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Abstract

Humans instantly recognize a previously seen face as “familiar.” To deepen our understanding of familiarity-novelty
detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking
neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was imple-
mented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs
consisting of face images altered synapitic efficacy, which resulted in the network responding more strongly to a previously
seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When
the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same
network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage
capacity. Fisher’s discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input
patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers
of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We
conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar
inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge
naturally in developing cortical circuits.
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Humans recognize familiar faces instantly. The cellular mechanisms underlying this recognition memory are
still poorly understood. Simulations presented here demonstrate that bidirectional synaptic plasticity is
sufficient to endow recurrent spiking neuronal network models with the ability to detect familiar sensory
inputs through unsupervised learning. Network spiking activity evoked by a face image results in changes
in synaptic connectivity and the formation of a unique strengthened subnetwork. Networks can recognize
multiple previously seen faces with high accuracy by forming partially overlapping subnetworks. We
therefore propose that familiarity detection is an intrinsic property of generic cortical microcircuits with
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Introduction
Recognition memory refers to the ability to recognize
previously experienced sensory inputs. Prior studies
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(Nickerson, 1965; Shepard, 1967) found that immediately
following a single exposure to 612 pictures, subjects
could select the previously-seen picture in two-alternative
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recognition tests with 98% accuracy. Later, Standing
(1973) reported that the number of pictures correctly rec-
ognized increases with the number of pictures presented
(up to 10,000), suggesting a limitless capacity of recogni-
tion memory. These experimental observations can be
accounted for by familiarity, a form of unsupervised learn-
ing. Familiarity and recollection are two major processes
that underlie recognition memory (Yonelinas, 2002; Squire
et al., 2007). While recollection demands accurate recall
of the object’s features, familiarity merely requires a signal
indicating that the object has been previously encoun-
tered (Wixted, 2007). Evidence from functional imaging
studies shows that cortical regions surrounding the hip-
pocampus become active when a human subject senses
a familiar input, whereas activation of the hippocampus is
required for recollection (Holscher et al., 2003; Diana
et al., 2007).

While learning and memory have been extensively stud-
ied at the molecular/cellular (Wu et al., 2006; Baudry et al.,
2015) and behavioral (Gale et al., 2014; Rapanelli et al.,
2015) levels, it has been difficult to causally connect these
two levels of desciption (Morgado-Bernal, 2011). Memo-
ries are believed to be encoded by and stored in a subset
of neurons (the “engram”), which are connected by syn-
apses whose weights were altered by the learning experi-
ence (Takeuchi et al., 2014). Given the current knowledge on
how learning induces changes in synaptic efficacy through
long-term potentiation (LTP; Bliss and Lomo, 1973), long-
term depression (LTD; lto and Kano, 1982; Massey and
Bashir, 2007), and spike-timing-dependent plasticity (STDP;
Gerstner et al., 1996; Markram et al., 1997; Bi and Poo,
1998), it is meaningful to simulate the synaptic changes in
biologically plausible neural networks, to foster understand-
ing from a systems perspective.

The liquid state machine (LSM) is a biologically-inspired
spiking neural network model, which closely emulates the
complexity of a generic cortical microcircuit. It is designed
to perform biologically realistic real-time computing on
time-varying inputs, providing an alternative to the widely-
used attractor neural networks which require conver-
gence to stable internal states (Maass et al., 2002). The
construction of an LSM network, which involves generat-
ing random connections with random synaptic weights, is
task independent. An important property of these net-
works is that sensory inputs are expanded into high-
dimensional feature space, allowing linear separation of
complex properties (Buonomano and Maass, 2009). Tem-
poral and spatial input information is transiently preserved
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in the form of fading memory, through multiple recurrent
loops and short-term synaptic plasticity (depression and
facilitation). We have introduced activity-dependent long-
term synaptic plasticity into the network model by incorpo-
rating NMDA receptor (NMDAR) functionality (Shouval et al.,
2002) in the excitatory synapses.

NMDARs are critically important for synaptic plasticity-
dependent learning. When post-synaptic depolarization
coincides with glutamate and glycine binding, NMDARs
open and allow Ca®" influx (Blanke and VanDongen,
2009). Depending on the amount of Ca®* influx, it will
selectively activate phosphatases (low calcium influx) or
the kinase CaMKIlI (high calcium influx), and trigger down-
stream signaling for synaptic depression or potentiation,
respectively (Salter et al., 2009; Malleret et al., 2010;
Luscher and Malenka, 2012), a theory known as the cal-
cium control hypothesis (Lisman, 1989). LTP and LTD can
be induced by tetanic synaptic inputs that regulate the
Ca?" influx. They are rate-based: low-frequency stimula-
tion causes LTD, while a high-frequency tetanus induces
LTP. STDP is another form of synaptic plasticity regulated
by the temporal correlation of pre- and post-synaptic firing.
By implementing back-propagating action potentials
(BPAPs), NMDAR functionality can support STDP through
calcium control (Waters et al., 2005; Paradiso and Wu,
2009). We have implemented both rate-based (LTP/LTD)
and spike-timing-based (STDP) plasticity, by modeling
NMDAR functionality in the excitatory synapses using the
calcium control hypothesis.

The NMDAR-containing neural network is a model of
generic cortical microcircuits with the capability of unsu-
pervised learning. We have used it here to study how
familiarity could develop in the cortex. On a large scale,
brain regions are wired into relatively deterministic neural
circuits (Coutlee and Huettel, 2012; Fornito et al., 2012),
yet randomness and flexibility prevails within local cortical
regions, with functional connections being optimized by
activity-dependent changes (Sporns and Zwi, 2004; Fair
et al., 2009). The main hypothesis underlying our simula-
tions is that a sensory stimulus induces changes in syn-
aptic weights in a neural microcircuit, altering the network
response such that it can distinguish familiar from novel
inputs.

Materials and Methods

Neural network implementation

Neural networks were simulated using MATLAB and the
CSIM package (a neural Circuit SIMulator, RRID: SCR_014256,
available at http://www.lsm.tugraz.at/csim/), as described
previously (Natschlager et al., 2002; Ju et al., 2013).
NMDAR-dependent synaptic plasticity was introduced into
the excitatory synapses following the model proposed by
Shouval et al. (2002). The neural networks consist of two
parts: an input layer, and the network reservoir. Input neu-
rons send spikes to the network reservoir via static spiking
synapses, which have no plasticity. The network reservoir
consists of leaky integrate-and-fire (LIF) neurons recurrently
connected by NMDAR synapses. Seventy-five percent of
the neurons are set as excitatory, the remaining being inhib-
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itory. Each LIF neuron is modeled by a linear differential
equation:

av,,

Tm_dt = —(\V,- Vresting) + Rm(lSyn + oot + lnoise) >

1)

where the parameters are: membrane time constant ,,, =
30 ms, Viesting = 0 MV, membrane resistance R, = 1 M(),
input currents supplied by explicitly modeled synapses
lsyn, Steady background current |, = 13.5 nA and for
some simulations random noise |, Was added to the
current. For the first time step in the simulation, the mem-
brane potential V,, was set to an initial random value
between —1 and 1 mV. When V,, increases to 15 mV (the
firing threshold), the neuron fires, and V,, is reset to a
random value between —1 and 1 mV after an absolute
refractory period of 3 ms for excitatory neurons and 2 ms
for inhibitory neurons (Joshi, 2007).

In CSIM, the probability that two neurons are con-
nected by a synapse is defined as:

— N2
PO) = Coxp (—2222), )
where D(a,b) stands for the Euclidean distance between
the two neurons a and b. A and C are parameters used by
CSIM that determine connectivity and synaptic strength,
respectively. As A increases, both the connection proba-
bility and the average connection length will increase. The
base value of C depends on the type of connection: it is
set to 0.3, 0.2, 0.4, and 0.1 for EE, El IE, and Il connec-
tions, where E and | stand for excitatory and inhibitory
neurons. The values are based on recordings from rodent
cortical brain areas (Gupta et al., 2000). The actual value
of C is modulated by a user-defined parameter, Cscale.
Input layer neurons are all excitatory. Connections from
input neurons to the network reservoir and within the
network reservoir are randomly generated following the
probability P(D).

Once a connection is established, it is assigned an
initial synaptic weight, indicating synaptic efficacy. Initial
synaptic weights are drawn from the following gamma
distribution:

y = fila,b) = ——xa-lg @)
1’ bl'(a)

a= SH_VVZ’b = W-SH_W?,

where T" (-) is the Gamma function. SH_W and W are
parameters used by CSIM. SH_W (default 0.7) positively
correlates with the variance of the weight distribution and
W correlates with the mean of the distribution. The base
value of W is set to 3e 8 for EE, 6e 8 for El, —1.9¢ 8 for
IE and Il. The actual value of W is modulated by a user
defined parameter, Wscale. The synaptic weight of an
excitatory NMDAR synapse is subject to strengthening
(upper boundary = 6.5e~8) or weakening (lower boundary
= 1.0e"9) by plasticity. Synapses from the inhibitory neu-
rons have negative weights, and do not possess plastic-
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ity. Synaptic weights of the static spiking synapses from
input neurons are fixed.

In CSIM, a network is generated by placing neurons on
a 3-D grid. The networks described in Figure 1A had five
layers with 10 X 10 neurons each (dimension, 10 X 10 X
5). Input neurons formed synapses one-to-one with the
first layer of the network reservoir, with fixed synaptic
weights of 2.7e7. NMDAR synapses in the network res-
ervoir were generated with A = 2.0 and Cscale = 1.0.
Initial weights followed the gamma distribution with
SH_W = 0.25 and Wscale = 0.5.

Networks described in Figure 1B consisted of five or six
layers, with dimensions 20 X 20 X 5, 50 X 50 X 5, and
50 X 50 X 6. In this case, input neurons formed synapses
randomly with the network reservoir with Cscale = 0.04,
0.004, and 0.005, respectively, and A was set to infinity in
all cases to remove the limitation by distance. As a result,
there was no topographical mapping of the input pattern.
Input synaptic weights were still fixed but no longer uniform,
following a gamma distribution (Wscale = 3, SH_. W = 0.7 in
all cases) instead. As for NMDAR synapses in the network
reservoir, A = 4.0 for the 20 X 20 X 5 networks; A = 3.0
for 50 X 50 X 5 and 50 X 50 X 6 networks; Cscale = 1
for all cases. The A values were chosen to make sure that
each neuron formed ~100 synapses on average with
others in the network. Initial weights of NMDAR synapses
also followed a gamma distribution with Wscale = 0.9 and
SH_W = 0.25. By setting Wscale to 0.9, the initial weights
were set to intermediate values, leaving enough room for
future potentiation and depression. By setting SH_W to
0.25 for the network reservoir, we reduced the variation in
the initial weights, thereby reducing any preimposed net-
work circuitry.

Synaptic plasticity implementation

The NMDAR-dependent plasticity we implement fol-
lows the model by Shouval et al. (2002). Synaptic plastic-
ity (LTP/LTD and STDP) depends critically on the
amplitude and timing of postsynaptic EPSPs and BPAPs.
BPAPs were not implemented in the original CSIM, while
EPSPs were implemented using a single exponential de-
cay function with a time constant of 3 ms. We introduced
BPAPs and changed both BPAPs and EPSPs to follow
double-exponential decays, each with a fast and a slow
component. Decay time constants were scaled from the
suggested values (Shouval et al., 2002), with BPAP fast
decay time constant 7% = 1.2 ms and proportion /% =
0.75, slow decay time constant % = 10 ms and propor-
tion /&5 = 0.25; EPSP fast decay time constant #° = 2 ms,
proportion /¢? = 0.5, slow decay time constant 72 = 20 ms
and proportion /2 = 0.5.

BPAP() = BPAP_max-("e % + [5e~t%)  (4)

EPSP(t) = EPSP_max-(Ire " + Ire V<) (5)

Using a double-exponential decay ensures that the
BPAP has a sharp peak with a thin tail and that the EPSP
has a slower peak and more prominent tail, thereby pre-
serving the difference in temporal signature between
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Figure 1. Network architecture and stimulus encoding. A, Diagram illustrating a 10 X 10 X 5 network with a 10 X 10 input layer,
receiving a stimulus from a beard face image (10 X 10 pixels). Neurons in the network reservoir are located at positions with integer
coordinates in a 3-D space. The input layer is located 1 unit away from the network reservoir. Input neurons form synapses one-to-one
with the first layer of the network reservoir. Each input neuron receives a spike train with a firing rate determined by the corresponding
image pixel intensity value. B, Diagram illustrating a 50 X 50 X 5 network (only a portion of size 15 X 15 X 5 is shown) with a 50 X
50 input layer (only 15 X 15 portion is shown), receiving a stimulus from a human face image (50 X 50 pixels). Input neurons form
synapses with random neurons in the network reservoir. C, Examples of a 10 X 10-pixel beard face (top) and a 10 X 10-pixel no-beard
face (bottom). D, Examples of 20 X 20-pixel images of car fronts, dog faces and human faces. E, Examples of 50 X 50-pixel human
faces. F, A sample beard stimulus which contains spike trains (0-0.5 s), followed by a silent interval (0.5-1.0 s). Only 50 channels of

spike trains are shown for clarity.

EPSPs and BPAPs. This contrast ensures that the change
in intracellular Ca®* concentration induced by pre-post
firing exceeds the [Ca®*] change induced by post-pre
firing, so that STDP will be induced properly (see Fig. 2 in
Shouval et al., 2002).

Activity-induced EPSPs generate the driving force for
calcium currents through the NMDAR:

—0.42(V — V)
(1 + 0.6e °%V.[Mg?*]/3.57)

where V = V,oqing + EPSP + BPAP, and V, is the reversal
membrane potential for calcium (130 mV). The Mg®* con-
centration is set to 1 mM. The driving force function was
modified from the function suggested by Shouval et al.
(2002) which did not take into consideration the effect of
growing synaptic weights. In vitro recordings of ion cur-
rents through NMDARs (Pattillo et al., 1999) show a
steeper curve, and based on this, we re-parameterized
the calcium driving force (Fig. 2A).

HWV) = ©®)
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The calcium current through NMDARs (/lyypas) IS as-
sumed to have this form:

Iwpa(t) = PoGuupall 0t)e " + 1;6(t)e “=IH(V) (7

where Py is the probability of opening, G is the conduc-
tance of the NMDAR channel, /; and /; are the fast and
slow components of the NMDA currents, 7 and 7 are the
time constants for the fast and slow components.

Calcium control hypothesis

The activity-dependent change in synaptic calcium
concentration is modeled as a function of the NMDA
current lyypa:

dCalt)
dt

= lwpa® — (1/7c,)[Ca(t)] (8

where [Ca(t)] is the calcium concentration at the synapse
at time t and 1., is the decay time constant, which is
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Figure 2. Parameter turning. A-D, Calcium control hypothesis. A, Curves illustrating the driving force function H(V): (1) as proposed
in (Shouval et al., 2002); (2) from in vitro recordings of ion currents through NMDARs (Pattillo et al., 1999); (3) re-parameterized in our
model. Curve (3) is similar to (2) at negative membrane potentials. Curve (3) has the same equilibrium potential as (1) but is smaller
in amplitude, reducing the impact of growing synaptic weights. B, Models of the calcium control hypothesis () function: (1) as

May/June 2017, 4(3) e0361-16.2017 eNeuro.org



New Research 6 of 21

eMeuro

continued

proposed in (Shouval et al., 2002), (2) as used in our simulations. When real-time synaptic Ca®>* concentration ([Ca®*]) exceeds the
new «, but not the new «,, synaptic weight is decreased; when real-time synaptic [Ca®*] exceeds the new «,, synaptic weight is
increased. C, Real-time postsynaptic [Ca?"] is plotted as a function of input frequency and initial synaptic weights. D, Real-time
postsynaptic [Ca®*] is plotted as a function of pre-post firing intervals and initial synaptic weights. E, Induction of LTP/LTD at
individual synapses following high/low-frequency stimulation protocols. Top, Model setup. A presynaptic input neuron is connected
to a postsynaptic neuron by an excitatory NMDAR synapse. The presynaptic input neuron generated spikes at a certain frequency,
and EPSPs were recorded in the postsynaptic neuron. The postsynaptic neuron is prevented from firing action potentials. Middle,
Simulation results with 50 Hz tetanus input on the model. Spike trains of 50 Hz were generated by the presynaptic input neuron, which
caused long-lasting increases of the EPSP amplitude in the postsynaptic neuron. Arrows indicate when a 50 Hz tetanus (2 s) was
applied. Bottom, Simulation results with 20 Hz tetanus input on the model, which resulted in a long-lasting decrease in the amplitude
of EPSPs. Arrows indicate when a 20 Hz tetanus (2 s) was applied. Results are comparable to observations from Bliss and Lomo
(1973) and Ito and Kano (1982). Baseline spikes at a frequency of 0.2 Hz were generated by the presynaptic input neuron, in addition
to the tetani, to probe the changes in EPSP amplitude. F, Simulation of a dual patch clamp STDP experiment. Top, Model setup. A
presynaptic neuron is connected to a postsynaptic neuron by an excitatory NMDAR synapse. EPSPs were recorded in the
postsynaptic neuron. Two input neurons are connected to the pre- and post-synaptic neurons to control their firing time. STDP
simulation results are comparable to observations of STDP in cortical neurons (Froemke et al., 2010). Middle, Potentiation was
induced in the model by pre-post firing (At = 15 ms, 15 pairings). Bottom, Depression was induced by post-pre pairing (At = —75
ms, 30 pairings). Baseline spikes were generated at a frequency of 0.125 Hz by the input neuron connected to the presynaptic neuron

to probe the changes in EPSP amplitude.

assumed to be 50 ms. The weights of NMDAR synapses
are modified by calcium concentration as follows:

W, = n(Cal(Q(Cal) — W) ©)

The Q function represents the calcium control hypoth-
esis with ; and a, being [Ca®*] thresholds for depression
and potentiation induction:

Q = sig([Ca**] — ay, Bo) — Quersig(lCa®'] — «y, By),
ePx

h g, B) = ————
where sigx, B) 1+ o>

(10)

The parameter values were originally set as follows:
ay = 0.35 uM, a, = 0.55 uM, B; = B, = 80 uM, and
Q... = 0.25 (Shouval et al., 2002). By setting new «, to 0.1
uM and new «, to 0.4 uM (Fig. 2B), we were able to
induce LTD at low input frequency (1-20 Hz) and post-pre
firing (—15 ~ —5 ms) regardless of the synaptic weights,
while LTP was obtained at high input frequency (50-100
Hz) and pre-post firing at (5 ~ 15 ms), regardless of the
synaptic weights (Fig. 2C,D; Table 1). We also changed
Q... from 0.25 to 0.4, rendering the plasticity more biased
toward LTD to stabilize network activity after prolonged
sensory exposure.

Individual synapse performance

After parameter tuning described in the sections above,
we simulated the classic tetanus experiment (Bliss and
Lomo, 1973) and dual patch clamping experiment

Table 1. Postsynaptic Ca?* concentration [uM]

(Markram et al., 1997) on single NMDAR synapses. The
synaptic efficacy change successfully reproduced previ-
ously published results (Fig. 2E,F), indicating the reliability
of our model at individual synpase level.

Image preprocessing

For the beard versus no-beard classification simula-
tions, grayscale images of male faces with and without a
beard were selected to form two groups, 20 images for
each group. Each image was reduced to a 10 X 10 pixel
pattern (Fig. 1C). For the single face recognition simula-
tions, we used grayscale images of car fronts, dog faces
and human faces, 10 images for each category. Each
image was converted to a line drawing using edge detec-
tion to reduce noise from shading and then down-
sampled to a 20 X 20 pixel pattern (Fig. 1D). For the
multi-face recognition simulations, 200 grayscale human
face images were selected and each face image was
converted to a line drawing and down-sampled to 50 X 50
pixels (Fig. 1E). Images were presented to the network by
assigning each pixel to a corresponding input neuron and
converting pixel values to spike trains. Grayscale values
of 0-255 were mapped to frequencies of 0-50 Hz. Each
image stimulus lasted 0.5 s, followed by a silent interval of
0.5 s (Fig. 1F) to allow the fading memory to dissipate and
prepare the network for the next stimulus.

Fisher’s discriminant analysis
Multiclass Fisher’s discriminant analysis was applied to
network spiking activity and neuronal spiking activity, to

Synaptic weight Input frequency [Hz]

1 10 20 50
1e 8 (small) 0.11 0.14 0.22 0.60
3e 8 (medium) 0.15 0.19 0.30 0.85
6e 8 (large) 0.27 0.32 0.52 0.90

Pre-post firing interval [msec]

100 -15 -5 5 15
1.0 0.12 0.16 0.69 0.40
1.0 0.17 0.21 0.78 0.46
1.0 0.29 0.33 0.93 0.61

Points are extracted from Figure 2C,D, showing [Ca?*] under input stimuli of frequency 1, 10, 20, 50, and 100 Hz, or pre-post firing intervals of —15, —5, 5,
and 15 ms, when initial synaptic weights are small (1e®), intermediate (3e~8), and large (6e®). Red indicates LTP and blue indicates LTD.
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obtain Fisher’s linear discriminant ratio (FDR). The FDR is
calculated as follows:

E cluc® — w®)y?
Ji = (11)

DD S — ue®)y

where S;(t) is the spike count at time bin t, in response to
stimulus i; uc(®) is the mean spike count at time t for class
C stimuli, and () is the mean of the class means (.
The numerator and denominator of the discriminant ratio
J are known as the “between classes scatter” and “within
class scatter.” A larger value of J indicates better discrim-
ination. More information can be found in Ju et al. (2015).

Network FDR was obtained by summing up the FDRs
calculated with network spiking activity in each time bin,
serving as an indicator of network separability for input
stimuli. Neuronal FDR was calculated with the spiking
activity of individual neurons over the entire recording
period, serving as an indicator of how informative the
neuron is for input discrimination.

Results

We performed simulations of cortical microcircuits
modeled with NMDAR-containing neural networks (see
Materials and Methods), to investigate whether they can
develop recognition memory. Images were used as sen-
sory inputs and plasticity was enabled during learning and
disabled during evaluation of responses to the input im-
ages. Simulations typically consisted of three phases:
baseline recording, learning and testing. First, to establish
a baseline, network responses to all input stimuli were
recorded while NMDAR function was disabled. Network
firing rate (spikes/second) during the stimulus presenta-
tion was calculated and used as a measure of network
response. In the second phase, learning was switched on
by enabling NMDAR plasticity, and networks were stim-
ulated using only a subset of images, allowing stimulus-
induced network spiking activity to alter synaptic
strengths. These images should now be “familiar” to the
networks. Finally, learning was switched off and network
responses to all input stimuli were recorded again. The
effect of the learning experience was evaluated for both
familiar images presented during the learning phase and
the “novel” images, by comparing testing responses with
their corresponding baseline values. In all of our simula-
tions, we found that the networks responded differentially
to images presented during the learning phase.

Unsupervised classification: beard versus no-beard
In this first set of simulations, two classes of images
were used: human faces of males with and without a
beard. In each simulation, only faces from a single class
(beard or no-beard) were presented to a network during
the learning phase. In each learning round, one face from
the selected class was randomly chosen and presented
to the network for 1 s. NMDAR plasticity was switched off
for testing after each round, and network responses to all
faces from both classes were recorded. Figure 3A sum-
marizes the performance of five randomly-generated 10 X
10 X 5 networks for 40 rounds of image presentation.
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Clearly, networks responded more strongly to faces from
the trained class, and the firing rate discrepancy for the
two classes increased as more faces were presented. In
other words, networks started to display a differential
response to the two classes as unsupervised learning
took place. This was true whether the beard or no-beard
class was used for training. The differential response
eventually reaches a steady state, in part because we
have set a maximum weight boundary (6.5e~8) for excit-
atory synapses to prevent overtraining. We also investi-
gated network performance by excluding faces that were
presented in the learning phase from the testing. The
results showed a similar increase in discrepancy for the
responses to the two classes, only with a reduced mag-
nitude (Fig. 3A). In this case, the networks were perform-
ing a binary classification task, following unsupervised
learning.

Single face recognition

Next, we performed single face recognition simulations,
for which we increased the dimension of the networks to
20 X 20 X 5 and the input layer size to 20 X 20. A set of
30 images was used as input stimuli, consisting of 10 car
fronts, 10 dog faces, and 10 human faces. The simulations
again consisted of three phases: baseline normalization,
learning, and testing. NMDAR-dependent plasticity was only
switched on during the learning phase. Normalization was
performed by recursively adjusting the mean pixel value for
each of the 30 images until they evoked comparable base-
line responses. In the learning phase, a single human face
image was selected from the set of 10, and presented
repetitively for 15 s. NMDAR-dependent plasticity was then
switched off for the testing phase, in which we recorded
network responses to all images, to determine whether the
network responded differently to the selected (learned) face.

For this simulation, we used 30 randomly-generated
networks. Instead of limiting the stimuli to human faces,
we also conducted trials using images of car fronts and
dog faces. For each network, three trials were conducted,
each with a randomly selected car, dog, or human image.
In total, 90 trials were performed on the 30 networks, and
in 84 cases (93.3%), the networks exhibited the highest
firing rate to the image presented during the learning
phase. Examples of network responses before and after
the learning phase are shown in Figure 3B-D. Testing
responses are sorted by firing rate and shown as solid
lines, while corresponding baseline responses are plotted
as dashed lines. Network firing rate to the images se-
lected for learning significantly increased and became the
largest on testing. Responses to novel inputs from the
same class as the image selected for learning tended to
be elevated from their baseline, although to a lesser ex-
tent than the actual learned image. For instance, in the
human face learning simulation (Fig. 3D), the network
responses to 5 of the 10 human faces (excluding the
learned face) were higher than the responses to the dog
and car images, suggesting that the network had also
generalized to distinguish human faces from dog faces
and car fronts. Considering the degree of randomness
involved in network construction, and the similarity of the
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Figure 3. Unsupervised familiarity detection. A, Beard versus no-beard classification. Curves showing the discrepancy in network
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continued

responses (firing rate [sec™ ")) to beard and no-beard faces that develops with sensory exposure to one class. The blue curves
represent network response (beard-noBeard) after learning beard faces. The dark blue solid line shows response differences when
trained beard faces were used for testing. The light blue dashed line shows the results when untrained beard faces were used for
testing, i.e., networks generalizing familiarity to novel beard faces. The red curves represent the results from the same simulation
paradigm with no-beard faces used for learning. The red solid line shows response differences when trained no-beard faces were
used for testing. The pink dashed line shows the results when untrained no-beard faces were used for testing, i.e., networks
generalizing familiarity to novel no-beard faces. Error bars at each time point reflect the SEM of results from five randomly-generated
networks. Each network underwent five trials of simulation with randomly-selected face inputs. Curves were normalized by
subtracting the discrepancy of network baseline response to the two classes at time 0. B-D, Single face recognition. B, The network
test responses (solid lines) and corresponding baseline responses (dashed lines) to all 30 images after learning car image 10. Test
responses to car images were sorted in descending order. As images of each class were indexed as 1-10, test responses to the other
two classes are plotted following the sorted index order. C, Network responses to all 30 images after learning dog image 7. D, Network
responses to all 30 images after learning human face 1. E, F, Firing rate dynamics during stimulus presentation of the network shown
in D. E, Network baseline firing rate to all 30 stimuli. F, Network firing rate to all 30 stimuli after learning human face 1. The stimulus
of human face 1 is referred as the familiar input. G, Firing rate difference between response to the familiar input and the average of
the responses to the novel inputs. The average performance of 10 networks in 30 simulations has been shown. Blue represents the
difference in network baseline responses. Red represents the difference in network testing responses, after the single face recognition
simulations. H, Histograms of time bins where the networks exhibited the highest firing rate to the familiar input. Network firing rate
was obtained as in E, F, binning was at 10 ms. Time bins where networks exhibited the highest firing rate to the familiar input were
identified. The number of the identified time bins was summed for 30 simulations carried out 10 networks, and the percentage was

calculated with respect to 30 simulations, with chance level being 1/30 (3.3%).

images within each class, we conclude that networks of
20 X 20 X 5 neurons can learn to detect a familiar image
with high specificity.

The network responses in Figure 3B-D are network
firing rates averaged over the entire recording period. In
fact, the dynamic network firing rates plotted as a function
of time underwent initial rising phases and declined to
steady state phases (Fig. 3E,F). By solely looking at firing
rate difference, network response to the familiar input
seems to have increased over the entire recording period
after learning (Fig. 3G). Whether the increase in individual
time bins is sufficient for familiarity detection is further
analyzed. If we assume the networks are able to detect
familiarity in the time bins where networks exhibited the
largest firing rate to the familiar input, we can count the
number of such time bins and compare it before and after
learning. The results show that there is no specific time
window that clearly separates the familiar input from the
novel inputs, but the separation gets better in the later
stage of stimulus presentation (Fig. 3H).

Multi-face recognition

Now that these relatively small neural networks have
demonstrated they can discriminate a single familiar face
from many novel ones, we tested whether networks can
perform familiarity detection to more than one face. We
began with presenting two human face stimuli to a single
network, using the same set of 30 images and 20 X 20 X
5 networks. Unlike the high accuracy (93.3%) of the single
face recognition simulations, familiarity detection accu-
racy for two face stimuli dropped to 70.0% (data not
shown). This performance decline informs us of the lim-
ited capacity of 20 X 20 X 5 networks.

We therefore increased dimensions of the networks to
50 X 50 X 5 and input layers size to 50 X 50. In addition,
the resolution of the 30 images was increased to 50 X 50
pixels, so that their dimension matched that of the input
layer. With these larger networks, the accuracy of famil-
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iarity detection for two face stimuli increased to 96.7%.
The performance improvement could be due to either the
increase in network size or the increase in resolution of the
face images. To distinguish between these two options,
we repeated the simulations on 50 X 50 X 5 networks, but
with the original low-resolution 20 X 20 pixel image stimuli
as inputs. Each pixel in the 20 X 20 images was replicated
once to create images of 40 X 40. One column and one
row of void pixels were then added to the right and
bottom of the matrices to make images of dimension 50 X
50. When these low-resolution 50 X 50 stimuli were pre-
sented to the networks, the accuracy of familiarity detec-
tion remained at 96.7% (Fig. 4A), suggesting that
increased network dimension was responsible for the
accuracy improvement.

Interclass learning of three image classes (car + dog +
human) using 50 X 50 X 5 networks also produced stable
and accurate results (data not shown). For multiple im-
ages, we presented each image for 15 s and then moved
to the next image. In contrast, we also tried looping
through all images 15 times. The first presentation proto-
col resulted in slightly better accuracy, and was used for
all the remaining simulations.

To further evaluate the limits of these neural networks
on multi-face recognition, we converted a database of
200 human face images to 50 X 50 pixel stimuli. In each
simulation, a randomly-generated 50 X 50 X 5 network
was presented with 10 human face images, each for 6 s,
and testing was conducted with the 10 learned faces plus
10 novel faces drawn randomly from the database. We
used 6 s instead of 15, to prevent overtraining of the
network. After sorting the network firing rate for all 20
faces, a hypothetical threshold was drawn between the
responses to faces ranking 10th and 11th, to evaluate the
ability of the networks to separate familiar and novel
faces. This procedure is similar to the empirical ranking
theory of vision (Purves et al., 2011), which suggests that
subjects perceive the relative color and brightness of
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Figure 4. Familiarity detection for multiple faces. A, Results of 50 X 50 X 5 networks learning two human faces. Each bar is located
at the point whose coordinates represent the rank of network firing rate for the two learned faces. The height of each bar reflects the
number of occurrences of such a combination (30 in total). Blue and magenta represent network baseline and testing response,
respectively. Note that after learning, the two familiar faces ranked 1 and 2 in 29 of 30 trials and 1 and 3 in the remaining trial. B-E,
Results of learning 10 faces and testing them against 10 novel faces randomly drawn from a database of 200 faces. B, Results of a
50 X 50 X 5 network learning 10 faces. The curves show baseline and sorted testing response after learning faces 1-10. The network
ranks nine familiar faces among the top 10, with only one outlier (face 62, highlighted in magenta). The accuracy of this network
therefore was 9/10 or 90%. C, The effect of network dimension and Cscale value was evaluated by performing 1000 trials for 10
different networks (see Results). For each trial, the accuracy was calculated as in B. The curves illustrate the accuracy (averaged over
1000 trials) for the 10 networks with dimensions and Cscale values indicated in the legend. D, Accuracy distribution of 1000 testing
trials conducted on the ten 50 X 50 X 6 networks with Cscale 0.005. E, Baseline and testing response of the best-performing 50 X
50 X 6 network after learning face 1-10. Network firing rate differentiates familiar faces completely from novel faces. F, Network
average accuracy of the 50 X 50 X 6 networks after learning 10 faces (red) and the corresponding accuracy after learning 30 faces
(green), 60 faces (blue), and chance level at 60 faces (gray, dotted line). Error bars are the SDs of 1000 trials. G, top, Baseline and
testing response of the best-performing 50 X 50 X 6 network to all 200 faces and their scrambled versions, after learning face 1-10.
F, faces; SF, scrambled faces. Bottom, Pairwise network firing rate difference to faces and scrambled faces (F-SF).

objects by internally ranking the empirical brain activity = works were randomly selected from the database,
they evoke. In our case, the percentage of learned faces  indexed as 1-10 and fixed for all simulations. The 10 novel
appearing in the top 10 reflects familiarity detection ac-  faces were randomly drawn from the remaining database
curacy. The 10 faces used for presentation to the net-  and were varied for each testing trial. Figure 4B shows the
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Table 2. Statistical table

Network Data structure Type of test p value
1 Normality test: failed (o < 0.05) Mann-Whitney rank sum test (one-side) 5.29¢ 315
2 Normality test: failed (o < 0.05) Mann-Whitney rank sum test (one-side) 3.45¢ 7322
3 Normality test: failed (p < 0.05) Mann-Whitney rank sum test (one-side) 0.00

4 Normality test: failed (p < 0.05) Mann-Whitney rank sum test (one-side) 0.00

5 Normality test: failed (p < 0.05) Mann-Whitney rank sum test (one-side) 0.08

6 Normality test: failed (o < 0.05) Mann-Whitney rank sum test (one-side) 5.16e~ 18
7 Normality test: failed (o < 0.05) Mann-Whitney rank sum test (one-side) 2.42¢7322
8 Normality test: failed (p < 0.05) Mann-Whitney rank sum test (one-side) 3.71e™
9 Normality test: failed (o < 0.05) Mann-Whitney rank sum test (one-side) 1.49e™ 140
10 Normality test: failed (p < 0.05) Mann-Whitney rank sum test (one-side) 1.00

sorted responses and hypothetical threshold for a net-
work that was able to detect 9 out of the 10 presented
faces in one testing trial, and therefore was considered
90% accurate for this trial. The average accuracy of a
network was measured by averaging the results of 1000
testing trials. Performance of ten randomly-generated 50
X 50 X 5 networks for the above simulations is shown in
Figure 4C, blue. The best network reached ~85% accu-
racy on average for 10-face familiarity detection.

In an attempt to further improve the performance, we
generated a different set of ten randomly-generated net-
works, with one more layer added to the network reservoir
(50 X 50 X 6), and increased the connection probability
from the input layer to the reservoir (Cscale = 0.004 to
Cscale = 0.005). The resulting network average accuracy
is shown in Figure 4C, red. Not only did the overall accu-
racy improve, but also a network with >95% accuracy
emerged, indicating the network was able to detect all 10
familiar faces accurately for at least half of the 1000
testing trials. Figure 4D summarizes the accuracy distri-
bution of 1000 testing trials for the ten 50 X 50 X 6
networks. The distribution is significantly shifted from
what would be expected by chance alone, i.e., five familiar
faces falling in the top 10. Figure 4E plots the response of
the best-performing 50 X 50 X 6 network for one of the
testing trials. Unsupervised learning has clearly modified
the network response and a hypothetical threshold can be
drawn which accurately differentiates familiar from novel
faces.

We also evaluated the performance of ten randomly-
generated 50 X 50 X 5 networks with Cscale 0.005 and
ten randomly-generated 50 X 50 X 6 networks with
Cscale 0.004 (Fig. 4C, dotted lines). Neither achieved
comparable accuracy as 50 X 50 X 6 networks with
Cscale 0.005. From these results, it seems that both the
network size and the number of input connections are
important. An increase of input connections together with
a larger network results in larger available network space
for better familiarity storage.

In fact, the network capacity of multi-face recognition is
not restricted to 10 faces. In Figure 4F, we plot the
accuracy of the ten 50 X 50 X 6 networks after learning
10 faces (red), 30 faces (green), and 60 faces (blue), as
well as the chance level for 60 faces (gray). To our sur-
prise, only two networks performed equivalently to or
below their corresponding chance levels after learning 60
faces. The remaining eight networks performed signifi-
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cantly better than chance levels (Table 2, n = 1000, p <
0.01). Accuracy after learning 30 and 60 faces was mea-
sured by the percentage of familiar stimuli appearing
above the hypothetical threshold (set as below 50% of the
population) after pooling the same number of novel stimuli
with familiar stimuli. The chance level at 60 faces was
calculated by the percentage of familiar stimuli appearing
above the hypothetical threshold after sorting network
baseline firing rates to the familiar and novel stimuli.

In addition, we generated scrambled versions of the 50 X
50 face images from the same database by relocating all
pixels to new random (x, y) positions, and recorded the
network responses to them after learning 10 human faces.
The results show that networks not only discriminated the
familiar faces from the novel faces, but also could discern
novel faces from their scrambled versions (Fig. 4G). The
trained networks appeared to have acquired the concept
of a “face” and responded less to scrambled faces.

Synaptic weight change

Given that synaptic weight changes underlie the ob-
served results described above, we plot in Figure 5 the
network weight changes in three scenarios: weight
change after exposure to a human face stimulus for 1, 3,
and 5 s (Fig. 5A); weight change after exposure to a car,
a dog or a human face image each for 15 s (Fig. 5B); and
weight change after exposure to multiple face images
(Fig. 5C). A common finding emerges for all three scenar-
ios: unsupervised learning caused a subset of synapses
to be potentiated, and a different but larger subset of
synapses to be depressed. The amplitude of potentiation
is larger than the amplitude of depression, on average.
This is in line with a proposed familiarization mechanism
that a small subset of neurons becomes strongly respon-
sive after sensory exposure while depression occurs per-
vasively among other neurons, sharpening the familiarity
response (Freedman et al., 2006; Meyer et al., 2014).
Figure 5D shows the time course of the change in synap-
tic strength for nine representative synapses randomly
picked from a 50 X 50 X 6 network during the exposure
to 10 faces. Synaptic weights changed in unique ways in
response to each face stimulus.

Subnetwork formation

If we put together the phenomena of how synaptic
weights change after sensory exposure and how available
network space affects accuracy, a theory emerges that
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Figure 5. Synaptic weight changes caused by learning. A, Network synaptic weight change after the presentation of 1, 3, and 5 s of
the same human face stimulus, in comparison to initial synaptic weights. B, Network synaptic weight change after learning a car, dog,
or human stimulus, each for 15 s, in comparison to initial synaptic weights. C, Network synaptic weight change after learning 1, 5,
and 10 human face image stimuli, each for 6 s, in comparison to initial synaptic weights. A-C, Only a subset of NMDAR synapses in
the network are shown for clarity and the y-axis scales are +1e 7. D, Time course of weight change of nine randomly-selected

NMDAR synapses during the exposure to ten faces, each for 6 s.

could possibly address the stability-plasticity dilemma
(Grossberg, 1980, 2013; Mermillod et al., 2013). When-
ever a new image stimulus enters the network reservoir,
an image-representative subnetwork is formed by poten-
tiated and depressed synapses. Providing the network
reservoir is large enough and has sufficient complexity, a
large number of image-representative subnetworks that
differ slightly from each other can co-exist in the network.
This reduces the chance that formation of a new memory
overwrites an older one, allowing each subnetwork to
support familiarity detection. To provide support for this
idea, we identified the set of synapses whose weights
were modified after the stimulus presentation. In Figure
6A,B, the potentiated synapses are highlighted in red and
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green, respectively, for the same network after exposure
to two different face images. In Figure 6C, the potentiated
synapses are highlighted after the same network was
exposed to both face images. Notice the difference be-
tween the two image-representative subnetworks, and
how they can co-exist in the network reservoir. These
subnetworks may act as neural clusters carrying memory
traces (Liu et al., 2012). In Figure 6A-E, the subnetworks
are viewed from the top. As the faces resemble each other
to a certain degree, the corresponding subnetworks are
proximate to each other. They are also densely connected
through the layers, as seen in a side view (Fig. 6F).
Following this idea, we plotted the potentiated syn-
apses of the ten 50 X 50 X 6 networks after learning
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Figure 6. Importance of subnetwork topology. A-C, Colored lines indicate potentiated synaptic connections of a 50 X 50 X 6 network
after learning face 1 (A), face 2 (B), or face 1 and 2 (C). Yellow highlights the synapses in C that also appeared in both A and B; red
and green highlights the synapses that only appeared in A and B, respectively. Purple indicates the synapses that newly appeared
after learning both faces. D, E, Potentiated synaptic connections in the networks with the best (D) and worst (E) accuracy after learning
60 faces. F, Side views of the potentiated synaptic connections in A. G, Potentiated synaptic connections of the network in D after
learning 60 faces, in comparison to synaptic weights obtained after learning 30 faces. H, Potentiated synaptic connections of the
network in E after learning 60 faces, in comparison to synaptic weights obtained after learning 30 faces. I, Potentiated (red) and
depressed (blue) synapses after learning face 1, for the same simulation shown in A. Thresholds for significant weight increase and

decrease are 1e 8 and —1e "8 for all panels.

multiple faces. Figure 6D,E shows the potentiated syn-
apses in the two networks with the best and the worst
accuracy, after exposure to 60 faces (Fig. 4F, network 3
and 10, respectively). Dense clusters can be seen in the
poorly-performing network (Fig. 6E). We also investigated
the evolution of subnetworks from 30- to 60-face expo-
sures. Figure 6G,H graphs the incremented subnetworks
corresponding to D and E. Newly potentiated synapses
are spread throughout the reservoir in the network with
high accuracy, whereas newly potentiated synapses are
clustered in the network with low accuracy. We calculated
the average clustering coefficients (Watts and Strogatz,
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1998) of the formed subnetworks for the 10 networks after
learning 10, 30, and 60 faces, and correlated the average
clustering coefficients with the corresponding network
accuracies. The data suggest that strong clustering of
subnetworks negatively affects network performance (r =
—0.80, p = 9.05e ). In general, subnetworks were more
distributed in networks with better accuracy, and more
aggregated in networks with poorer accuracy. One pos-
sible explanation is that overlapping subnetworks lead to
increased chance for existing memories to be overwritten.
The dense clustering observed in poorly performing net-
works might be caused by local densely-connected neu-
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rons, which tend to self-potentiate excessively due to
recurrent pathways, thereby reducing memory capacity.

For the network with the best accuracy, we attempted
to permute the initial weights of all NMDAR synapses of
the network and repeated the same simulation of the
60-face exposure. After permutation, the network accu-
racy failed to remain the best. It seems that the preim-
posed network circuitry, which is determined by the initial
synaptic connection weights, is another important factor
for network performance.

Separability

In addition to using network firing rate as a readout for
familiarity detection, we applied Fisher’s discriminant
analysis to search for other features that may help define
familiarity. Ten 20 X 20 X 5 networks and the single face
recognition simulations were used for the analysis. Net-
work response to the familiar stimulus is referred to as the
familiar response, and responses to the remaining 29
stimuli are referred to as control responses. FDR is cal-
culated between two classes (see Materials and Meth-
ods). Specifically, familiar FDR is calculated by labeling
the familiar response as Class | and the control responses
as Class Il. Control FDRs are calculated by labeling one of
the control responses as Class | and the remaining control
responses together with the familiar response as Class II.
Baseline FDRs are calculated in the same way but with
network baseline responses to all 30 image stimuli. Base-
line FDR values represent how well each image stimulus is
separated from others, before learning.

Compared with the corresponding baseline FDRs, we
see a general increase for both familiar FDR and control
FDRs after sensory exposure (Fig. 7A). In 26 out of 30
cases, familiar FDRs show the largest magnitude of rela-
tive increase from baseline compared with control FDRs;
and in 22 out of 30 cases, familiar FDRs have the largest
final values. Larger familiar FDRs indicates that the network
discriminated the familiar better from the control stimuli after
learning, implying greater separability at the network level.
Figure 7B shows the network FDRs calculated in each time
bin. The larger familiar FDR can be explained by the larger
FDR values in each time bin. Sensory exposure has also
extended the network separability to beyond the stimulus
presentation window (0-0.5 s).

To further understand the changes occurring at the
neuronal level that supported familiarity detection, we
applied the analysis to individual neurons. Similarly, famil-
iar FDR is calculated by labeling the neuronal response to
the familiar stimulus as Class | and responses to control
stimuli as Class II; control FDRs are calculated by labeling
the neuronal response to one of the control stimuli as
Class | and responses to the remaining control stimuli and
the familiar stimulus as Class II.

Compared with corresponding baseline FDRs, neurons
that show increased FDRs to the familiar stimulus are
considered as critical and potentially correlate with the
emergence of familiarity. We noticed that the neurons with
significantly increased FDRs tended to evolve more often
from the neurons with negligible baseline FDRs (Fig. 7C).
Neuronal baseline FDR was found to be negatively corre-
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lated with FDR increase (r = —0.30, p = 4.46e™'®%). The
top-ranking neurons showed little response at baseline
but increased firing rate after sensory exposure. The low
baseline response implies that they did not receive much
information from the input layer initially, or equivalently,
that they were not wired to the input-responding pathway
before the training. The increase in firing rate after learning
implies that their connections to the input-responding
pathway were strengthened. These critical neurons are
recruited by unsupervised learning to the subnetwork that
responds to a specific stimulus. Once recruited, they may
also fire to other nonlearned inputs, but their response to
the familiar input is stronger (Fig. 7D).

So far, we have looked at the formation of subnetworks
(altered connections) and the emergence of critical neu-
rons for familiarity detection. The intersection between the
two intrigues us. Therefore, we investigated whether the
critical neurons belong to the subnetworks. The subnet-
work in Figure 6A was analyzed. We selected 200 critical
neurons with top-ranking familiar FDR values and 118 of
them belong to the subnetwork (Fig. 7E). If 200 neurons
were randomly selected from the network reservoir, we
would expect ~28 neurons to overlap with the subnet-
work by chance. For comparison, we also selected 200
critical neurons with top-ranking control FDR values for
control faces 2-10 for the same network, after learning
face 1. The intersections with the subnetwork dropped to
43 *= 8 (mean = SD) neurons (Fig. 7F). The observation
held when other faces were used for learning. Therefore,
the critical neurons selected for the learned face and the
subnetwork formed after exposure are highly correlated.
Their colocalization in space further supports the idea that
the potentiated subnetwork is an important memory stor-
age unit.

Effect of STDP and LTD/LTP

As the NMDAR-based plasticity we implemented sup-
ports both LTD/LTP and STDP mechanisms, we investi-
gated how they contributed to familiarity detection.
Learning in which LTP/LTD and STDP worked together
stabilized network performance efficiently to the optimum
accuracy (Fig. 8A, STDP & LTP/LTD). Then we selectively
deactivated STDP by removing BPAPs (Eq. 4) and re-
peated the single face recognition simulations on 10 net-
works. The results showed a severe reduction of accuracy
(Fig. 8A, LTP/LTD). At later time points during learning
without STDP, network accuracy reversed and networks
responded less to the familiar input than to novel inputs
on average. This is the result of an LTD-dominant Q
function (Eqg. 10) tuned to account for the effect of BPAPs.
To know what LTP/LTD alone is capable of, we need to
readjust the parameters of the () function to compensate
for the loss of BPAPs (Fig. 8A, LTP/LTD adjusted, «ay =
0.3, @, = 0.4 and O, = 0.3). Comparing the curves of
STDP & LTP/LTD, and LTP/LTD adjusted (Fig. 8A), we
postulate that the effect of STDP is to increase learning
specificity.

Does this mean that STDP alone could be sufficient for
familiarity detection? As STDP cannot be isolated to func-
tion alone under the calcium control hypothesis, we
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Figure 7. FDR analysis. A-D, FDRs were calculated for the 20 X 20 X 5 network after the single face recognition simulation shown
in Figure 3D. The input stimulus was human face 1, indexed as image 21 in the set of 30 test images. A, top, Network FDRs after
learning human face 1. Bottom, Network FDR relative changes from baseline after learning human face 1. Red dashed lines represent
the maximum in the group. Green dashed lines represent the presented stimulus. Network FDR has the largest value to the familiar
stimulus after learning, and the largest relative increase from baseline. B, Network FDRs calculated with network activity in 10-ms time
bins. Red lines show the FDRs to the familiar stimulus (image 21) and blue lines show the FDRs to one of the control stimuli (image
9). The filled area shows the difference between the two, with red indicating a larger value of the red line and blue indicating a larger
value of the blue line. Top, The FDRs calculated based on network response after sensory exposure. Bottom, the FDRs calculated
based on network baseline response. C, Neuronal familiar FDRs were calculated for the active neurons (recorded spikes > 0) after
the same simulation. Top, Black indicates the sorted baseline neuronal FDRs, and red indicates the familiar FDRs of the correspond-
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continued

ing neurons after the simulation. Bottom, black indicates the sorted baseline neuronal FDRs, and red indicates the sorted neuronal
familiar FDRs. D, Baseline and testing responses to all stimuli of the neuron with the largest FDR increase in C. Red, yellow, and blue
indicate responses to car, dog, and human stimuli. Neuronal baseline response is negligible, indicating an inactive role in the network.
After sensory exposure, neuronal firing rate to image 21 was greatly increased. The response also generalized to other human face
images (index 21-30). E, F, FDRs were also calculated for neurons in the 50 X 50 X 6 network after the simulation shown in Figure
BA. The input stimulus was human face 1 from the 200-face database. The subnetwork in Figure 6A connects 1728 unique neurons,
including 187 presynaptic neurons, 1238 postsynaptic neurons, and 303 neurons that are both pre- and postsynaptic. E, Intersection
of top 200 FDR neurons with the formed subnetwork (n = 118). Yellow, blue, and green indicate those FDR neurons that overlapped
with presynaptic neurons (n = 26), postsynaptic neurons (n = 43), and both pre- and postsynaptic neurons (n = 49) in the subnetwork.
Purple indicates nonoverlapped FDR neurons (n = 82). F, Intersection of top 200 FDR neurons calculated for control face 2 with the
formed subnetwork after the network was exposed to face 1 (n = 37). Yellow, blue, and green indicate those FDR neurons that

overlapped with presynaptic neurons (

= 4), postsynaptic neurons (n = 21), and both pre- and postsynaptic neurons (n = 12) in the

subnetwork. Purple indicates nonoverlapped FDR neurons (n = 163).

repeated the single face recognition simulations using the
STDP synapse model available in the CSIM package,
which is based on the work by Froemke and Dan (2002)
and Gutig et al. (2003). We adopted the same parameter
values used in Song et al. (2000) and Xue et al. (2013). For
comparison, we used the same 10 networks, replacing
the NMDAR synapses with STDP synapses. Initial synap-
tic weights were kept the same to ensure that the net-
works’ baseline responses to the input stimuli were
comparable to the previous values obtained with NMDAR
synapses. Then we switched on the STDP plasticity and
repeated the single face recognition simulations (Fig. 8A,
STDP’) . Learning accuracy of networks with STDP-only
synapses improved gradually, but it did not reach the
optimum value (rank 1) on average after 15 s of learning.
The NMDAR model which incorporates both STDP and
LTP/LTD was more accurate and more efficient. The net-
work response relative difference after learning with
STDP-only synapses was also much smaller than with
NMDAR synapses (Fig. 8B).
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Note that the STDP mechanism, which is part of the
NMDAR synapses, works through calcium concentration,
whereas the STDP synapse in CSIM works through an equa-
tion which uses the time intervals between presynaptic
spikes and postsynaptic spikes as inputs. On average,
STDP-only plasticity requires repetitive presentation of the
stimulus to develop accurate familiarity. While with NMDAR-
dependent plasticity, networks develop familiarity fast and
efficiently, as required for one-shot learning (Yakovlev et al.,
2008). Therefore, it seems that the calcium control hypoth-
esis is an efficient way of combining the frequency rule
(LTP/LTD) and the timing rule (STDP), enhancing both forms
of plasticity.

Up- and down-states, bursting, and background noise

It has been suggested that being at the “edge of chaos”
(Crutchfield and Young, 1990; Langton, 1990) is desirable
for neural networks performing complex computational
tasks (Bertschinger and Natschlager, 2004). Networks
functioning in regimes that are either too chaotic or too

B

Relative difference [ % ]

01234561738 9101112131415
Learning time [sec]

Figure 8. Impact of STDP and LTP/LTD on familiarity development. A, Rank of network firing rate for the familiar image among 30
testing images is plotted as a function of learning time. The initial rank before learning is 15th on average, while an end rank of 1st
indicates the image is detected as familiar. Single face recognition simulations were repeated with full NMDAR plasticity (STDP and
LTP/LTD); without STDP after removing BPAPs (LTP/LTD); without STDP but after retuning the calcium control hypothesis (LTP/LTD
adjusted); and STDP plasticity alone (STDP’). Error bars represent the SEM of 30 simulations conducted on 10 networks. B, Relative
difference in network firing rate to familiar and novel inputs after learning with different forms of plasticity. The relative difference is
calculated as the discrepancy between network response to familiar input and the average of network responses to novel inputs,
divided by the response to the familiar input after learning. Same simulations and same color code as in A.
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ordered in their response to input stimuli do not perform
well on computational tasks. Legenstein and Maass
(2007) tested the impact of the parameters Wscale and A
in CSIM (see Materials and Methods) for network perfor-
mance on certain classification tasks. Wscale controls the
strength of synaptic connections in CSIM, while A controls
the number and average distance of synaptically con-
nected neurons. The values of Wscale (0.9) and A (4) that
we used in the NMDAR-LSM model were determined
empirically using network performance in the familiarity-
novelty tests, and they happen to be at the transitional
boundary, (between ordered and chaotic responses) iden-
tified by Legenstein and Maass, an area that was reported
to have a good trade-off between accuracy and general-
ization.

Legenstein and Maass also identified the existence of
up and down-states (Cowan and Wilson, 1994) in their
simulated neural network models. These states refer to
dynamic regimes observed in intracellular recordings of
mammalian central nervous system neurons that differ in
their membrane potential and conductance properties. In
the down-states, the membrane potential is hyperpolar-
ized and stable and membrane conductance is low. In the
up-states, the membrane potential is more depolarized,
highly variable and membrane conductance is high, re-
sulting from a continuous bombardment of background
synaptic inputs. In neural networks, up-states are charac-
terized by network-wide synchronized bursting activity
(Johnson and Buonomano, 2007). As no bursting was
observed in our simulations, it seems that the tuned Ws-
cale and A parameters constrained the networks to be in
down-states. To know how bursting would affect the
network performance, we removed the biological bound-
aries of the parameters. In one simulation, we increased
Wscale tenfold while preserving A. Bursting emerged dur-
ing stimulus presentations (Fig. 9A), and we measured
network accuracy through single face recognition simula-
tions and compared the results with the results described
above (Fig. 9B). It turns out that in a bursting network,
network performance is compromised, and more learning
is required for comparable accuracy. Bursting also
emerged with a twofold increase in A while preserving
Wscale, which induced similar impairments of network
accuracy.

Network accuracy is also affected by the amount of
background noise current injected into the neurons (Eq. 1)
during simulation. We measured network accuracy
through single face recognition simulations with back-
ground noise ranging from 1 to 100 nA. Figure 9C shows
that network accuracy is preserved until the noise ex-
ceeds 40 nA, which is unrealistically high compared with
normal ranges used in CSIM. A dramatic performance
decline is seen from 40 to 50 nA, and the corresponding
network responses are exemplified in Figure 9D. Back-
ground noise of 50 nA clearly introduced more random
spikes during simulation. If the number of random spikes
exceeds the discrepancy of firing rate that was previously
used to differentiate familiarity from novelty, it is very likely
to disrupt network performance.
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Discussion

In the simulations described above, we have investi-
gated the ability of recurrent spiking neural networks sup-
plemented with NMDAR plasticity to detect familiar
sensory inputs following unsupervised learning. Unsuper-
vised learning is biologically plausible and has been
shown to be critical for the development of the mamma-
lian central nervous system, for example, in the visual
pathway (Blasdel et al., 1977). In the beard versus no-
beard classification simulations, our neural networks
learned to differentiate “beard” and “no-beard” face im-
ages. The single face recognition simulations were con-
ducted with a more rigorous design to investigate the
specificity of familiarity detection. Networks of 20 X 20 X
5 neurons connected by NMDAR-containing synapses
were able to detect a previously-seen face accurately in
most of the simulations, with a pronounced and specific
increase in overall firing rate for the familiar stimulus.
Responses to the control groups did not deviate far from
baseline.

Our simulations with larger networks (up to 50 X 50 X
6 neurons) indicated that multiple familiarity traces can be
learned and stored. The storage capacity increased with
available network space. Our largest network model
(15,000 neurons) can store familiarity traces for 60 faces,
before accuracy drops to chance level. One possible
explanation is that within large networks, subsets of syn-
aptic connections that are selectively potentiated or de-
pressed for each face can co-exist, reducing the chance
of a new memory overwriting an older one. This observa-
tion suggests a potential resolution for the stability-
plasticity dilemma. Considering there are billions of
neurons in the human brain organized in a very large
number of microcircuits, it seems reasonable, in principal,
that human recognition memory has an apparently limit-
less capacity, as reported by Standing’s experiments
(1973). Nevertheless, it is important to mention that in
Standing’s tests, a two-alternative forced-choice para-
digm was used. In a subsequent study that supported
Standing’s finding on memory capacity (Brady et al.,
2008), the two-choice paradigm was also used. A higher
rate of recall error was reported by Laeng et al. (2007),
when conducting similar image recognition experiments
using a yes-no paradigm with only one picture presented.
Whether the two-choice paradigm is justified as a good
measure for recognition and a good indication for memory
capacity is arguable (Laeng et al., 2007). Our analysis
relied on a comparative paradigm similar to Standing’s
two-alternative tests: to interpret the data and measure
familiarity, a threshold needs to be set for the network
firing rate, which was done empirically comparing familiar
and novel responses. Once the threshold is set, the net-
works can also make yes-no decisions for individual in-
puts (Fig. 4G).

In addition to the specificity and capacity for familiarity
detection, we also noticed a generalization effect in the
responses of the trained networks to input stimuli. Evi-
dence for generalization was observed when, following
training, the response to novel input stimuli was increased
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Figure 9. Effect of bursting and noise. A, Response of a 20 X 20 X 5 up-state network after learning a human face image for 11 s.
A network burst spontaneously emerged in the interval of 0.5-1.0 s when no input stimulus was given. B, Impact of bursting on
network performance. Rank of network firing rate to the familiar image among 30 testing images is plotted as a function of learning
time. Blue represents simulations with down-state networks, the same networks as we used in the single face recognition simulations.
Red represents simulations with up-state networks (Wscale was set tenfold of the original value used in simulation). Error bars are the
SEM of 90 simulations conducted on 30 networks. C, Impact of background noise on network performance. Average rank of network
firing rate to the familiar image among 30 test images after learning for 15 s is plotted as a function of background noise. D, Network
spiking activity of a 20 X 20 X 5 network to the input stimulus, simulated with 40- and 50-nA background noise, respectively.

selectively for those that belonged to the same class as
the trained inputs. In the beard versus no-beard classifi-
cation simulations, generalization was observed when the
trained networks were able to distinguish novel beard
from novel no-beard images. In single face recognition
simulations, the networks generalized familiarity response
to a subset of images from the same class as the pre-
sented stimulus. In the multi-face recognition simulations,
the networks apparently learned the concept face after
training on ten face images: they responded stronger to
novel faces than their scrambled versions. Recall that for
10 X 10 X 5 networks, input neurons were set to form
synapses one-to-one with the first layer of the network
reservoir, whereas for networks of 20 X 20 X 5 or larger
dimension, input neurons were set to form synapses ran-
domly with the network reservoir by probability. Innerva-
tion by probability is a better way to use the network
space and prevents overtraining of the first layer of the
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network reservoir. Meanwhile it disrupts the spatial pat-
terns present in the face images, making the familiarity
detection a high-dimensional challenge. Yet the general-
ization property remained with the randomly projected
inputs, which speaks to the robustness and computa-
tional power of our networks, i.e., learning specificity was
preserved while generalization was acquired. When mul-
tiple inputs from a class were learned, generalization al-
lowed the networks to act as an unsupervised classifier,
by automatically classifying input stimuli based on past
sensory experience. In contrast, conventional classifiers
require properly labeled data of all classes to be trained.

Fisher’s discriminant analyses suggest that familiariza-
tion occurred in high-dimensional feature space. Network
connections were modified and neurons in hidden circuits
were recruited to respond to familiar inputs. Neurons
hidden from the input layer are analogous to neurons from
deep layers of a feed-forward network, or neurons from

eNeuro.org



eMeuro

the downstream circuits in higher-order brain regions.
Their recruitment suggests how signals can be relayed to
brain regions other than the primary processing region
and cause differences in neuronal activity. As the deep-
layer neurons showed unique firing patterns to the familiar
stimulus, their activity can be used to identify the input
pattern, a function similar to the “grandmother-cells”
identified by in vivo brain recordings (Quiroga et al., 2005).
For decades neuroscientists have debated the possible
forms of information encoding in the brain, such as par-
allel distributed processing versus single neuron firing.
Results presented here show they are not mutually exclu-
sive. While a familiar input is encoded in a network of
thousands of neurons, it may also selectively activate
single neurons in deep layers.

Familiarity studies stemmed from experiments at the be-
havioral level. Several groups have conducted experiments
with the familiarity/novelty paradigm in vivo. Studies using
fMRI measurements (Kosaka et al., 2003; Gobbini and
Haxby, 2006) found an increase in the BOLD signal to famil-
iar stimuli. Recordings in the inferior temporal lobe of behav-
ing monkeys have demonstrated differential responses to
novel and familiar images (Anderson et al., 2008). Interest-
ingly, familiar images evoked larger-amplitude local field
potentials, whereas multi-unit spiking responses were
greater for novel images. Finally, a phenomenon called
stimulus-selective response potentiation was identified in
rodent visual cortex recordings (Frenkel et al., 2006; Cooke
and Bear, 2010; Gavornik and Bear, 2014). It is a form of
experience-dependent response enhancement during visual
experiments. We think it supports the existence of intrinsic
familiarity in the visual cortex.

A few neural network models have been proposed to
study network-level learning and memory. Several of
them applied STDP to various network architectures. For
example, a few groups (Lazar et al., 2007; Oliveri et al.,
2007; Xue et al., 2013) investigated LSMs with STDP and
the results suggested an enhanced computational capa-
bility. In these models, STDP was either applied to train
readout neurons or to modulate neuron excitability, rather
than allowing it to directly modify synaptic weights in the
network. Studies that used neural networks other than
LSMs (Clopath et al., 2010; Carlson et al., 2013; Klampfl
and Maass, 2013; Zheng et al., 2013; Srinivasa and Cho,
2014) have reported emerging learning and memory after
applying STDP to recurrent network architectures. Never-
theless, the networks they used are either of a preim-
posed wiring diagram (Klampfl and Maass, 2013) or highly
simplified (Srinivasa and Cho, 2014), and therefore poorly
replicate cortical microcircuits. Furthermore, these stud-
ies solely consider STDP for plasticity while we combine
the two major forms of plasticity, LTD/LTP (frequency rule)
and STDP (timing rule), based on the calcium control
hypothesis, rather than phenomenological equations. Ev-
idence for the interplay of LTD/LTP and STDP has been
found in the literature, and separating them by firing rate
or spike timing might lead to an artificial dichotomy
(Sjostrom et al., 2001). Our simulation results suggest a
mutual-enhancing effect by combining STDP with LTP/
LTD, and this could potentially explain one-shot familiarity
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memory (Yakovlev et al., 2008). Additionally, some of the
reported models require homeostatic control (Clopath
et al., 2010; Carlson et al., 2013; Zheng et al., 2013) or
inhibitory-STDP (Srinivasa and Cho, 2014) to attain net-
work stability, but in our NMDAR-LSM networks, we relied
on the intrinsic balance between LTD and LTP instanti-
ated by the calcium control hypothesis for stability.

The plasticity model we implemented was created to
model bidirectional synaptic plasticity through NMDARs
(Shouval et al., 2002). Whether NMDARs are solely re-
sponsible for this form of plasticity is still controversial, as
voltage-dependent Ca2" channels (Nevian and Sakmann,
2006) and metabotropic glutamate receptors (Gladding
et al., 2009) have been reported to be capable of inducing
synaptic plasticity as well. Yet there is growing evidence
that bidirectional modifications can be induced through
NMDAR-dependent pathways alone (Hunt et al., 2013;
Huang et al., 2014). The results presented here demon-
strate that bidirectional synaptic plasticity is sufficient to
endow neural network models of generic cortical micro-
circuits with the ability to detect familiar sensory inputs
through unsupervised learning. This has important con-
sequences for mammalian brain development, since it
suggests that these universal building blocks of the cortex
have an inherent ability for familiarity detection.

In NMDAR-LSM networks, recurrent spiking neural net-
works expand input stimuli into high-dimensional feature
space (Maass et al., 2002). Unsupervised learning altered
the feature space to allow linear separation of familiar
from novel faces, by formation of subnetworks specific for
each input stimulus. Learning multiple inputs belonging to
aclass (e.g., beard, face) resulted in generalization, allow-
ing the network to classify novel input stimuli. This rela-
tionship between familiarity detection, generalization, and
classification needs to be studied in more depth.

Note Added in Proof: The title of the article was incor-
rectly listed in the Early Release version. The title has now
been corrected.
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