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Background: Chronic gastritis along with Helicobacter pylori (H. pylori) infection has been
implicated in inflammatory response-related genes linked to the causation of gastric
cancer. Glutathione S-transferase Pi (GSTP1) plays a role in regulating oxidative stress
and detoxification against carcinogenesis. In this study, we aimed to determine whether
an antioxidant-rich diet is associated with gastric cancer risk and identify how this
association could be altered by GSTP1 genetic variants.

Methods: This study included 1,245 participants (415 cases and 830 controls) matched
for age and sex. The dietary antioxidant capacity was estimated based on the oxygen
radical absorbance capacity (ORAC) incorporated with a semiquantitative food frequency
questionnaire. Five single nucleotide polymorphisms (SNPs) of GSTP1 (rs1695,
rs749174, rs1871042, rs4891, and rs947895) were selected among the exome array
genotype data.

Results: High dietary ORAC was inversely associated with gastric cancer (hydrophilic
ORAC OR T3 vs. T1, 95% CI = 0.57, 0.39–0.82, P = 0.004; lipophilic ORAC = 0.66, 0.45–
0.95, P = 0.021; total phenolics = 0.57, 0.39–0.83, P = 0.005). The polymorphism
rs1871042 increased the risk of gastric cancer (OR, 95% CI = 1.55, 1.10–2.16, P = 0.01,
CT+TT vs. CC). A remarkably reduced risk of gastric cancer was observed among those
who had a high dietary ORAC according to rs1871042 polymorphism (hydrophilic ORAC
OR T3 vs. T1, 95% CI = 0.36, 0.17–0.78, P for trend = 0.013; lipophilic ORAC = 0.58, 0.37–
0.93, P for trend = 0.021; total phenolics = 0.38, 0.17–0.83, P for trend = 0.019).

Conclusions:Our findings indicate that dietary ORAC intake may be inversely associated
with the risk of gastric cancer altered by genetic variants of GSTP1, providing new
intervention strategies for gastric cancer patients.

Keywords: gastric cancer, oxygen radical absorbance capacity, glutathione S-transferase Pi, oxidative
stress, antioxidants
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BACKGROUND

Gastric cancer (GC) was the leading cause of cancer death and
the fifth most common cancer worldwide in 2018 (1). Although
the global incidence rates of GC have declined, the incidence of
GC in East Asia, including Korea, remains high (1, 2). There are
several major risk factors for the development of GC, including
Helicobacter pylori (H. pylori) infection, smoking, alcohol
consumption, obesity, and excess sodium intake (2). Generally,
H. pylori infection is a known carcinogen and a strong risk factor
for non-cardia GC by the classical histopathologic Correa
cascade, consequently resulting in GC (3–5). Helicobacter
pylori infection is particularly associated with an increased risk
of not only non-cardia GC but also cardia GC according to
several studies targeting East Asian countries, such as Korea (5,
6). In addition, evidence suggests that gastritis derived from
chronic inflammation of normal mucosa may be linked to
various other dietary factors, such as a high intake of salted or
preserved foods and grilled or processed meats and a low intake
of fruits (7, 8).

Dietary effects have been reported to mediate the risk of
cancer by playing a role in either the prevention of cellular
carcinoma or diet-induced carcinogenesis (9, 10). Helicobacter
pylori infection is required to consider the causes of GC derived
from either direct or indirect inflammation in the gastric mucosa
(11, 12). Cumulative studies have reported that multiple
H. pylori-induced inflammatory responses from reactive
oxygen species (ROS) can be suppressed by bioactive
compounds abundant in fruits and vegetables (13, 14).
Moreover, current studies have consistently demonstrated that
a variety of bioactive compounds, such as phytochemicals, play
pivotal roles in sympathetic activation ranging from the
inhibition of cellular proliferation to the suppression of
metastasis in gastric carcinoma cells (15–17). Given that the
risk of GC is linked to dietary factors and the inflammatory
response associated with H. pylori infection, this study focused
on exploring the integrated and synergistic effects of antioxidants
on GC using the oxygen radical absorbance capacity (ORAC) of
a diet. The ORAC is an experimental value representing the total
antioxidant capacity (TAC) and is used to indicate the capacity
to scavenge free radicals from food components indicating
hydrophilic ORAC (H-ORAC), lipophilic ORAC (L-ORAC),
and total phenolics (TPs) (18). The use of ORAC to assess
dietary effects on disease has the advantage of exploring the
antioxidant activity of food rather than that of a specific nutrient
(19). Based on the benefits of using ORAC, an examination of the
Abbreviations: BMI, body mass index; CCPD, Center for Cancer Prevention and
Detection; CGC, Center for Gastric Cancer; CI, confidence intervals; GC, gastric
cancer; GST, glutathione S-transferases; GSTP1, glutathione S-transferase Pi;
GWASs, genome-wide association studies; H-ORAC, hydrophilic oxygen radical
absorbance capacity; H. pylori, Helicobacter pylori; HWE, Hardy-Weinberg
equilibrium; LD, linkage disequilibrium; L-ORAC, lipophilic oxygen radical
absorbance capacity; MAF, minor allele frequency; NCC, National Cancer
Center; OR, odds ratios; ORAC, oxygen radical absorbance capacity; QC,
quality control; ROS, reactive oxygen species; SNP, single nucleotide
polymorphism; SQFFQ, semiquantitative food frequency questionnaire; TAC,
total antioxidant capacity; TPs, total phenolics.
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antioxidant capacity of a diet using this metric in the context of
GC risk with inflammation and H. pylori infection is needed.

Among the inflammation- and oxidative stress-related genes,
glutathione S-transferase Pi (GSTP1) is a cytosolic detoxifying
enzyme that encodes Pi-class glutathione S-transferases (GST)
and is involved in phase II xenobiotic metabolism by conjugating
glutathione with hydrophobic and electrophilic substrates (20–
22). The deregulation ofGSTP1 contributes to inducing oxidative
stress by producing excessive ROS, leading to various types of
tumors, including esophageal, stomach, lung, breast, and
colorectal cancer (23–31). Regarding the risk of GC, studies
exploring genetic polymorphisms of GSTP1 revealed the role of
GSTP1 in and relevance of GSTP1 for GC susceptibility (26, 27).
Some epidemiological studies have reported a significant
association between GSTP1 rs1695 and the risk of GC (32, 33).
One genetic polymorphism of GSTP1, namely, c.313 A > C
(rs1695) in exon 5, results in an amino acid change (A to G) of
isoleucine (Ile) to valine (Val), leading to impaired detoxification
and catalytic activity (34). Furthermore, different genotypes of
GSTP1 rs1695 have significant interaction effects with
environmental factors, including H. pylori infection, smoking,
and alcohol consumption on the risk of GC (35–37). However,
evidence regarding the associations between dietary factors and
GSTP1 polymorphisms in the context of GC risk based on the
effects of antioxidants and imbalanced oxidative stress
mechanisms is insufficient.

Given these points, we selected five single nucleotide
polymorphisms (SNPs; rs1695, rs749174, rs1871042, rs4891,
and rs947895) in GSTP1 that were found among the 713,348
SNPs assayed in a Korean population based on quality control
(QC) criteria in genome-wide association studies (GWASs),
determined the association between ORAC and GC, and
examined whether this association was modified by GSTP1.
The aim of this study was to identify how dietary ORAC
intake is associated with GC risk alterations by GSTP1 genetic
variants. We evaluated whether dietary ORAC intake affects the
risk of GC. Additionally, we explored the associations between
GC risk and ORAC intake according to GSTP1 genotypes.
MATERIALS AND METHODS

Study Population
This case-control study was conducted at the Center for Gastric
Cancer (CGC) and the Center for Cancer Prevention &
Detection (CCPD) of the National Cancer Center (NCC) in
Korea between March 2011 and December 2014. The cases were
recruited among patients who were diagnosed with early GC
within the preceding 3 months with confirmed invasive
carcinoma in the CGC. Individuals with diabetes mellitus,
severe systemic or mental disease, or a history of cancer and
women who were pregnant or breastfeeding were excluded. The
control group comprised individuals who underwent health
screening check-ups at the CCPD at the same hospital.
Participants in the control group who had diabetes mellitus,
gastric or duodenal ulcers, a history of cancer, or previous
January 2021 | Volume 10 | Article 596355
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H. pylori treatment were excluded. Of these initial 1,727
participants who were enrolled in this study, 56 individuals
with an incomplete semiquantitative food frequency
questionnaire (SQFFQ) and 15 individuals with an implausible
total energy intake (< 500 or > 4,000 kcal/day) were excluded.
Among the remaining 1,656 participants, the cases and controls
were frequency-matched at a ratio of 1:2 (case: control) by 5-year
age groups and sex. Regarding the genetic variants of GSTP1, we
excluded low-quality samples and markers from the cases and
controls as follows: rs1695 (n = 38 and n = 74), rs749174 (n = 50
and n = 113), rs1871042 (n = 50 and n = 113), rs4891 (n = 44 and
n = 91), and rs947895 (n = 50 and n = 113). Consequently, the
total population included the final analysis was as follows: rs1695
(n = 1,133), rs749174 (n = 1,082), rs1871042 (n = 1,082), rs4891
(n = 1,110), and rs947895 (n = 1,082) (Figure 1). This study was
approved by the Institutional Review Board (IRB) of NCC (IRB
number: NCCNCS-11-438), and written informed consent was
obtained from all participants.

Data Collection and Dietary Antioxidant
Capacity Based on the ORAC Database
The sociodemographic characteristics were collected from each
participant using a self-administered questionnaire. The status of
H. pylori infection was assessed histologically or serologically
from at least a positive result on a rapid urease test (Pronto Dry,
Medical Instruments Corporation, Solothurn, Switzerland). The
dietary intake data were obtained using a validated and reliable
106-item SQFFQ administered by a well-trained interviewer
(38). The daily nutrient intake was calculated based on a
combination of average intake frequency (never or rarely, 1
time per month, 2–3 times per month, 1–2 times per week, 3–
4 times per week, 5–6 times per week, one time per day, two
times per day, and three times per day) and the portion size
(small, medium, and large) using CAN-PRO 4.0 (computer aided
nutritional analysis program, Korean Nutrition Society,
Seoul, Korea).

To estimate the values of the dietary antioxidant capacity, the
ORAC database from the USDA release 2 was incorporated into
our dietary intake data according to the food description (39).
Our previous study reported the associations between dietary
ORAC intake and interleukin-6 levels regarding the risk of
colorectal cancer (40). Briefly, the ORAC database contains the
antioxidant activity level of 326 food items. To calculate the
dietary ORAC of each participant, the 106-item SQFFQ was
integrated into the ORAC database by common food items. Of
these food sources, 56 food items, including mostly fruits and
vegetables, from the SQFFQ were considered to have antioxidant
compounds and selected for the analysis in this study. It reported
H-ORAC and L-ORAC as mmol of trolox equivalents per 100 g
(mmol TE/100 g) and TPs as mg gallic acid equivalents per 100 g
(mg GAE/100 g). We calculated each daily index of ORAC
through the same process applied in the daily nutrient intake.

Genotyping and SNP Selection
In this study, the SNPs of GSTP1 were selected based on our
previous study using exome array genotype data as described
Frontiers in Oncology | www.frontiersin.org 3
elsewhere (41). The genomic DNA samples were extracted from
the peripheral blood leukocytes of all participants. The
genotyping was performed using an Affymetrix Axiom®

Exome 319 Array containing 318,983 SNPs (Affymetrix Inc.,
Santa Clara, CA, USA). In the QC procedure applied to genotype
data, the samples and genetic markers were excluded according
to the call rate (< 95%), deviation from HWE, and MAF (< 0.01)
(41, 42). After genotype imputation with an Asian population of
1000 Genome haplotypes phase III, we selected five SNPs of
GSTP1 (rs1695, rs749174, rs1871042, rs4891, and rs947895) for
further analysis (Supplementary Table S1). The LD patterns of
the SNPs were analyzed for the efficient selection of tag SNPs in
GSTP1 according to the pairwise D’ and r2 using Haploview (43).

Statistical Analysis
The differences in the sociodemographic, anthropometric,
lifestyle factors, and total energy intake between the cases and
controls were assessed by using the c2 test for categorical
variables and Student’s t-test for continuous variables. The
dietary ORAC intake and foods contributing to each ORAC,
covering up to 90% of the cumulative contribution of 56 food
items, were compared between the cases and controls by using a
Wilcoxon signed-rank test because of its distribution
(Supplementary Tables S2–S4). Energy-adjusted ORAC values
and their contributing foods adjusted by a residual method were
used in the analyses (44). The values of H-ORAC, L-ORAC, and
TPs were divided into three groups depending on the median
value of the controls. To analyze the associations among dietary
ORAC intake, GSTP1 polymorphisms and GC risk,
unconditional logistic models were constructed to estimate the
odds ratios (OR) and 95% confidence intervals (95% CI) of the
risk of GC while considering potential confounding factors, such
as age, BMI, education level, income, physical activity, smoking
status, first-degree family history of GC, and total energy intake
identified by the backward selection procedure in a stepwise
regression analysis. The H. pylori infection status was
additionally considered in the final statistical models. The
analyses of the associations between dietary ORAC intake and
GC risk were also stratified by GSTP1 SNPs, particularly in the
dominant model. All tests were performed using the SAS package
(SAS 9.4; SAS Institute Inc., Cary, NC, USA) with a two-sided P-
value of 0.05 regarded as significant.
RESULTS

General Characteristics
Table 1 shows the distribution of the sociodemographic
characteristics and dietary ORAC intake in the cases and
controls. The GC patients had a higher prevalence of positive
H. pylori infection, a first-degree family history of GC and
current smoking status, and a lower prevalence of regular
exercise, education level, and income than the control group (P
< 0.05). However, no differences in age, sex, BMI, or alcohol
consumption were observed.
January 2021 | Volume 10 | Article 596355
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The cases had a higher intake of daily total energy than the
controls (1,924.11 ± 612.91 kcal/day vs. 1,713.59 ± 545.52 kcal/day,
P < 0.001). Regarding the three components of dietary ORAC
intake, the mean and median values of H-ORAC, L-ORAC, and
Frontiers in Oncology | www.frontiersin.org 4
TPs in the cases were lower than those in the controls (mean intake;
H-ORAC, 3,443.90 ± 2,988.95 mmol TE/day vs. 4,485.77 ± 3,371.96
mmol TE/day, P < 0.001; L-ORAC, 166.75 ± 97.75 mmol TE/day
vs. 197.75 ± 117.55 mmol TE/day, P < 0.001; TPs, 307.85 ± 282.93
FIGURE 1 | Flow chart of study subjects.
January 2021 | Volume 10 | Article 596355
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mg GAE/day vs. 423.17 ± 367.41 mg GAE/day, P < 0.001, cases
vs. controls).

Association Between Dietary ORAC Intake
and GC Risk
The associations between each index of dietary ORAC intake and
GC risk are presented in Table 2. Compared to the lowest tertiles
of H-ORAC, L-ORAC, and TPs, the highest tertiles of these
three indices were significantly associated with GC risk after
adjusting for all confounding factors. A decreased risk of GC was
observed in those with a higher dietary ORAC intake as follows:
H-ORAC (OR T3 vs. T1, 95% CI = 0.57, 0.39–0.82, P = 0.004);
L-ORAC (OR T3 vs. T1, 95% CI = 0.66, 0.45–0.95, P = 0.021); and
TPs (OR T3 vs. T1, 95% CI = 0.57, 0.39–0.83, P = 0.005).
Frontiers in Oncology | www.frontiersin.org 5
Haplotype of GSTP1 Polymorphisms
and Association With GC Risk
The minor allele frequencies of the five SNPs (rs1695, rs749174,
rs1871042, rs4891, and rs947895) were common (minor allele
frequency, MAF > 5%), and the genotype frequencies of the SNPs
were consistent with Hardy-Weinberg equilibrium (HWE)
(Supplementary Table S1). We identified the linkage
disequilibrium (LD) structure of the five SNPs using a pairwise
LD test (Figure 2). We observed that all five SNPs of GSTP1 gene
were in the same block with high LD, supporting the strong
correlation among the five SNPs in this study. According to the
LD patterns with r2 > 0.8, tag SNPs (rs1695 and rs1871042) in
GSTP1 were selected. Table 3 presents the associations between
GSTP1 variants and GC risk. Apart from H. pylori infection, an
TABLE 1 | General characteristics of study subjects.

Controls (n=830) Cases (n=415) P-valuea

Age (years)
Mean ± SD 53.7 ± 9.0 53.8 ± 9.3 0.89
Sex (n, %)
Male 540 (65.1) 270 (65.1) >0.99
Female 290 (34.9) 145 (34.9)
BMI (kg/m2) (n, %)
<25 563 (67.9) 281 (67.9) 0.99
≥25 266 (32.1) 133 (32.1)
H. pylori infection (n, %)
Positive 486 (60.3) 382 (92.1) <0.001
Negative 320 (39.7) 33 (8.0)
Family history of GC (n, %) b

Yes 103 (12.4) 82 (19.8) <0.001
No 725 (87.6) 332 (80.2)
Physical activity (n, %)
Yes 466 (56.4) 147 (35.4) <0.001
No 361 (43.7) 268 (64.6)
Smoking status (n, %)
Current smoker 162 (19.5) 128 (30.9) <0.001
Ex-smoker 284 (34.2) 119 (28.7)
Non-smoker 384 (46.3) 167 (40.3)
Alcohol consumption (n, %)
Current drinker 534 (64.3) 254 (61.4) 0.24
Ex-drinker 60 (7.2) 41 (9.9)
Non-drinker 236 (28.4) 119 (28.7)
Education (n, %)
Less than college 372 (46.6) 316 (76.5) <0.001
College and higher 426 (53.4) 97 (23.5)
Income (10,000 won/month) (n, %)
<200 149 (19.5) 133 (35.3) <0.001
200- < 400 341 (44.7) 148 (39.3)
≥400 273 (35.8) 96 (25.5)

Total energy (kcal/day) 1,713.59 ± 545.52 1,924.11 ± 612.91 <0.001
Dietary ORAC c

H-ORAC (mmol TE/day) 4,485.77 ± 3,371.96 3,443.90 ± 2,988.95 <0.001
Median (IQR) 3,598.63 (2,222.82, 5,666.39) 2,577.97 (1,637.04, 4,037.94)
L-ORAC (mmol TE/day) 197.75 ± 117.55 166.75 ± 97.75 <0.001
Median (IQR) 176.08 (118.16, 244.92) 146.18 (100.28, 208.92)
TPs (mg GAE/day) 423.17 ± 367.41 307.85 ± 282.93 <0.001
Median (IQR) 319.78 (192.53, 537.90) 216.70 (145.00, 368.61)
January 2021 | Volume 10 | Artic
ORAC, oxygen radical absorbance capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic oxygen radical absorbance capacity; TPs, total phenolics; TE,
trolox equivalents; GAE, gallic acid equivalents; IQR, interquartile range. aP-values were calculated the c2 test for the categorical variables and a t-test for the continuous variables. b First-
degree. cDietary ORAC were adjusted for the total energy intake using the residual method, and the p-values were calculated using a Wilcoxon signed-rank test.
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increased risk of GC was found among those with heterozygous
variants of GSTP1, namely, rs1871042 (OR, 95% CI = 1.60, 1.14–
2.23, P = 0.006, CT vs. CC). When genetic models of each SNP were
compared, the dominant model showed significant associations, but
the recessive model did not. In the dominant model, an increased
Frontiers in Oncology | www.frontiersin.org 6
risk of GC was observed in those who carried T allele of rs1871042
(OR, 95% CI = 1.56, 1.13–2.16, P = 0.007, CT+TT vs. CC). After
adjusting for confounders, a heterozygous variant of rs1871042
showed a significant association with GC risk (OR, 95% CI = 1.58,
1.12–2.25, P = 0.01, CT vs. CC). In the comparisons within the
dominant genetic model, a modest and borderline association was
observed between rs1871042 of GSTP1 and GC risk (OR, 95% CI =
1.55, 1.10–2.16, P = 0.010, CT+TT vs. CC). However, there was no
association between rs1695 polymorphism and GC risk.
Additionally, the remaining SNPs in GSTP1 showed associations
with GC risk in the dominant genetic model as follows: rs749174
(OR, 95% CI = 1.55, 1.11–2.17, P = 0.010, GA+AA vs. GG); rs4891
(OR, 95% CI = 1.52, 1.09–2.10, P = 0.012, TC+CC vs. TT); and
rs947895 (OR, 95% CI = 1.55, 1.10–2.16, P = 0.011, CA+AA vs. CC)
(Supplementary Table S5).

Association Between Dietary ORAC Intake
and GC Risk by rs1871042 Polymorphism
of GSTP1 Gene
Table 4 shows the associations between dietary intake and GC
risk in the dominant model of rs1871042 GSTP1 polymorphism.
Inverse associations between dietary H-ORAC intake and GC
risk were observed among those with the rs1871042 T allele after
fully adjusting for potential confounders (OR T3 vs. T1, 95% CI =
0.36, 0.17–0.78, P = 0.013). The analysis showed a similar pattern
between dietary TPs intake and GC risk (OR T3 vs. T1, 95% CI =
0.38, 0.17–0.83, P = 0.019). However, a high intake of dietary L-
ORAC decreased the GC risk with a homozygous variant of CC
genotype (OR T3 vs. T1, 95% CI = 0.58, 0.37–0.93, P = 0.021).
Without considering H. pylori infection status, higher H-ORAC
and TPs intake were consistently associated with a decreased risk
of GC with rs1871042 T allele (H-ORAC OR T3 vs. T1, 95% CI =
0.31, 0.15–0.64, P = 0.003; TPs OR T3 vs. T1, 95% CI = 0.34, 0.16–
TABLE 2 | Association between dietary oxygen radical absorbance capacity (ORAC) intake and gastric cancer (GC) risk.

Dietary ORAC P for trend

T1 T2 T3

H-ORAC (mmol TE/day) <2,655.07 2,655.07–4,759.10 ≥4,759.11
No. Controls/Cases 277/215 276/117 277/83
Model I OR (95% CI) 1.0 (ref) 0.55 (0.41–0.72) 0.39 (0.29–0.52) <0.001
Model II OR (95% CI) 1.0 (ref) 0.61 (0.44–0.85) 0.54 (0.38–0.76) <0.001
Model III OR (95% CI) 1.0 (ref) 0.65 (0.46–0.92) 0.57 (0.39–0.82) 0.004
L-ORAC (mmol TE/day) <139.97 139.97–215.48 ≥215.49
No. controls/cases 276/190 277/133 277/92
Model I OR (95% CI) 1.0 (ref) 0.70 (0.53–0.92) 0.48 (0.36–0.65) <0.001
Model II OR (95% CI) 1.0 (ref) 0.74 (0.54–1.02) 0.53 (0.44–0.88) 0.007
Model III OR (95% CI) 1.0 (ref) 0.72 (0.51–1.01) 0.66 (0.45–0.95) 0.021
TPs (mg GAE/day) <230.09 230.09–445.51 ≥445.52
No. controls/cases 277/220 276/117 277/78
Model I OR (95% CI) 1.0 (ref) 0.53 (0.40–0.71) 0.36 (0.26–0.48) <0.001
Model II OR (95% CI) 1.0 (ref) 0.61 (0.44–0.84) 0.52 (0.37–0.75) 0.001
Model III OR (95% CI) 1.0 (ref) 0.64 (0.45–0.90) 0.57 (0.39–0.83) 0.005
January 2021 | Volume 10 | Ar
ORAC, oxygen radical absorbance capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic oxygen radical absorbance capacity; TPs, total phenolics; TE,
trolox equivalents; GAE, gallic acid equivalents; T, tertile; OR, odds ratio; 95% CI, 95% confidence interval. Model I: crude OR; model II: age (continuous), BMI (<25 kg/m2 or ≥25 kg/m2),
education level (less than college or college and higher), income (<200, 200- <400 or ≥400), physical activity (yes or no), smoking status (current, ex- or non-smoker), first-degree family
history of GC (yes or no), and total energy intake; model III: additionally, adjusted for H. pylori infection (positive or negative).
Bold values mean the significant values (p<0.05) for the visual effect.
FIGURE 2 | Haploview linkage disequilibrium (LD) patterns of GSTP1
polymorphisms in chromosome 11. Pairwise LD is expressed as D’ (colors)
and r2 (numbers). Arrows indicate Tag SNPs of GSTP1 gene.
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0.71, P = 0.005). Moreover, higher L-ORAC and TPs intake was
associated with a reduced risk of GC in those with the minor
allele (L-ORAC OR T3 vs. T1, 95% CI = 0.58, 0.37–0.91, P = 0.016;
TPs OR T3 vs. T1, 95% CI = 0.61, 0.38–0.97, P = 0.046). The
Frontiers in Oncology | www.frontiersin.org 7
remaining SNPs (rs749174, rs4891, and rs947895) in GSTP1
showed similar patterns of association with dietary ORAC intake
on GC risk (Supplementary Table S6). Regarding the
interaction effect between dietary ORAC intake and GSTP1
TABLE 3 | Association between tag single nucleotide polymorphisms (SNPs) of GSTP1 gene and gastric cancer (GC) risk.

GSTP1 SNPs No. controls/cases Model I OR (95% CI) P-valuea Model II OR (95% CI) P-valuea Model III OR (95% CI) P-valuea

rs1695
AA 505/242 1.0 (ref) 1.0 (ref) 1.0 (ref)
AG 225/116 1.08 (0.82–1.41) 0.60 1.34 (0.98–1.84) 0.07 1.33 (0.95–1.85) 0.08
GG 26/19 1.53 (0.83–2.81) 0.18 1.42 (0.69–2.90) 0.34 1.44 (0.68–3.08) 0.34
Dominant
AA 505/242 1.0 (ref) 1.0 (ref) 1.0 (ref)
AG+GG 251/135 1.12 (0.87–1.46) 0.38 1.35 (1.00–1.83) 0.05 1.34 (0.98–1.85) 0.07
Recessive
AA+AG 730/358 1.0 (ref) 1.0 (ref) 1.0 (ref)
GG 26/19 1.49 (0.81–2.73) 0.20 1.29 (0.63–2.63) 0.48 1.32 (0.62–2.79) 0.47
rs1871042
CC 523/247 1.0 (ref) 1.0 (ref) 1.0 (ref)
CT 174/107 1.30 (0.98–1.73) 0.07 1.60 (1.14–2.23) 0.006 1.58 (1.12–2.25) 0.01
TT 20/11 1.17 (0.55–2.47) 0.69 1.31 (0.55–3.08) 0.54 1.25 (0.51–3.06) 0.63
Dominant
CC 523/247 1.0 (ref) 1.0 (ref) 1.0 (ref)
CT+TT 194/118 1.29 (0.98–1.69) 0.07 1.56 (1.13–2.16) 0.007 1.55 (1.10–2.16) 0.010
Recessive
CC+CT 697/354 1.0 (ref) 1.0 (ref) 1.0 (ref)
TT 20/11 1.08 (0.51–2.29) 0.83 1.15 (0.49–2.70) 0.75 1.10 (0.45–2.67) 0.84
Janua
ry 2021 | Volume 10 | Artic
OR, odds ratio; 95% CI, 95% confidence interval. aP-values were calculated using the c2 test. Model I: crude OR; model II: age (continuous), BMI (<25 kg/m2 or ≥25 kg/m2), education level
(less than college or college and higher), income (<200, 200- <400 or ≥400), physical activity (yes or no), smoking status (current, ex- or non-smoker), first-degree family history of GC (yes
or no), and total energy intake; model III: additionally, adjusted for H. pylori infection (positive or negative).
Bold values mean the significant values (p<0.05) for the visual effect.
TABLE 4 | Association between dietary oxygen radical absorbance capacity (ORAC) intake and gastric cancer (GC) risk by rs1871042 polymorphism of GSTP1 gene.

GSTP1 No. controls/
cases

Model I OR (95% CI) Model II OR (95% CI) Model III OR (95% CI)

rs1871042 (dominant) CC CT
+TT

CC CT+TT CC CT+TT CC CT+TT

H-ORAC (mmol TE/
day)

T1 (<2,655.88) 175/
122

61/65 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

T2 (2,655.88–
4,759.10)

175/73 64/31 0.60 (0.42–
0.86)

0.46 (0.26–
0.79)

0.75 (0.49–
1.15)

0.33 (0.16–
0.68)

0.77 (0.49-
1.20)

0.39 (0.19-
0.82)

T3 (>4,759.10) 173/52 69/22 0.43 (0.29–
0.64)

0.30 (0.17–
0.54)

0.63 (0.40–
1.00)

0.31 (0.15–
0.64)

0.65 (0.41-
1.05)

0.36 (0.17-
0.78)

P for trend < 0.001 < 0.001 0.06 0.003 0.084 0.013
L-ORAC (mmol TE/
day)

T1 (<140.01) 170/
115

65/49 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

T2 (140.01-215.68) 175/76 66/44 0.64 (0.45–
0.92)

0.88 (0.52–
1.51)

0.68 (0.44–
1.03)

0.80 (0.41–
1.53)

0.67 (0.43-
1.03)

0.66 (0.33-
1.33)

T3 (>215.68) 178/56 63/25 0.47 (0.32–
0.68)

0.53 (0.29–
0.95)

0.58 (0.37-
0.91)

0.80 (0.39–
1.64)

0.58 (0.37-
0.93)

0.86 (0.40-
1.86)

P for trend < 0.001 0.035 0.016 0.524 0.021 0.642
TPs (mg GAE/day) T1 (<230.58) 170/

127
67/65 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

T2 (230.58-445.51) 175/69 62/33 0.53 (0.37–
0.76)

0.55 (0.32–
0.94)

0.66 (0.43–
1.01)

0.47 (0.24–
0.94)

0.70 (0.45-
1.09)

0.45 (0.22-
0.92)

T3 (>445.51) 178/51 65/20 0.38 (0.26–
0.57)

0.32 (0.17–
0.58)

0.61 (0.38–
0.97)

0.34 (0.16–
0.71)

0.64 (0.40-
1.04)

0.38 (0.17-
0.83)

P for trend < 0.001 < 0.001 0.046 0.005 0.087 0.019
ORAC, oxygen radical absorbance capacity; H-ORAC, hydrophilic oxygen radical absorbance capacity; L-ORAC, lipophilic oxygen radical absorbance capacity; TPs, total phenolics; TE,
trolox equivalents; GAE, gallic acid equivalents; T, tertile; OR, odds ratio; 95% CI, 95% confidence interval. Model I: crude OR; model II: age (continuous), BMI (<25 kg/m2 or ≥25 kg/m2),
education level (less than college or college and higher), income (<200, 200- <400 or ≥400), physical activity (yes or no), smoking status (current, ex- or non-smoker), first-degree family
history of GC (yes or no), and total energy intake; Model III: additionally adjusted for H. pylori infection (positive or negative).
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rs1871042 polymorphism on gastric cancer risk, each dietary
ORAC intake was divided into low and high groups based on
the median level of the intake of controls (Supplementary Table
S7). Although there are no interaction effects between dietary
ORAC intake and GSTP1 rs1871042 polymorphism on gastric
cancer, a high intake of ORAC significantly reduced the risk
of gastric cancer in patients homozygous for CC at rs1871042
after adjusting for potential confounding factors (OR, 95% CI:
H-ORAC = 0.63, 0.44–0.91; L-ORAC = 0.60, 0.42–0.87; TPs =
0.68, 0.47-0.99). However, a low intake of H-ORAC and TPs
while carrying a T allele (CT+TT) increased the risk of gastric
cancer compared with that observed in the CC homozygous
patients (OR, 95% CI: H-ORAC = 1.64, 1.08–2.49; TPs = 1.67,
1.11–2.53).
DISCUSSION

The present study aimed to determine the association between
dietary ORAC intake and GC risk according to GSTP1 genetic
variants. A high dietary intake of ORAC was significantly
associated with a decreased risk of GC in a Korean population.
Regarding the genetic variants of GSTP1 gene, dietary ORAC
intake was inversely associated with GC risk according to GSTP1
rs1871042 genotypes.

Gastric adenocarcinoma occurs when normal mucosa cells
are continuously exposed to a variety of carcinogens that lead to
uncontrolled cell proliferation in the gastric mucosa membrane
(45). The following two major mechanisms are linked to the
development of GC with H. pylori infection: (1) epigenetic
alterations in gastric epithelial cells by H. pylori infection and
(2) H. pylori-induced inflammation in the gastric mucosa (46).
Many studies have shown that persistent inflammation, through
cytokines, chemokines, growth factors, and oxygen-derived free
radicals is responsible for GC risk associated with H. pylori
infection (46, 47). The role of oxidative stress from inflammation
in GC has been determined, suggesting the importance of a
balance between radical production and the antioxidant defense
system (48). Numerous studies have reported that the intake of
fruits and vegetables is inversely associated with GC risk, while
some studies found no such associations (49–53). Specifically, a
high intake of fruits by H. pylori-negative subjects decreased the
risk of GC compared to a low intake of fruits byH. pylori-positive
subjects, indicating that the intake of fruits and vegetables may
play a role in preventing H. pylori-induced gastric carcinogenesis
(52–54). In contrast, data regarding the effects of vitamin A,
vitamin C, vitamin E, and carotenoids on GC risk were
inconsistent or conflicting due to the different doses used (55–
57). In this study, we examined the antioxidant capacity of food
and determined the antioxidant effects of ORAC on gastric
carcinogenesis. A recent meta-analysis reported inverse
associations between cancer risk and dietary TAC by using
multiple methods, including ORAC (58). Other previous
studies found inverse associations between ORAC intake and
risk of other cancers but not GC (59–62). We observed similar
findings between GC risk and three indices of dietary ORAC,
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namely, H-ORAC, L-ORAC, and TPs, after adjusting for H.
pylori infection and other potential confounding factors.
Furthermore, in the comparisons of the food items that highly
contribute to the ORAC level, the food items with the highest
ORAC were brewed green tea and fruits for H-ORAC, spicy red,
or black pepper for L-ORAC, and canned tomato juice for TPs
(Supplementary Tables S2–S4).

The major function of GSTP1 is to detoxify exogenous or
endogenous factors involved in carcinogenesis by regulating cell
death and DNA damage (21, 63). Additionally, GSTP1 plays a role
as a modifier gene in the regulation of the molecular expression and
activation of enzymes from other GST subfamilies and their effects
on cancer, and GSTP1 expression regulates cellular redox
homeostasis in carcinogenesis (20, 64, 65). Although many
studies have shown associations between GSTP1 polymorphisms
and various types of cancer, the results of a few studies investigating
the associations between GC risk and GSTP1 genetic variants are
inconsistent across geographic areas and diverse populations. In a
Chinese population, the Val allele of GSTP1, namely, the Val/Val
genotype, was significantly associated with an increased risk of GC
(37, 66, 67). However, GSTP1 Ile105Val (rs1695) and GSTP1
Val114Ala (rs1138272) polymorphisms were not associated with
the risk of GC in either a South European or an Indian population
(68, 69). In a Korean population, we observed that five GSTP1
polymorphisms (rs1695, rs749174, rs1871042, rs4891, and
rs947895) located in the same block with a strong correlation
with high LD had a tendency to increase GC risk, although the risk
increase with rs1695 polymorphism was not statistically significant.
These conflicting results suggest that ethnic differences in GSTP1
genetic susceptibility may affect the development of GC with
epigenetic interactions of environmental factors and that the
relevance of GSTP1 genetic variants to GC risk needs to be
confirmed in future studies. Among five GSTP1 polymorphisms
examined in this study, four polymorphisms (rs749174, rs1871042,
rs4891, and rs947895) have been investigated in only a few studies
in the context of lung cancer and asthma, and to date, their
associations with GC risk have not been determined (70–72).

In this study, we observed an association between a high intake
of dietary ORAC and a reduced GC risk according to GSTP1
rs1871042 polymorphism. Our findings can be explained by the
interconnections between dietary TAC and the role of GSTP1 gene
in the regulation of oxidative stress and detoxification of the
immune response against gastric carcinogenesis-induced chronic
inflammation by H. pylori infection. Imbalanced oxidative stress
plays an obligatory role in gastric carcinogenesis by increasing the
level of ROS induced byH. pylori infection, leading to DNA damage
and tumor progression (4, 73). A high intake of dietary ORAC is
responsible for the scavenging substances produced by H. pylori-
infected gastric cells and, thus, may protect against the promotion of
gastric carcinogenesis. More than half of H. pylori strains produce
various cytotoxins, such as Cag-A, which can damage gastric
mucosal cell membranes and trigger local immune responses (74).
Previous studies have shown that vitamin C protects against
H. pylori infection-related GC by neutralizing free radicals and
directly modifying the anticancer immune response against
malignant progression (75, 76). In addition to the role of GSTP1
January 2021 | Volume 10 | Article 596355
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gene, the specific allele of GSTP1 is able to regulate oxidative stress
and detoxification against carcinogenesis (21, 65). Moreover, the
impact of H. pylori infection on the relationship between GSTP1
genetic polymorphisms and GC risk varies, suggesting thatH. pylori
infection may have different oncogenic effects depending on GSTP1
genetic polymorphism, including controlling the activation of the
detoxification system, thereby resulting in gastric carcinogenesis (36,
77). A high intake of dietary ORACmay synergistically interact with
GSTP1 rs1871042 polymorphism by detoxifying and eradicating
excessive ROS, eventually leading to protection against the
development of GC.

Nevertheless, some limitations should be noted. First,
selection and recall bias should be considered; the controls
were recruited among patients who visited the clinic for a
health check-up and may have been more health conscious
than the patients with GC. To reduce the selection bias,
controls who were confirmed to be cancer-free by linking to
the Korea Central Cancer Registry database were recruited.
However, it may be that the individuals who chose to visit a
health check-up program may have a healthier lifestyle than
those who did not choose to undergo a check-up. Moreover, the
participants provided the structured questionnaire and validated
SQFFQ by a well-trained interviewer to reduce the recall bias.
The SQFFQ includes the average intake frequency and the
portion size during the year preceding the interview. Second,
the food items included in our food database were insufficient to
cover the entire United States Department of Agriculture
(USDA) ORAC database. Additionally, the antioxidant
capacity from ORAC is based on in vitro antioxidant assays,
which are limited to measuring the absorption rate in the body.
Third, the sample size in each tertile of the case group is relatively
small. Further prospective studies are needed to confirm and
extend our findings with a larger sample size.
CONCLUSIONS

In conclusion, this study examined whether the associations
between dietary ORAC and GC risk were modified by GSTP1
polymorphisms. We found associations between the risk of GC
and dietary ORAC intake, including fruits, vegetables, spices, and
nuts, depending on the genetic variants of GSTP1. Considering
the highest incidence rates of GC with H. pylori infection in East
Asia, the associations among dietary ORAC intake, GSTP1
polymorphisms, and GC risk may provide an effective strategy
for the primary prevention of GC in Asian populations.
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