al. and Tanaka
et al.1,19 (Fig. 3E, Supplementary Data 10). We found that the
neuroepithelial cell cluster (c9) from the Quadrato study1

overlapped most closely with immature projection neurons
(mean overlap= 0.37%), and that the unknown cell type (c6)
from the Quadrato study1 overlapped most closely with outer
radial glia cells (mean overlap= 0.29%). The CC3 cluster from
the Tanaka study19 overlapped most closely with immature
projection neurons in the neurodevelopmental map
(mean overlap= 1.14%), similar to the c9 cluster from the
Quadrato study1.

We used a second neurodevelopmental map by Eze et al. that
comprised of six cell types20, and calculated the percentage
overlap among the genes from each cell type cluster reported by
the Quadrato and Tanaka studies1,19 (Fig. 3F, Supplementary
Data 10). We found that the c9 cluster from the Quadrato study1

overlapped most closely with the neuronal and intermediate
progenitor cell clusters (mean overlaps= 8.1% and 5.4%
respectively). Similarly, the CC3 cluster from the Tanaka study19

overlapped most closely with the neuronal and intermediate
progenitor cell clusters (mean overlaps= 19.8% and 11.1%
respectively). These results suggest that the critical cell types for
the 16p11.2 locus are likely to be immature neurons and
intermediate progenitor cells.

To evaluate the degree of independence among the genes in the
c9 cluster from the Quadrato study1 and the CC3 cluster from the
Tanaka study19, we calculated the correlations between the mean
overlaps across the two neurodevelopmental maps for both the c9
and CC3 clusters (Supplementary Data 11). We observed high
correlations between both the c9 and CC3 clusters using both
neurodevelopmental maps (r= 0.71, P= 9.1 × 10−3; r= 0.95,
P= 3.6 × 10−3). However, there were stronger correlations
between the CC3 and c5 clusters (r= 0.96, P= 8.7 × 10−7;
r= 0.98, P= 6.3 × 10−4), even though the c5 cluster was not
implicated as the critical cell type from the 16p11.2 donor-derived
organoids. This indicates that there is likely to be independence
among the genes implicating the c9 and CC3 clusters as critical
cell types in the 16p11.2 locus.

Data integration of bRNA-seq data from post-mortem brain
samples and scRNA-seq data from control cerebral organoids
to identify critical cell types. A prior publication had performed
RNA sequencing on post-mortem brain samples of the cortex
that were obtained from nine individuals with 15q11–13 dupli-
cations and 49 control individuals39. We calculated CellScores for
each of the 10 cell type clusters in the Quadrato study1 using the
differential expression results from the post-mortem brain sam-
ples, and calculated a weighted average P(CellScore) using the
results from the patient-derived cerebral organoids and post-
mortem brain samples with 15q11–13 duplications (Supplemen-
tary Data 12). Similar to our results from the patient-derived
cerebral organoids, there were no cell-type clusters identified
from the post-mortem brain samples that were significantly
perturbed.

Non-cell type-specific co-transcriptional network modeling
cannot prioritize driver genes in 16p11.2 and 15q11-13. These
ASD-associated CNVs are typically large and span across at least
10 genes. Similar to the identification of driver versus passenger
genes in cancers, it has been challenging to identify which of the
genes in these ASD-associated CNV loci are more likely to be
driver genes (genes whose expression would perturb the pro-
portions of the critical cell types). The prioritization of candidate
driver genes, or combinations of genes, is important for follow-up
studies, for instance, to create knockouts in animal models or
organoids for understanding the biological effects of knockouts in
these genes35.

In the 16p11.2 locus, a prominent study using zebrafish
identified KCTD13 as the key causal gene in the locus36, although
other studies have also shown strong evidence for other genes in
the locus such as TAOK2 [NCBI Gene ID: 9344] and MAPK3
[NCBI Gene ID: 5595]45–47. CNV analyses on the whole-exome
sequence data from one ASD proband with 16p11.2 deletion in
our study (14824.x13) found a smaller exonic deletion spanning
across exons in TAOK2 and an intron in BOLA2B [NCBI Gene
ID: 654483] (Supplementary Data 3).

In the 15q11–13 locus encompassing 11 genes, several studies
have identified UBE3A as the major causal gene for ASD48,49.
Although there is supporting evidence for other candidate causal
genes such as CYFIP1 and HERC2 in the locus50,51, there is also
evidence supporting that CYFIP1 is not a causal gene in the
locus52. Whole-exome sequencing on the iPSCs from one of the
ASD probands with 15q11–13 duplication (901) and her
unaffected mother (902) showed that they harbored a rare stop-
gained mutation (p.Q3441X) in HERC2, which is one of the genes
in the 15q11–13 locus.

One approach to identifying driver genes is to use scRNA-seq
for the identification of genes in the CNV loci that are
differentially co-expressed in the critical cell types associated
with 16p11.2 deletions or 15q11–13 duplications. However, the
expression for the genes in the 16p11.2 and 15q11–13 loci range
from the 1.8th to 91st percentiles detected from bRNA-seq
(Supplementary Data 13), and the expression for most of these
genes cannot be detected from sequencing a relatively small
number of cells using scRNA-seq1. We hypothesized that
integration of bRNA-seq data from the patient-derived cerebral
organoids with scRNA-seq data from brain organoids and fetal
brains can be harnessed to identify candidate driver genes in these
CNV loci by quantifying the effects of co-expressed gene
perturbations in the cerebral organoids. Our assumption is that
candidate driver genes are likely to result in more perturbations
in downstream genes than candidate passenger genes.

To identify downstream targets of each gene in an unbiased
manner, we first calculated the Pearson’s correlations for each of
the genes of interest in the CNV loci, with all genes detected from
RNA sequencing in the BrainSpan Project, and used the
correlations in expression from the BrainSpan Project as a proxy
for co-expression connectivity with our genes of interest. Next, we
developed a statistical method termed GeneScore, which is a
weighted sum of the co-expression connectivity, and the weights
are the -log10(P-values) from our differential expression analyses.
As a normalization factor, we used the genomic control, which is
the ratio of the observed median to the expected median test
statistic53.

Among the 22 genes in the 16p11.2 locus that are expressed in
cerebral organoids, 20 of these genes are also expressed in post-
mortem brain samples from the BrainSpan Project. When
we calculated GeneScoresall using all genes detected from the
16p11.2 organoid RNA sequence data, we found that we were
unable to prioritize any of the 11 genes in the 16p11.2 locus
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(P(GeneScoreall)= 0.71 to 0.97, Fig. 3G, Supplementary Data 14).
Among the 13 genes in the 15q11–13 locus that are expressed in
cerebral organoids, 11 of these genes are also expressed in post-
mortem brain samples from the BrainSpan Project. We
calculated GeneScoresall using all genes detected from the
15q11–13 organoid RNA sequence data, but were unable to
prioritize any of the 11 genes in the 15q11–13 locus
(P(GeneScoreall)= 0.38 to 0.39, Supplementary Data 14).

Cell type-specific co-transcriptional network modeling can
prioritize driver genes in 16p11.2 and 15q11-13. Given our
earlier observation that c9 cluster from the Quadrato study1 and
CC3 cluster from the Tanaka study19 are likely to be important
for the 16p11.2 locus, we hypothesized that we can obtain higher
sensitivity to detect candidate driver genes by focusing on cell-
type-specific signatures. When we adapted our GeneScore cal-
culations to include only cell-type-specific genes that were iden-
tified in the Quadrato c9 cluster1, we found that three genes
(YPEL3, KCTD13, and INO80E) were significantly prioritized as
high-confidence candidate driver genes with FDR ≤ 0.05 (Fig. 3G,
Supplementary Data 14, 15), and another four genes (FAM57B
[NCBI Gene ID: 83723], MAZ [NCBI Gene ID: 4150], TAOK2
and PAGR1 [NCBI Gene ID: 79447]) were prioritized as lower
confidence candidate driver genes with FDR ≤ 0.1 in c9. Inter-
estingly, we did not find any high-confidence candidate gene with
FDR ≤ 0.05 in c6, and only one lower confidence candidate gene
with FDR ≤ 0.1 in c6 (YPEL3).

To replicate our results for the 16p11.2 locus, we calculated
GeneScores using the cell-type-specific genes in the CC3 cluster
from the Tanaka study19. YPEL3 was similarly prioritized as a
high-confidence candidate driver gene at FDR ≤ 0.05, and both
KCTD13 and INO80E were prioritized at FDR ≤ 0.1 (Fig. 3H,
Supplementary Data 14, 15). Another gene (CDIPT [NCBI Gene
ID: 10423]) was also prioritized at FDR ≤ 0.1.

One of the three high-confidence driver genes in the c9 cluster
(KCTD13) was initially implicated as a gene that modulated brain
sizes in zebrafish36, but other studies using KCTD13-deficient
mice and zebrafish did not observe any differences in brain sizes
or neurogenesis37,38. Through the Orgo-Seq framework on
patient-derived cerebral organoids, we found that KCTD13 is
one of the three genes in the 16p11.2 locus that appears to
modulate the proportions of immature neurons in human
cerebral organoids. It was also reported that KCTD13-deficient
mice and zebrafish had increased levels of RHOA expression, and
that RhoA might be a therapeutic target for disorders associated
with KCTD13 deletion37. However, we did not observe any
difference in RHOA expression from the patient-derived cerebral
organoids (fold change= 1.01 for SetA, FDR= 0.21), suggesting
that 16p11.2 deletions in human cerebral organoids might be
perturbing a RhoA-independent pathway, or that RHOA
expression is perturbed only among a subset of cell types within
the cerebral organoids. Similarly, a recent publication reported
that inhibitors of RhoA signaling did not rescue deficiencies
observed in KCTD13-knockout neurons54.

Deletions in KCTD13 and 16p11.2 similarly impact the S-phase
of cell cycle division. Recent research reported that isogenic
KCTD13-deficient neural progenitor cells have a significantly
lower percentage of cells in the S-phase of the cell cycle compared
to wild-type neural progenitor cells54. To evaluate if the RNA
sequence data from our patient-derived cerebral organoids
comparing cases with 16p11.2 deletions versus controls without
the deletions (SetA) can similarly reflect an enrichment of tran-
scriptomic perturbations in the S-phase, we performed gene
ontology (GO) enrichment on the list of significantly

differentially expressed genes from SetA. Gene ontology enrich-
ment analyses of eight different GO terms involved in cell divi-
sion, proliferation, and replication showed that the differentially
expressed genes in SetA were most likely to be involved in cell
division (FDR= 2.3 × 10−10). There were three GO terms
involved in the cell cycle with FDR ≤ 0.05, and the differentially
expressed genes from the patient-derived cerebral organoids were
most significantly enriched for the G1/S transition of the mitotic
cell cycle term (FDR= 5.5 × 10−7) compared to the G2/M tran-
sition (FDR= 2.2 × 10−2) and the mitotic spindle assembly
checkpoint (FDR= 3.8 × 10−4). These results show that the
transcriptomic perturbations in the patient-derived cerebral
organoids with 16p11.2 deletions are similar to the transcriptomic
perturbations found in neural progenitor cells with KCTD13
deletions, and this provides another line of evidence that KCTD13
is one of the driver genes in the 16p11.2 locus.

Evidence for the role of multiple driver genes in the 16p11.2
locus. It has been of great interest if there is a single driver gene in
the 16p11.2 locus, as previously reported36, or if multiple driver
genes in the 16p11.2 locus can contribute to the ASD-associated
molecular signatures or phenotypes observed46,55. A previous
publication reported that 13 cell cycle-associated genes were
expressed at significantly lower levels in KCTD13-deficient NPCs
compared to wild-type NPCs. None of these 13 genes are
expressed at significantly lower levels in the patient organoids
with 16p11.2 deletions compared to control organoids. The
results show that KCTD13-deletions in human NPCs are insuf-
ficient to recapitulate the full transcriptomic perturbations
observed in the donor-derived organoids with 16p11.2 deletions.
Moreover, in addition to KCTD13, Orgo-Seq prioritizes two other
candidate driver genes in the 16p11.2 locus (YPEL3 and INO80E).

Discussion
To-date, there are over a hundred genes and loci associated with
complex neuropsychiatric disorders such as ASD25,56,57. Cerebral
organoids are an emerging human-derived model system for
identifying cell types and cell type-specific processes that are
perturbed by genetic variation associated with complex neuro-
developmental and neuropsychiatric disorders2,3,8,13,58,59. These
cerebral organoids comprise of many different cell types, so this
effectively allows us to test multiple hypotheses in multiple cell
types that were differentiated under the same conditions. It is
interesting to note that we were unable to prioritize any candidate
driver genes when using co-expression patterns of all genes whose
expressions were detected in the cerebral organoids, but we were
able to nominate genes that appeared to drive co-expression
patterns within specific cell types, emphasizing the power of
evaluating cell type specificity60. These approaches will become
increasingly valuable in cross-disorder studies where etiological
overlap has been identified, such as in neuropsychiatric disorders.
Cerebral organoids can be powerful model systems to evaluate
cell-type-specific commonalities in disease processes using a
genotype-driven approach.

A major strength of using donor-derived organoids for dis-
coveries is that the donor-derived organoids can model the
diverse genetic backgrounds found in humans, and overcome
some of the limitations faced with using isogenic iPSC derivatives
or inbred animal models. As such, it will be increasingly
important to develop technologies and methods that enable
unbiased high-throughput discoveries using donor-derived
organoids, to leverage on the unperturbed complexity of human
genetics for making important discoveries in disease biology61.

In our work, we describe the Orgo-Seq framework to allow the
identification of cell types and cell type-specific driver genes from
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donor-derived cerebral organoids that are important in ASD-
associated CNVs such as 16p11.2 and 15q11–13, by integrating
multi-transcriptomics data (bRNA-seq and scRNA-seq) from
multiple sources (cerebral organoids and post-mortem brains).
Orgo-Seq allows us to overcome technical limitations such as
capture efficiencies with detecting critical cell types and cell type-
specific driver genes using scRNA-seq alone, but leverage the
strengths of scRNA-seq such as the unbiased discovery of critical
cell types from a mixture of cell types. The framework can be
generalized for identifying specific types of neurons or glia cells62,
as well as cell type-specific driver genes for many other CNVs that
have been robustly associated with complex neurodevelopmental
and neuropsychiatric disorders16,63.

In addition, as high-quality scRNA-seq data are generated from
increasingly large numbers of single cells64, or scRNA-seq data
are generated using recent spatial-informative technologies65,66,
the Orgo-Seq framework allows us to integrate additional scRNA-
seq data with the bRNA-seq data that we had already generated
from our donor-derived organoids to make discoveries about cell
types and cell type-specific driver genes. The framework can also
be generalized for identifying cell types and cell type-specific
driver genes using bRNA-seq data that had been generated from
human post-mortem brains, without the need to perform scRNA-
seq directly on post-mortem brain samples with limited
availability.

In our current study, we found that we were able to observe
transcriptomic differences that can shed insights into the critical
cell types and cell type-specific processes that are important in
neurodevelopmental and neuropsychiatric disorders such as ASD
using early 46-day-old cerebral organoids. Prior work demon-
strated that even in these early 1–2 month-old cerebral organoids,
there are robust transcriptomic and cellular differences that could
be detected for neurodegenerative diseases such as Alzheimer’s
Disease67,68. It will be interesting use Orgo-Seq to integrate
additional scRNA-seq data from human post-mortem brain tis-
sue across different developmental timepoints to obtain insights
into the disease biology of neurodevelopmental and neurode-
generative diseases.

In summary, we have established a quantitative framework for
generating and validating hypotheses about cell type-specific
driver genes involved in complex neurological disorders using a
human-derived model system. As a future direction, it will be
exciting to explore the possibility of developing a precision
medicine framework to rapidly identify critical cell types and cell
type-specific driver genes in individual donors, and the frame-
work can complement DNA sequencing to enable the identifi-
cation of putative causal cell types and cell-type-specific genes
and gene networks in an individual patient for personalized
diagnostics.

Methods
Standard protocol approval. Research performed on samples and data of human
origin was conducted according to protocols approved by the institutional review
boards of Harvard Medical School and UMass Chan Medical School.

Donor samples. A total of 25 iPSCs (1 clone per iPSC) were obtained as from the
Personal Genome Project, Coriell Institute, ATCC, Harvard Stem Cell Institute and
Simons VIP collection43,44 (Table 1). Informed consent was obtained from all
donors through the various biobanks.

Simons VIP Collection:
http://simonsfoundation.s3.amazonaws.com/share/Policies_and_forms/2014/

svip/SVIPSampleConsent9-13-12.pdf
Coriell: https://www.coriell.org/0/sections/Support/NIGMS/Model.aspx?PgId=

216)
ATCC: https://www.atcc.org/support/order-support/permits-and-restrictions
Personal Genome Project: https://pgp.med.harvard.edu/how-it-works
All iPSCs and cerebral organoids were tested negative for mycoplasma using the

LookOut Mycoplasma PCR Detection kit (Sigma MP0035). All iPSCs except for

PGP1 were validated and characterized by Coriell Institute (karyotyping, embryoid
body formation and PluriTest), ATCC (karyotyping, antigen expression of SSEA4/
TRA-1–60 and SSEA1), Harvard Stem Cell Institute (karyotyping) or Simons VIP
collection (single nucleotide polymorphism microarray). We performed flow
cytometry (CytoFlex LX) to confirm that >90% of the iPSCs from each donor are
positive for TRA-1–60 (Novus Biologicals NB100-730F488). If we had observed
donor iPSCs with <90% TRA-1-60+ cells, we typically perform an anti-TRA-1–60
bead purification step (Miltenyi Biotec 130-100-832) before re-testing with flow
cytometry. It will be interesting to compare the results from multiple clones from
the same donors to understand the clonal variability across many donors5,43,44.

CNV analyses. iPSCs from all donors were passaged until they were confluent, and
2 million cells per donor were counted using an automated cell counter, and
washed twice in 1x DPBS, before flash freezing the cell pellets. The frozen cell
pellets were sent on dry ice to Cell Line Genetics, where genomic DNA was
extracted from the cells, and quality control was performed using Nanodrop,
Qubit, and agarose gel analyses. The Agilent 60k standard aCGH was used to
identify CNVs, and the CNVs were compared to the Database of Genomic Variants
CNV-DGV_hg19_May2016 (http://dgv.tcag.ca/dgv/app/home) to identify CNVs
that are common in the general population (Supplementary Data 2). All four
donors with 15q11–13 duplications were confirmed to harbor the duplications, all
nine donors with 16p11.2 deletions were confirmed to harbor the deletions, and all
12 control individuals were confirmed not to harbor any duplication in the
15q11–13 locus, or deletion in the 16p11.2 locus.

To identify smaller exonic CNVs, we further performed CNV analyses from
whole-exome sequence data on all donor iPSCs. DNA was extracted from iPSC cell
pellets for all donors using the standard protocol for AccuPrep Genomic DNA
Extraction Kit (Bioneer K-3032), and we evaluated the quantity and quality of the
extracted DNA samples using Nanodrop. 1μg of DNA per iPSC was sent on dry ice
to Macrogen, where quality control was performed using Quant-iT PicoGreen
dsDNA Assay Kit (Life Technologies P7589) with Victor X2 fluorometry, and the
Genomic DNA ScreenTape assay (Supplementary Data 1). The DNA Integrity
Number (DIN) threshold used for exome sequencing was 6, and the mean DIN
across all control samples was 8, the mean DIN across all samples with 15q11–13
duplications was 7.7 and the mean DIN across all samples with 16p11.2 deletions
was 7.9, but there were no significant differences between the DNA quality from
the iPSCs with 15q11–13 duplications versus the control iPSCs (two-sided
Wilcoxon P= 0.2), or the iPSCs with 16p11.2 deletions versus the control iPSCs
(two-sided Wilcoxon P= 0.62). The Agilent SureSelect V5-post kit was used for
capture and the library was sequenced using NovaSeq 6000 (150 paired end). CNV
calling on the exome sequence data was performed using CoNIFER v0.2.269, and all
exonic CNVs detected from the iPSCs are shown in Supplementary Data 3. Among
the cases with 15q11–13 duplications or 16p11.2 deletions, only a smaller deletion
in the 16p11.2 locus encompassing exons in TAOK2 and an intron in BOLA2B was
found detected from the whole-exome sequence data for proband 14824.x13.
Whole-genome sequencing on all samples with 16p11.2 deletions or 15q11–13
duplications was performed at Macrogen to detect the breakpoints of the deletions
or duplications, and CNV calling was performed using CNVnator v0.4.170

(Supplementary Data 4).

Cerebral organoid differentiation. We adapted our cerebral organoid differ-
entiation protocol according to a previously described protocol2 (Supplementary
Fig. 1A). For embryoid body formation, cells were counted using an automated cell
counter and 900,000 iPSCs were re-suspended in 15 ml of mTeSR medium
(Stemcell Technologies 85850) with 50 μM Y-27632 dihydrochloride monohydrate
(Santa Cruz sc-216067A), and 150 μl was seeded into individual wells of a 96-well
ultra-low attachment Corning plate (ThermoFisher CLS7007). On Day 6, 50 μl of
mTeSR medium with a single embryoid body was transferred to individual wells of
24-well ultra-low attachment Corning plates (ThermoFisher CLS3473) with 500 μl
of neural induction media per well. On Day 8, another 500 μl of neural induction
media was added to each well of the 24-well plates. On Day 10, a droplet com-
prising of 10 μl of neural induction media with an organoid was placed onto a
single dimple on Parafilm substrate, and 40 μl of Matrigel (Corning 354234) was
added to each organoid to encapsulate it. The Matrigel droplets were incubated at
37 °C for 15 min before they were scraped into single wells of the 24-well plates
using a cell scraper. One milliliter of differentiation media with 10% penicillin
streptomycin (ThermoFisher 15140122) per well was used to passage the organoids
every 2–4 days, and the plates of organoids were placed on an orbital shaker at
90 rpm in the incubator. A previous publication noted that a bioreactor-related
growth environment is a key factor in controlling cell-type identity from organoids
to organoids1, and similarly, we had observed batch effects in the rates of cell death
while differentiating multiple organoids in the same well of multi-well plates. To
reduce batch effects and biases in cell-type compositions that were previously
reported in individual organoids1, we differentiated individual organoids in single
wells of 24-well plates on an orbital shaker.

Cerebral organoid cryosection and immunostaining. Cerebral organoids were
rinsed twice with 1× DPBS, fixed in 4% paraformaldehyde at 4 °C for 30–60 min,
immersed in 30% sucrose overnight, and embedded in optimal cutting temperature
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compound, and 8-micron sections are collected with a cryostat. Cryosections of
fixed cerebral organoids were immunostained with antibodies against Sox2 (Santa
Cruz sc-17320, 1:200 dilution), Tbr2 (Abcam ab-23345, 1:200 dilution), Tuj1
(Covance MMS-435P, 1:1000 dilution) and Alexa Fluor secondary antibodies
(ThermoFisher).

RNA extraction, sequencing, alignment, and annotation. It was previously
noted that some cell types are found in only 32–53% of organoids, using scRNA-
seq1. In order to reduce variability across replicates, as well as to obtain sufficient
representation of all cell types, we pooled 20 separate organoids from different
wells and different plates, as one replicate. The organoids in each replicate were
pelleted at 1000 g for 1 min, and the supernatant was removed, before washing
twice in DPBS. RNA from 1 to 3 replicates was extracted for each individual
(Supplementary Data 1). The organoids were homogenized using mechanical
disruption in lysis buffer, and RNA extraction was performed using the PureLink
RNA Mini Kit (ThermoFisher 12183018 A), according to the manufacturer’s
protocol. RNA samples were treated with Ambion DNase I (ThermoFisher
AM2222) according to the manufacturer’s protocol, before they were frozen and
sent on dry ice to Macrogen.

At Macrogen, DNA quantity was measured using Quant-iT PicoGreen dsDNA
Assay Kit (Life Technologies P7589) with Victor X2 fluorometry, and RNA
quantity was measured using Quant-iT RiboGreen RNA Assay Kit (Life
Technologies R11490). The RNA Integrity Number (RIN) was measured using an
Agilent Technologies 2100 Bioanalyzer or TapeStation, and the RIN value
threshold used was 6 (Supplementary Data 1). Ribosomal RNA depletion using
TruSeq Stranded RNA with Ribo-Zero (Human) and paired-end 101 bp
sequencing with at least 30 million reads per sample was performed. Library size
checks were performed using an Agilent Technologies 2100 Bioanalyzer or
TapeStation, and quantification of the libraries was performed according to the
Illumina qPCR quantification guide. Reads were trimmed using Trimmomatic
v0.3271, then mapped to the hg19 human genome sequence using TopHat
v2.0.1372, and transcript assembly was performed using Cufflinks v2.2.173 to
calculate the fragments per kilobase per million reads (FPKM) values for each
transcript. In addition, the reads were mapped to the hg19 sequence using STAR
v2.4.0f174, and a single nucleotide variant calling on the aligned sequences was
performed using GATK v3.3-0 HaplotypeCaller75. Annotation for the single
nucleotide variants was performed using SeattleSeq Annotation 138 (https://snp.gs.
washington.edu/SeattleSeqAnnotation138/)76, and single nucleotide variants
detected from the RNA sequence data were compared between replicates from the
same individual and verified for concordance (r > 0.95), to ensure that there was no
sample mix-up.

Data processing and quality control. The mean RIN values for the control
samples, 15q11–13 samples, and 16p11.2 samples were 7.9, 8.1, and 8.2 respectively
(Supplementary Data 1). We performed a two-sided Wilcoxon rank-sum test
between the RIN values for the control samples versus the 15q11–13 samples, but
did not observe significant differences (P= 0.43). Similarly, we did not observe
significant differences between the RIN values for the control samples versus the
16p11.2 samples (P= 0.13). Neither did we observe significant differences between
the RIN values for the 15q11–13 samples versus the 16p11.2 samples (P= 0.47).

After selecting the transcript with the highest mean FPKM across all samples
(including all cases and controls) for each gene, there were 25,727 unique
transcripts or genes. We further performed quality control to remove genes that
were not expressed, or had high intra-individual or inter-individual variance.
Genes that were not expressed in the cerebral organoids (mean FPKMs across all
samples <2) were removed, resulting in a smaller set of 11,300 genes. We calculated
the mean FPKMs across all samples, including all case and control samples.
However, we used only the control samples for calculating the standard deviations
in gene expression, to preserve genes that truly contribute to biological variation
between the case and control organoids. Inverse rank-sum normalization was
performed on the expression values that were subsequently used in the downstream
analyses, as the normalization procedure reduces outlier expression values. To test
for Sendai virus clearance, we used a list of 10 most highly induced genes upon
Sendai virus infection reported by Mandhana and Horvath77, and found that none
of these 10 genes were expressed in our samples with mean FPKM ≥ 2.

With every technology or system, there are some measurements that will be
made below the background noise, or below the technical sensitivity of the system.
These measurements are usually not relied upon because there is low confidence in
the accuracy of the measurements. Similarly, we identified some genes from the
bRNA-seq data that are highly variable in their expression, and we cannot
confidently estimate the expression of these genes using our system. There were
860 genes with more than 2 standard deviations in any intra-individual variance
calculated across the control samples (Supplementary Figs. 2 and 3A,
Supplementary Data 5), and 869 genes with more than 1.5 standard deviations in
inter-individual variance calculated between the control samples (Supplementary
Figs. 2 and 3B, Supplementary Data 5), resulting in a total of 1322 unique outlier
genes. After removing all outlier genes with high variability, there are a total of
9978 unique genes. Pairwise Pearson’s correlations (r2) were performed for each
pair of replicates from an individual to calculate the intra-individual correlations,
and each pair of replicates from different individuals to calculate the inter-

individual correlations. Variability in cell-type compositions across our samples
was reduced by ensuring that only genes with low intra-individual or inter-
individual variability were included in our analyses.

Comparing BrainSpan samples with cerebral organoid samples. The BrainSpan
project (http://www.brainspan.org) provides a high-resolution map of 22,326 genes
detected using RNA sequencing on 578 post-mortem brain samples from various
brain regions in prenatal brains (8 pcw) to adult brains (40 years old)21. We
downloaded the “RNA-Seq Gencode v10 summarized to genes” dataset from the
BrainSpan Project for our analyses (http://www.brainspan.org/static/download.
html). For comparing RNA sequence data from prenatal brain samples from the
BrainSpan Project with RNA sequence data from cerebral organoids, we included
only brain regions where more than 50% of samples were available for those
regions (≥9 samples). We performed a two-sided Wilcoxon rank-sum test to
evaluate if the mean Pearson’s correlations between the organoids and prenatal
brain samples were significantly higher than the mean Pearson’s correlations
between the organoids and postnatal brain samples. We further calculated Pear-
son’s correlations for each pair of genes from the BrainSpan RNA sequence data.

We observed that after removing highly variable genes, the Pearson’s
correlations between RNA sequence data from the organoids with the 578 post-
mortem brain samples ranged from 0.23 to 0.74, using only one technical replicate
from each of the 12 control donors (Supplementary Fig. 7A). Prior to removing
highly variable genes, there was a larger variance (Supplementary Fig. 7B), that was
primarily driven by high outlier correlations in all replicates from two control
samples. For instance, the mean Pearson’s correlation between all organoid samples
excluding the outliers, with cerebellar cortex from a 16pcw fetal brain sample is
0.33. However, the mean Pearson’s correlations between the 16pcw fetal brain
sample with organoid samples are 0.84 and 0.92 with the outlier samples.

Comparisons of highly variable genes with genetic and genomic associations
for ASD. We compared the genes with high intra-individual or high inter-
individual variability with previously reported ASD-associated genes from two
publications24,25. There are 102 genes associated with ASD reported in Satterstrom
et al.25, and we found that five of these genes (4.9%) had high intra-individual
variability and five of them (4.9%) had high inter-individual variability in the bulk
RNA sequence data from the organoids. Similarly, for Gandal et al.24, there are
1,611 genes associated with ASD and 44 of these genes (2.7%) had high intra-
individual variability, and 61 of these genes (3.8%) had high inter-individual
variability in the bulk RNA sequence data from the organoids. These observations
show that the genes with high inter-individual or intra-individual variability in
RNA sequence data from the cerebral organoids are not enriched for genes with
genetic or genomic associations with ASD.

Comparisons of bulk RNA sequence data from cerebral organoids with post-
mortem brain samples from the BrainSpan Project. To determine how accu-
rately RNA sequence data from cerebral organoids can reflect RNA sequence data
from post-mortem human brain samples, we compared our data with data from
578 post-mortem brain samples in the BrainSpan Project21 (Supplementary
Fig. 6A–F). We observed a wide range of correlations (Pearson’s r2 from 0.21 to
0.82, Supplementary Fig. 6A). The mean correlations between the organoids with
individual prenatal brain samples (maximum r2 = 0.67, minimum r2 = 0.38) were
significantly higher than the mean correlations between the organoids with indi-
vidual postnatal brain samples (maximum r2 = 0.58, minimum r2 = 0.28), shown
in Supplementary Fig. 6B (two-sided Wilcoxon P < 2.2 × 10−16).

The highest mean correlations were with prenatal brain samples from regions
such as the hippocampus (r2 = 0.61), primary visual cortex (r2 = 0.61) and
amygdala (r2= 0.61), shown in Supplementary Fig. 6C. The lowest correlations
with prenatal brain samples were across brain regions such as the mediodorsal
thalamus (r2 = 0.49), ventrolateral prefrontal cortex (r2 = 0.56) and primary
somatosensory (r2 = 0.56). Similar observations were made when comparing RNA
sequence data from cerebral organoids prior to removing the outlier genes
(Supplementary Fig. 6D–F).

Differential gene expression analyses. We used variancePartition to identify
potential drivers of variation in the RNA sequence data from the organoids27, and
found that most of the variation in the data was unaccounted for by eight sample
variables: ethnicity, sex, age, the origin of sample used for iPSC reprogramming,
type of reprogramming, center that distributed the iPSC line, ASD diagnosis and
CNV genotype (Supplementary Fig. 4A). Gene ontology enrichment of the genes
with >99% variance explained by the residuals showed that these genes are enri-
ched in the mitochondrial envelope (Supplementary Fig. 4B).

Principal components analyses on all case and control samples showed that
most of the variance in gene expression (88%) could be accounted for by the first
principal component (PC1) alone (Supplementary Fig. 5A). We further observed
that age, the origin of sample, and the type of reprogramming are significantly
correlated with PC1 alone, but not with the second and third principal components
(Supplementary Fig. 6). These results suggest that PC1 is a surrogate variable for
age, the origin of sample, and type of reprogramming, and subsequently, we
included PC1 as a covariate in the differential expression analyses.
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We performed differential expression analyses using linear regression in R (lm
function), with PC1 as a covariate, and performed multiple hypotheses correction
using the Benjamini-Hochberg false discovery rate in R (p.adjust). To identify
the sources of variation in the expression data, we performed variancePartition
using the default parameters in the documentation27. Given the relatively small
number of samples used in our study78, and since PC1 captures 88% of the variance
in gene expression and is a surrogate factor for several sample variables, we
included only PC1 as a covariate in our linear regression analyses to identify
differentially expressed genes. We further plotted the first two principal
components between control individuals without deletions or duplications, and
individuals with 16p11.2 deletions or 15q11–13 duplications, but did not observe
major stratification between the cases and controls in the first two principal
components (Supplementary Fig. 8).

Given that the inter-individual correlations observed between samples from
different individuals are similarly high compared to the intra-individual
correlations observed between replicates from the same individual, and given the
relatively small number of individuals in our study that limits the number of
permutations, we performed linear regression using all samples as independent
samples. We had also performed bRNA-seq on 1–3 replicates for each individual,
to ensure that the results were not skewed by RNA sequence data from a few outlier
individuals.

Power calculations for the SetD analyses. To calculate the power for the SetD
analyses, we simulated a normal distribution with mean FPKM gene expression
values ranging from 2 to 5 in resilient individuals (n= 14 replicates), and mean
fold change in individuals with ASD ranging from 1.2–4 (n= 9 replicates), and
standard deviation= 18.5 (the observed mean), for 1000 times, and calculated the
percentage of times we observed an FWER of 0.05 or less in the simulated data.
FWER is defined using Bonferroni correction as 0.05/number of genes.

Comparison of differentially expressed genes from 16p11.2 deletion and
15q11-13 duplication cerebral organoids reveals 9 genes in common. We
compared the differentially expressed genes with FDR ≤ 0.05 between the 16p11.2
deletion SetA and 15q11–13 duplication results, and observed that there were eight
genes that were differentially expressed in the same direction for 16p11.2 deletions
(SetA) and 15q11–13 duplications (RPS14, PCDHGB6, TUBGCP5, CYFIP1,
ELAVL2, SNHG5, NAP1L5, and MYL6B, Supplementary Data 16). There was a
high correlation between the fold changes of these nine genes between 16p11.2
deletions and 15q11–13 duplications (Pearson’s r = 0.92, P= 0.0014).

Another gene product (HERC2) was also differentially expressed for 16p11.2
deletions (SetA) and 15q11–13 duplications but in opposite directions. HERC2 was
over-expressed in 15q11–13 duplications cases compared to controls (fold
change= 1.48), whereas HERC2 was under-expressed in 16p11.2 deletion cases
compared to controls (fold change= 0.9). Of the nine genes that were
differentially expressed, three of them (TUBGCP5, CYFIP1, and HERC2) were
found in the 15q11–13 locus. These results suggest that there are shared key genes
that are perturbed by 16p11.2 deletions and 15q11–13 duplications.

There were six genes that were differentially expressed in the same direction for
16p11.2 deletions (SetP) and 15q11–13 duplications (RPS14, PCDHGB6, ELAVL2,
SNHG5, CTNNA2, and NAP1L5, Supplementary Data 16). There was a moderate
correlation between the fold changes of these 6 genes between 16p11.2 deletions
(SetP) and 15q11–13 duplications (Pearson’s r= 0.73, P= 0.064).

HERC2 was also differentially expressed for 16p11.2 deletions (SetP) and
15q11–13 duplications but in opposite directions (fold change= 0.8 in 16p11.2
SetP and fold change= 1.48 in 15q11–13).

There were no significantly differentially expressed genes with FDR ≤ 0.05 from
the 16p11.2 deletion (SetD) analyses.

Power calculations for the second hit outside the 16p11.2 locus contributing to
ASD risk. Many risk loci associated with complex disorders such as ASD have
incomplete penetrance79, and are present in control individuals who are not
clinically diagnosed with these disorders, albeit at a lower prevalence than in
affected individuals. A two-hit model was previously described for another
microdeletion locus in 16p12.1, where the microdeletion was reported to exacer-
bate neurodevelopmental phenotypes in association with other large CNVs80. We
asked if we could similarly detect a second genetic factor that contributes to
increased risk for ASD, in addition to the 16p11.2 deletion background, and this
might explain for the incomplete penetrance observed with the 16p11.2 deletions.
The SetD comparison between individuals with ASD and 16p11.2 deletions versus
resilient individuals with 16p11.2 deletions did not yield any gene with FDR ≤ 0.05.
There is <80% power to detect a gene with small effects (fold changes of <4) at
FWER≤0.05 given our current sample sizes (Supplementary Data 6).

Permutation schemes for 16p11.2 SetA and 15q11-13. We permuted the case-
control status of each organoid replicate to obtain null distributions. However,
given the relatively small numbers of samples, we wanted to avoid creating per-
muted instances where the permuted cases are actual case samples and the per-
muted controls are actual control samples. Differential expression analyses on these
permuted instances will result in the detection of true biological differences, instead

of creating a baseline non-biological measurement for the null distribution. As
such, we developed a permutation strategy by sampling permuted case samples
from the actual control samples only (Supplementary Fig. 9). Furthermore, to
ensure that we have the same numbers of case and control samples in our per-
mutations, as the numbers of case and control samples from our actual experi-
ments, we assigned all the actual case samples to be permuted control samples. We
refer to the cases in the permutations as “pseudo-cases”, and the controls in the
permutations as “pseudo-controls”.

For 16p11.2 SetA, we performed differential expression analyses for 23 samples
differentiated from all individuals with 16p11.2 deletions (cases) versus 36 samples
differentiated from unaffected controls without the deletion (controls). To obtain a
null distribution, we randomly assigned 23 samples from the 36 control samples as
pseudo-cases, and assigned the initial 23 samples, together with the remaining
control samples as pseudo-controls, for 1 million permutations to calculate
CellScores, and 100,000 permutations to calculate GeneScores. Subsequently, we
performed linear regressions with PC1 as a covariate on all the expression data for
the permutations.

For the 15q11–13 results, we performed differential expression analyses for
12 samples differentiated from individuals with ASD and 15q11–13 duplications
(cases) versus 36 samples differentiated from unaffected controls without the
duplications (controls). To obtain a null distribution for comparing the observed
statistics, we randomly assigned 12 samples from the 36 control samples as pseudo-
cases, and assigned the initial 12 samples, together with the remaining control
samples, as pseudo-controls, for 100,000 permutations to calculate CellScores.
Subsequently, we performed linear regressions with PC1 as a covariate on all the
expression data for the permutations.

Calculation of CellScore and P(CellScore). In the Quadrato study1, there are 10
major clusters of cell types identified using unbiased clustering on scRNA-seq data
from cerebral organoids, and each cell cluster has an associated list of genes
identified using Drop-seq, and was assigned a cell cluster identity using previously
published data from homogeneous cell populations1. We observed that in these full
lists of cluster genes, there are some genes that are present in multiple cell clusters,
and that these genes are not cell type specific. To enrich for cell type specific genes,
we further identified a smaller subset of genes that are uniquely found in each cell
type cluster but are not present in other cell type clusters, which we termed as “cell-
type-specific genes” (Supplementary Data 7). We termed the genes that are found
in multiple cell clusters as “non-cell type-specific genes”.

In the Tanaka study19, there are 24 major clusters of cell types identified using
unbiased clustering on scRNA-seq data from brain organoids and fetal brains. We
calculated the overlap among genes from each of the 24 clusters and identified 11
unique cell-type clusters (Supplementary Data 9). Similarly, we identified a subset
of genes as cell type specific genes and non-cell type specific genes (Supplementary
Data 7).

We calculated CellScore for each cluster by summing up the -log10-transformed
P-values from the differential expression results for each gene y in the cluster (Py),
divided by the total number of genes in the cluster (Numy), and obtained the
difference between the calculated CellScores for the specific genes versus the non-
specific genes, where Pspecific y is the P-value of each cell type-specific gene in the
cluster, Numspecific y is the number of cell type-specific genes in the cluster,
Pnon�specific y is the P-value of each non-cell type-specific gene in the cluster, and
Numnon�specific y is the number of non-cell type-specific genes in the cluster. Taking
the difference between the calculated CellScores for the cell type-specific genes
versus the non-cell type specific genes allows us to obtain a normalized CellScore
that is adjusted for other inherent factors that can similarly affect the expression of
non-cell type-specific genes.

CellScore ¼ ∑
all specific y

�log10Pspecific y

Numspecific y
� ∑

all non�specific y

�log10Pnon�specific y

Numnon�specific y
ð1Þ

We obtained a null distribution for CellScore by performing 100,000
permutations (see Permutation schemes for 15q11–13 and 16p11.2 SetA), and
performed linear regressions for each permutation. Next, we estimated the
probability of the observed CellScore for each cluster by comparing with the null
distribution (CellScorepermuted):

P CellScoreð Þ ¼ PðCellScorepermuted ≥CellScoreÞ ð2Þ
To identify significant clusters, we calculated an FWER threshold of 0.05 after
Bonferroni correction for multiple hypotheses, i.e., P= 0.005; and similarly, for an
FWER threshold of 0.1, or P= 0.01.

DNA transfection and single-cell isolation by FACS for isogenic 16p11.2
deletion/duplication iPSC lines. Transfections were performed using the used
Human Stem Cell Nucleofector Kit 1 (Lonza) and Amaxa Nucleofection II device
(Lonza) with programs B-016, according to the manufacturer’s instructions. After
nucleofection, the iPSCs were cultured on Matrigel-coated wells using Essential 8
medium (Invitrogen) supplemented with 10 μM Y-27632 dihydrochloride mono-
hydrate (Santa Cruz Biotech). For subsequent puromycin selection, iPSCs were
harvested 24 h after nucleofection in fresh Essential 8 medium with puromycin
(0.1 μg/mL). To obtain isogenic iPSC colonies following CRISPR/Cas9 treatment,
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single cells were isolated by FACS. At 72 h after nucleofection, the iPSCs were
dissociated into a single-cell suspension with accutase (Stemcell Technologies) and
resuspended in PBS with 10 μM Y-27632 dihydrochloride monohydrate (Santa
Cruz Biotech). All samples were filtered through 5-mL polystyrene tubes with 35-
μm mesh cell strainer caps (BD Falcon 352235) immediately before being sorted.
After adding the viability dye TO-PRO-3 (Invitrogen), the GFP+ /TO-PRO-3–
iPSCs were sorted using BD FACSAriaII with a 100-μm nozzle under sterile
conditions and plated into 96-well plates (one cell per well). Once individual iPSC
colonies were established (~10–14 days after sorting), cells were passaged and then
harvested using a Quick-96 DNA kit (Zymo) and genotyped using both custom
PCR primers targeting each deletion breakpoint42 and ddPCR-based probes as a
means of orthogonal genotyping and confirmation of clonality.

Neural stem cell (NSC) differentiation. After genotypes of individual iPSC clones
were determined, they were expanded and underwent anti-TRA-1–60 selection
using magnetic-activated cell sorting (MACS) to select for pluripotent cells (Mil-
tenyi Biotec). TRA-1–60+ cells within two passages of selection were differentiated
into NSCs using PSC Neural Induction Medium as described in the manufacturer’s
protocol (Invitrogen). Briefly, pluripotent iPSC colonies were incubated in the
Neural Induction Medium for 7 days and then transferred into Neural Expansion
Medium. Differentiating NSCs were passaged every 4–6 days. At passage 5, the
NCAM+NSCs were enriched using MACS with anti-PSA-NCAM microbeads
(Miltenyi Biotec). At this stage, cells exhibit characteristic NSC morphologies and
markers including Nestin, PAX6, SOX1, and SOX2. In passage 7, NSC was ready
for subsequent RNA extraction.

Induced neuronal (iN) cell differentiation. iPSC-derived excitatory neurons were
established using lentivirally introduced ectopic expression of Neurogenin 2
(NGN2)81 with some modifications. HEK293T cells were kindly given by Professor
Vijaya Ramesh’s lab in the Center for Genomic Medicine at Massachusetts General
Hospital. Lentiviruses were made in the HEK293T cells by co-transfection with
VSV-G envelope expressing plasmid (pMD2.G addgene #12259), packaging plas-
mid (pCMV-dR8.2 dvpr #8455), and lentiviral transfer vectors (FUW-M2rtTA
addgene #20342 and pTet-O-Ngn2-puro addgene #52047) using Lipofectamine
3000 reagents. Lentiviruses were harvested with the medium 48 h after transfection,
pelleted by centrifugation (1,500 × g for 45 min) with Lenti-X Concentrator
(Clontech), resuspended in DPBS, aliquoted, snap-frozen in liquid nitrogen, and
stored in −80 °C. Lentiviral titer was determined using Lenti-X qRT-PCR Titration
Kit (Clontech). On day -1, iPSCs from a control donor (GM8330)82 were dis-
sociated and plated as single cells in the medium with 10 μM Y-27632 dihy-
drochloride monohydrate (Santa Cruz Biotechnology). One hour after cell plating,
iPSCs were transduced with lentiviruses carrying NGN2 and M2rtTA overnight.
For the transgene expression, on day 0 the culture medium was replaced with
Neural maintenance medium83 and doxycycline (2 mg/l, Clontech) was added into
iPSC culture and gradually turned off from day 10. On day 1, the cells were selected
with puromycin (1 ml/l, Gibco) for 48–72 h. On day 3, iN cells were dissociated
with accutase and plated onto Matrigel-coated 12-well plates (2 × 105 cells/well) in
Neural maintenance medium containing doxycycline (2 mg/l), human BDNF
(10 μg/l, PeproTech), human NT-3 (10 μg/l, PeproTech); Ara-C (2 μM, Sigma) was
added to the medium to inhibit astrocyte proliferation. From day 6, 50% of the
medium in each well was exchanged every 3 days, preventing iN exposure to air.
With each media change, Neural maintenance media was supplemented with
BDNF (10 μg/l, PeproTech), human NT-3 (10 μg/l, PeproTech), and doxycycline
(2 mg/l Clontech). The iNs were mature and ready for subsequent RNA extraction
on day 24.

Comparisons of patient-derived cerebral organoids with isogenic 16p11.2
lines. We observed that 9500 genes were expressed in both the neural stem cells
with 16p11.2 duplications and patient-derived cerebral organoids (SetA), out of
which, 113 of these genes (1.2%) were differentially expressed with FDR ≤ 0.05 in
both the neural stem cells and organoids, after excluding the genes in the 16p11.2
locus. In contrast, we observed that 9531 genes were expressed in both the induced
neurons with 16p11.2 duplications and patient-derived cerebral organoids, out of
which, 11 of these genes (0.12%) were differentially expressed with FDR ≤ 0.05 in
both the induced neurons and organoids (OR= 10.4, 95% CI=[5.6, 21.5], Fisher’s
Exact Test P < 2.2 × 10−16).

We used a more stringent criteria and observed that 34/9504 (0.36%) of the
genes in both organoids and neural stem cells were similarly differentially
expressed with fold changes of greater or <1 in the cases compared to the controls.
In contrast, none of the 9526 genes that were expressed in both the induced
neurons with 16p11.2 deletions and patient-derived cerebral organoids, were
differentially expressed with FDR ≤ 0.05 in both neurons and organoids.

For the duplication lines, using a more stringent criteria, we observed that 63/
9500 genes (0.66%) in both the organoids and neural stem cells were reciprocally
differentially expressed with fold changes of >1 in the case organoids compared to
control organoids, and fold changes of <1 in the neural stem cells with 16p11.2
duplications compared to wildtype, and vice versa. In contrast, 3/9,531 genes
(0.031%) were reciprocally differentially expressed with fold changes of >1 in the
case organoids compared to control organoids, and fold changes of <1 in the

induced neurons with 16p11.2 duplications compared to wildtype, as well as vice
versa (OR= 21.2, 95% CI=[6.9, 105.7], Fisher’s Exact Test P= 5.7 ≤ 10−16).

Analysis of post-mortem brain samples with 15q11-13 duplications. The dif-
ferential expression results on post-mortem brain samples from the cortex with or
without 15q11–13 duplications were downloaded from a prior publication39. We
calculated CellScores for each of the 10 cell type clusters by using the P-values from
the differential expression results for each gene. To calculate P(CellScore), we
compared the observed CellScore from the post-mortem brain samples against the
null CellScore distributions for each of the 10 cell type clusters generated by the
permutations using the expression data from the cerebral organoids with 15q11–13
duplications, accounting for the precise numbers of genes used in the calculations
of CellScores from the post-mortem brain samples. We calculated a weighted
average P-value for the results from the cerebral organoids with 15q11–13 dupli-
cations and the results from the post-mortem brain samples with 15q11–13
duplications (Supplementary Data 9), which allows us to evaluate the combined
CellScore results from the cerebral organoids and the post-mortem brain samples.

AverageP CellScoreð Þ ¼
CellScoreorganoid

�
�
�

�
�
�

CellScoreorganoid

�
�
�

�
�
�þ CellScorepostmortem

�
�
�

�
�
�

´ ½�log10½PðCellScoreorganoidÞ�� þ
CellScorepostmortem

�
�
�
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�
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�
�
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�

´ ½�log10½PðCellScorepostmortemÞ��

ð3Þ

where jCellScoreorganoidj and jCellScorepostmortemj are the absolute CellScore values
calculated from the cerebral organoids and post-mortem brain samples respec-
tively, and PðCellScoreorganoidÞ and PðCellScorepostmortemÞ are the P(CellScore) values
calculated from the cerebral organoids and post-mortem brain samples
respectively.

Identifying a minimum number of unique clusters from the Tanaka study. The
Tanaka study identified 24 cell clusters19, and we calculated the pairwise percentage
overlaps between genes from each pair of cell clusters (Supplementary Data 9). For
each annotated cell cluster, we identified a minimal set of cell clusters with high
percentage overlaps (≥50%), and highlighted the minimal set of cell clusters in blue
in Supplementary Data 9.

Calculation of overlaps and correlations with neurodevelopmental maps. We
used the cell type clusters from two large-scale scRNA-seq studies on brain
organoids and fetal brains as neurodevelopmental maps13,20, and calculated the
percentage overlaps between the genes found in each cell type cluster from the
Quadrato and Tanaka studies1,19, and each cell type cluster from both neurode-
velopmental maps (Supplementary Data 10). Using these percentage overlaps, we
calculated the Pearson’s correlations between each cell type cluster from both the
Quadrato and Tanaka studies1,19 (Supplementary Data 11).

Calculation of GeneScore and P(GeneScore). There were 22 genes in the 16p11.2
locus that are expressed in the cerebral organoids, but two of the genes (SULT1A3
and QPRT) were not found in the BrainSpan expression dataset, and were excluded
from our candidate driver gene analyses. We calculated GeneScore for each gene x
in a CNV locus using the total sum of the Pearson’s correlation (r2x;y) of gene x with
each gene y in the BrainSpan Project84, multiplied by the −log10-transformed P-
values from the organoid differential expression results for gene y (Py), and divided
the scores by the total number of genes (Numy) from the BrainSpan Project with
correlations available for gene x.

We obtained a null distribution for GeneScore by performing 100,000
permutations (Supplementary Fig. 9), and performed linear regressions on the
expression data for each permutation. Next, we calculated GeneScore for each gene
x based on the permuted linear regression results. Since our observation and each
permutation comprises of different combinations of individuals who have been
assigned as pseudo-cases or pseudo-controls, we calculated a representative statistic
(λ)53, which is the ratio of the observed median to the expected median test
statistic, to evaluate the P-value distribution in each permutation, and normalized
the observed and permuted GeneScores with the inverse of log10λ:

GeneScore xð Þ ¼ 1
log10λ

∑
ally

�log10Py ´ r
2
x;y

Numy
ð4Þ

We estimated the probability of the observed GeneScore for each gene x by
comparing the observed GeneScore with the null distribution (GeneScorepermuted):

P GeneScoreðxÞð Þ ¼ PðGeneScorepermutedðxÞ≥GeneScoreðxÞÞ ð5Þ
To evaluate the cell type-specific GeneScores, we used the differential expression

results from the same 100,000 permutations and calculated cell type-specific
GeneScore using only the specific and non-specific genes in each cell cluster (c1-
c10). To estimate the FDR for the cell type-specific GeneScores in the 16p11.2
locus, we sorted all the P-values calculated for the GeneScores from all clusters for
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each locus, to obtain the distributions of P-values. For each locus, we used the 5th

percentile P-value as the FDR threshold of 0.05, and 10th percentile P-value as the
FDR threshold of 0.1.

Gene ontology analyses. Gene ontology analyses were performed using the online
tool provided by Panther v17.085, available at: http://geneontology.org/.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw fastq data from RNA sequencing and whole-exome DNA sequencing generated
in this study have been deposited in the SRA database under accession code
PRJNA824347. The processed RNA sequence data generated in this study are available in
tthe GEO database under accession code GSE200851.

Code availability
All codes used in this study are available online at https://gitlab.com/elimlab/orgo-seq.
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