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Ulcerative colitis (UC) and Crohn’s disease (CD), collectively known as Inflammatory

Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic,

microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly

considered to be causatively related to IBD and is strongly affected by components of a

Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs)

are typically reduced in mucosa and feces of patients with IBD, as compared to healthy

individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites

in maintaining intestinal homeostasis. Several studies have indeed shown that fecal

SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial

cells and are known to strengthen the gut barrier function. Recent findings, however,

show that SCFAs, and in particular butyrate, also have important immunomodulatory

functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and

SMCT1 to promote cellular metabolism.Moreover, SCFAsmay signal through cell surface

G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate

signaling cascades that control immune functions. Transgenic mouse models support

the key role of these GPCRs in controlling intestinal inflammation. Here, we present

an overview of microbial SCFAs production and their effects on the intestinal mucosa

with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic

potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing

bacteria through pre- or probiotic approaches.
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INTRODUCTION

Inflammatory Bowel Diseases (IBD), comprising mainly
ulcerative colitis (UC) and Crohn’s disease (CD), are
characterized by chronic and recurrent inflammation in the
gastrointestinal tract. Symptoms such as diarrhea, abdominal
cramps, weight loss, fatigue, anemia, and extra-intestinal
signs (arthralgia or arthritis among others), have major
impact on quality of life. Both disorders are characterized by
intermittent active (mild, moderate, or severe) and inactive
periods (remission or quiescence). The incidence and prevalence
of UC and CD have increased worldwide in the last 50 years,
especially in developing/Western countries. IBD is a result of
a complex interplay between genetic, immunologic, microbial,
and environmental factors, making development of a subtype-
specific treatment a challenging task. Thus, increasing efforts are
ongoing to develop personalized therapies to induce remission
of these diseases and improve the patient’s quality of life (1–3).

The gut microbiome has gained increasing attention as a
factor that controls intestinal homeostasis in healthy individuals.
Various lifestyle and environmental factors, such as hygiene
and the use of antibiotics, together with the consumption
of a “Western diet” low in fiber and high in fat and sugar
are associated with an imbalanced intestinal microbiota, or
dysbiosis, whichmay lead to chronic inflammation andmetabolic
dysfunction (4, 5). The perturbation of the microbiota can
create an inflammatory environment in the gastrointestinal tract,
altering intestinal homeostasis (6, 7), as seen in IBD. Innate and
adaptive inflammatory cells infiltrating the lamina propria(LP)
can produce pro-inflammatory cytokines (such as IFN-γ, IL-17,
TNF-α, or IL-1β) exacerbating the inflammatory process, causing
epithelial damage and intestinal and extra-intestinal symptoms
(3, 8). However, it remains unclear whether dysbiosis is a cause
or a consequence of IBD (9).

The intestinal microbiome of a healthy individual is a
balanced community of different microorganisms, including
bacteria, bacteriophages, viruses, archaea, and fungi (10). The
bacterial community participates in maintaining intestinal
homeostasis through the “training” of the immune system
and inhibiting growth of pathogens and pathobionts (11, 12).
Intestinal inflammatory responses are modulated by the gut
microbiome. This may go either way, e.g., IL-10 deficient
mice show less severe chronic bowel inflammation in germ-
free (GF) conditions (13, 14), while acute chemically-induced
colitis is exacerbated in GF mice compared to mice with a
normal microbiome (15). Also in humans the importance of
microbiota in controlling inflammation, for instance when a
bowel segment is excluded from the fecal stream leading to
diversion colitis/pouchitis (16). Particularly important appear to
be bacterial species that feed on non-digestible dietary fibers
(DF) and produce metabolites that exert positive effects on
the intestinal mucosa; examples being short-chain fatty acids
(SCFAs), mainly acetate, propionate, and butyrate. Butyrate is
a primary energy source for colonocytes and also maintains
intestinal homeostasis through anti-inflammatory actions (17,
18). At the cellular level, SCFAs can have direct or indirect
effects on processes such as cell proliferation, differentiation,

and gene expression. They may be absorbed by passive
diffusion, but uptake by intestinal epithelial cells is greatly
enhanced by dedicated transporters, e.g., the monocarboxylate
transporter 1 (MCT1; encoded by SLC16A1) and the sodium-
coupled monocarboxylate transporter 1 (SMCT1; encoded by
SLC5A8). Moreover, SCFAs act as ligands for G-protein coupled
receptors (GPCRs), including GPR109A, GPR43, and GPR41,
thereby activating anti-inflammatory signaling cascades (5, 19–
24). Importantly, IBD patients not only show reduced levels
of dominant SCFAs-producing bacteria (like Faecalibacterium
prausnitzii and Roseburia intestinalis) in intestinal mucosa and
feces, but the actual steady state levels of SCFAs herein also
appear to be lower compared to healthy controls (25–29).

IBD patients show dysbiosis and loss of microbiome diversity,
most prominently in CD patients (28), and the associated
alterations in SCFA levels might be restored by new treatment
strategies. One method currently evaluated is fecal microbiota
transplantation (FMT) obtained from healthy donors, which
effectively induces remission in UC (30). However, long-term
durability and safety still needs to be established. Other strategies
for microbiome restitution are the use of prebiotics or fiber-
rich diets combined with probiotics, as SCFAs-producing single
microorganism or combinations may alleviate symptoms by
improving butyrate levels.

Here, we aim to provide an overview of microbial SCFAs
production in the intestine and their effect on intestinal cells
and the immune response. Moreover, gut microbiome changes
in IBD are reviewed and how they are related to impaired
intestinal SCFAs production and associate to cell metabolism
and signaling pathways controllingmucosal homeostasis. Finally,
the therapeutic potential of SCFAs for IBD will be discussed;
either applied directly or through activation of SCFAs-producing
bacteria by prebiotic or probiotic approaches.

SHORT CHAIN FATTY ACIDS (SCFAs)
BACTERIAL PRODUCTION

Intestinal SCFAs Production
SCFAs are carboxylic acids with aliphatic tails of 1–6 carbons
of which acetate (C2), propionate (C3), and butyrate (C4) are
the most abundant produced by anaerobic fermentation of
dietary fibers (DF) in the intestine. DF were defined in 2009
as “carbohydrate polymers with three or more monomeric units,
which are neither digested nor absorbed in the small intestine of
humans” by the Codex Alimentarius (“Food Code”) Commission
(CAC), which is part of the Food and Agriculture Organization
of the United Nations and the World Health Organization
(FAO/WHO) Food Standards Programme (31). From the non-
digestible DF, the main substrates for bacterial fermentation
and SCFA production are resistant starch (RS), inulin, oat bran,
wheat bran, cellulose, Guar gum, and pectin. In particular,
RS is an important source for butyrate production (32).
Bacteroidetes (gram-negative) and Firmicutes (gram-positive)
are the most abundant phyla in the intestine, with members of
the Bacteroidetesmainly producing acetate and propionate, while
Firmicutes mostly produce butyrate in the human gut (33, 34).
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Butyrate and propionate formation in the gut occurs mainly
from carbohydrate metabolism in glycolysis, but can also take
place from organic acids and amino acids metabolism (34).
In addition, acetate is the most abundant SCFA in the gut
produced from acetyl-CoA derived from glycolysis and can also
be transformed into butyrate by the enzyme butyryl-CoA:acetyl-
CoA transferase (Figure 1) (35–38).

Quantification of human intestinal SCFAs only provides
steady state levels and may not accurately reflect the level
of bacterial production as most SCFAs produced in the
colonic lumen (90–95%) are absorbed by the gut mucosa (39).
Nevertheless, the analysis of SCFAs in fecal samples is used as an
approximation of gut levels, since excreted SCFA concentrations
are associated with RS enriched diets (substrates of SCFAs-
producing bacteria), inferring the relationship between intestinal
SCFAs production and fecal levels (40, 41).

SCFAs concentrations (expressed as molality or molarity)
have been measured in intestinal tissue and fecal samples
from individuals of different ethnicity (42–45). In the human
gastrointestinal tract, the highest SCFA concentration is found
in colon at a molar ratio of approximately 60:20:20 for
acetate:propionate:butyrate (Table 1), taken from post mortem
human subjects (42).

In contrast, the molar ratio of acetate:propionate:butyrate in
fecal samples of healthy subjects varies among cohorts, while
propionate and butyrate content are similar with an estimated
concentration of 20 and 15mM, respectively (Table 1).

SCFAs concentrations were found higher in proximal colon
(around 70–140mM) than distal colon (around 20–70mM) in
pigs, although this varies depending on the intake of DF (43).

Finally, SCFAs levels in other tissues such as liver or
blood (Table 1) are much lower than in the intestine (42),
demonstrating that SCFAs signaling, uptake and/or metabolism
mainly occur at the intestinal mucosa. However, detection
of extra intestinal levels implies that these metabolites have
systemic functions, as established for central nervous system
autoimmunity (46).

Main SCFAs Producers
The main butyrate producing-bacteria in the human
gut belong to the phylum Firmicutes, in particular
Faecalibacterium prausnitzii and Clostridium leptum of the
family Ruminococcaceae, and Eubacterium rectale and Roseburia
spp. of the family Lachnospiraceae (33, 34). In addition,
sugar-and/or lactate-utilizing bacteria produce butyrate from
lactate and acetate, such as Eubacterium hallii and Anaerostipes
spp. (33).

Still, the list of butyrate-producing bacteria may be
much longer as members of Actinobacteria, Bacteroidetes,
Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae
are potential butyrate producers according to the genes they
express, including those that encode enzymes that synthesize
butyrate, such as butyryl-CoA dehydrogenase, butyryl-CoA
transferase and/or butyrate kinase (47). Moreover, apart
from butyrate, the production of other SCFAs is mediated
by bacteria such as Bifidobacterium species (belonging to the
Phylum Actinobacteria) that produce acetate and lactate during

carbohydrate fermentation (48). Also, the mucin-degrading
bacteria Akkermansia muciniphila (Phylum Verrucomicrobia)
produces both propionate and acetate (34, 49).

The main butyrate-producing bacteria are anaerobes,
including the Bacteroidetes and Clostridia, and the low O2

concentrations in the colon create a favorable niche for them.
Moreover, butyrate absorbed and metabolized by the epithelium
consumes (local) O2 and thereby stabilizes the hypoxia-
inducible factor (HIF, a transcription factor coordinating
barrier protection) (50). These data are consistent with studies
demonstrating that streptomycin-treated mices how relapse of
gastroenteritis by Salmonella (51) as well as the expansion of
potentially pathogenic E. coli (52). The susceptibility due to
the depletion of anaerobic bacteria (induced by antibiotics) is
associated to a reduction in butyrate levels, thus promoting an
aerobic environment and the expansion of aerobic bacteria such
as Salmonella typhimurium (51, 52). In addition, depletion of
butyrate-producing bacteria by antibiotic treatment reduces the
intracellular butyrate/PPARγ signaling, increasing iNOS and
nitrate levels, favoring Enterobacteriaceae expansion (52).

SCFAs FUNCTIONS IN THE INTESTINAL
MUCOSA

In the intestinal mucosa; acetate, propionate and butyrate
exert beneficial effects over intestinal epithelial cells (IECs) and
immune cells through induction of intracellular or extracellular
processes (see Figure 2 for more details). SCFA may permeate
through the cell membrane by passive diffusion (19). However,
their absorption is greatly enhanced by two different solute
transporters, the proton-coupled monocarboxylate-transporter
1 (MCT1/SLC16A1) and the sodium-coupled monocarboxylate-
transporter 1 (SMCT1/SLC5A8) (20, 21). Alternatively, SCFA
may activate signaling pathways via at least 3 different GPCRs:
GPR41 (free fatty acid receptor 3; FFAR3), GPR43 (free fatty
acid receptor 2; FFAR2), and GPR109A (hydroxycarboxylic
acid receptor 2; HCAR2). These receptors are pertussis toxin
(PTX)-sensitive, thus coupled to Gi−o type G proteins mediate
the inhibition of adenylyl cyclase whilst activating AMP-
dependent and, to a lesser extent, the phospholipase C (PLC)
pathway. In addition, GPR43 mediates Gq protein whilst
signaling through the PLC pathway (5, 22–24) (see Table 2

for transporters and GPCRs tissue and cell expression).The
main cellular functions of SCFAs in the intestinal mucosa are
described below.

SCFAs and Cell Proliferation
Small intestinal IECs show a reduced proliferative activity
and turnover in GF or antibiotic-treated specific pathogen-
free (SPF) mice (69). This is reversed, however, when GF or
SPF mice treated with Gram-positive commensal bacteria or
a mix of SCFA (acetate, propionate and butyrate) (69). These
observations demonstrate the role of the commensal microbiota
and their products maintaining the intestinal homeostasis and
IECs turnover. In line, SCFAs regulate epithelial gene expression
involved in energy metabolism (e.g., lipid metabolism), and
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FIGURE 1 | Schematic representation of carboydrates fermentation pathways that lead acetate, propionate and butyrate production. The main enzymes involved in

the butyrate production are indicated as (a) butyrate kinase and (b) butyryl CoA:acetate CoA transferase. Figure adapted from den Besten et al. (35).

TABLE 1 | SCFAs concentration in human samples.

Samples Concentration Cohort References

Total SCFA Cecum (mmol/kg) 131 ± 9 English (42)

Descending colon (mmol/kg) 80 ± 11

Ileum (mmol/kg) 13 ± 6

Portal blood (mM) 0.375 ± 0.070

Liver (mM) 0.148 ± 0.42

Peripheral blood (mM) 0.079 ± 0.022

Samples Acetate Propionate Butyrate Cohort References

SCFAs variants Colon molar ratio 60 20 20 English (42)

Fecal concentration (µmol/g = mmol/kg) 209.7 ± 14.0 93.3 ± 5.3 176.0 ± 16.0 Malaysian (44)

Fecal concentration (mM) 87 (58.4–114.9) 21.6 (16.5–27.2) 14.7 (10.3–24.6) Belgian (45)

Fecal concentration (mM) 39.9–56.1 12.8–23.6 12.2–19.0 Japanese, Chinese and Australian (43)

promote the development of mouse intestinal organoids (69,
70), further reinforcing their role in supporting epithelial
cell proliferation.

On the other hand, recently it was shown that butyrate appears
to have a different effect on intestinal stem/progenitor cells,
inhibiting their proliferation and delaying wound repair through
the transcription factor Foxo3 (71). This suggests that SCFAs and
particularly butyrate has cell type-specific effects in the intestinal
epithelium and may be linked to local SCFA concentrations,
where differentiated IECs in the villus are exposed to higher

concentrations of microbial metabolites compared to the stem
cells in the crypt (71). As part of the maintenance of intestinal
homeostasis, and in contrast to the effect on IECs in healthy
conditions, SCFAs suppress cancer cell proliferation and induce
apoptotic cell death (72). Moreover, SCFAs induce autophagy in
colon cancer cell lines (HCT-116, SW480, and HT-29) (73, 74),
as a protective response against apoptosis. These observations are
interesting in the context of host-microbe interaction in healthy
and colorectal cancer (75) though this is beyond the scope of
this review.
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FIGURE 2 | SCFAs in healthy (A) and inflamed (B) colonic mucosa. In healthy mucosa, (1) bacterial fermentation of dietary fiber (DF) by SCFAs-producing bacteria

(e.g., F. prausnitzii), increases luminal content of butyrate (green), propionate (blue) and acetate (purple) (2), forming a gradient along the crypt. In lamina propria (LP)

macrophages under acute inflammatory stimulus (4), butyrate inhibits histone deacetylases (HDACs) thus; NF-κB-induced pro-inflammatory mediators (e.g. TNF-α,

IL-6, IL-12 and iNOS) expression whereas increases anti-inflammatory mediators (e.g., IL-10). In colonocytes (5), butyrate is β-oxidized to Acetyl-CoA and constitutes

the main source of energy by entering the TCA cycle. Alternatively, butyrate initiates signaling pathway activation (or repression) by GPCRs and/or directly inhibits

HDACs, thus activating (e.g., HIF-1, STAT3 and SP1) or repressing (e.g., NF-κB) transcription factors (TFs), increasing epithelial barrier function, antimicrobial peptides

(AMPs) production, cell proliferation and decreasing inflammation. In inflamed mucosa as IBD, (1) a decreased fermentation of DF by low levels of SCFAs-producing

bacteria (e.g., F. prausnitzii) (2), reduces SCFAs luminal content (3). In LP inflammatory macrophages (4), butyrate-GPCRs activation and -HDACs inhibition are

downregulated, thus, there is uncontrolled NF-κB-induced pro-inflammatory mediators’ expression (e.g. TNF-α, IL-6, IL-12 and iNOS) and decrease of

anti-inflammatory mediators (e.g., IL-10), although it appears that the inflammation increasesthe GPCRs and transporters expression. In inflamed colonocytes (5),

butyrate uptake and oxidation are decreased and GPCRs and transporters are also downregulated. This contributes to decreased epithelial barrier integrity, AMPs

production, cell proliferation and increased inflammation.

SCFAs and the Epithelial Barrier
The SCFA butyrate promotes the epithelial barrier function,
being a main stabilizing mechanism for HIF-1 (as previously
mentioned in Main SCFAs producers). Both HIF-1α expression
and butyrate levels are reduced in antibiotic-treated or
GF mice, but HIF-1α expression is restored after butyrate
supplementation (76). Importantly, butyrate induces the barrier
function (measured by FITC-dextran flux) in T84 cells, but not
in the absence of HIF-1β, demonstrating a crucial role for HIF-
1 in maintaining barrier integrity (76). Furthermore, butyrate
promotes the epithelial barrier function through induction of
genes encoding tight-junctions (TJ) components and protein
reassembly through the activation of other transcription factors,
including STAT3 and SP1 (Table 3). As a result, butyrate
maintains and/or increases transepithelial electrical resistance
(TEER) in human colonic Caco-2 and T84 cells (77–80), rat small
intestine cdx2-IEC cells (81) and small intestine porcine IPEC-J2
cells even when exposed to inflammatory conditions (82). Such
effect can also be achieved in Caco-2 cells by supplementing
a supernatant of CD microbiota with probiotic Butyricicoccus
pullicaecorum 25-3T or a mix of six butyrate-producers when
compared to the treatment of CD microbiota-supernatant alone
(87). These results reinforce the evidence that the metabolite
butyrate restores intestinal barrier function in inflammatory
conditions in vitro (82), being relevant in the context of IBD,
where intestinal epithelial healing is an important therapeutic
target. Another important mechanism involved in the epithelial

barrier function is the production of antimicrobial peptides
(AMPs) by IECs. Recently it was shown that the expression of the
AMPs RegIIIγ and β-defensins is strongly impaired in Gpr43 KO
mice, while butyrate/Gpr43 activation induced AMP production
in in vitro, ex vivo, and in vivo models (88). This indicates that
the effects of SCFAs are not only restricted to inter-epithelial
junctions, but also involve regulation of epithelium/luminal
bacteria interaction through the production of AMPs as first line
defense effectors against pathogens.

SCFAs as Energy Source
Butyrate is the main energy source of colonocytes (48),
as demonstrated for primary colonocytes from the human
ascending and descending colon, which consume more than
70% of oxygen due to butyrate oxidation (89). Interestingly,
an energy-deprived state (reflected by decrease of enzymes
involved in tricarboxylic acid cycle) leads to lower ATP levels
and, ultimately autophagy, observed in GF mice colonocytes.
Recolonization of GF mice with butyrate-producing bacteria and
butyrate treatment of GF colonocytes ex-vivo, increases oxidative
phosphorylation and suppresses autophagy to normal levels (17),
implying the importance of host-microbe interaction in energy
metabolism of colonic epithelium.

Anti-inflammatory Effects of SCFAs
Apart from the physiological functions of SCFAs detailed above,
they also exert anti-inflammatory effects in intestinal mucosa
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TABLE 2 | SCFAs transporters and receptors.

Ligands Tissue or cell expression Species References

TRANSPORTERS

MCT1 Butyrate, lactate, pyruvate Distal colon> proximal colon>ileum>jejunum H (53)

Transverse colon>ascending and descending

colon>sigmoid colon

H (54)

Cecum>colon>stomach and small intestine M, R (55, 56)

Monocytes, granulocytes and, lymphocytes H (57, 58)

Peritoneal macrophages M (59)

SMCT1 Butyrate > propionate > lactate >> acetate From terminal ileum to distal colon M (55)

Distal colon>proximal colon and ileum H, M (60)

G-PROTEIN COUPLED RECEPTORS

GPR41 Propionate=pentanoate

=butyrate>acetate>formate

Adipose tissue > PBMCs, pancreas, spleen, and

placenta

H (22)

Monocytes, neutrophils and, monocyte-derived DCs H (61, 62)

GPR43 Acetate=propionate=

butyrate>pentanoate> hexanoate>formate

Intestinal epithelium M, H (6)

Monocytes, neutrophils and PBMCs and

B/T-lymphocytes

H (22, 61, 63)

Treg (colon > spleen and MLN) and colonic myeloid cells H (64)

GPR109A D-beta-hydroxybutyrate, butyrate and

nicotinic acid

Adipose tissue (>lung, adrenal gland, and spleen) H, M (65)

Colon (> ileum, jejunum, and duodenum) H, M (66)

Monocytes, monocyte-derived DCs, DCs (blood, splenic

and colonic), macrophages (splenic and colonic), and

BMDM

H, M (62, 67, 68)

PBMCs, peripheral blood mononuclear cells; DCs, dendritic cells; BMDM, bone marrow-derived macrophages; H, human; M, mouse; R, rat.

Main SCFAs (acetate, propionate, and butyrate) are highlighted in bold font.

by histone deacetylases (HDACs) inhibition and activating the
GPCRs present in IECs and immune cells (Table 3). In IECs
models, butyrate suppresses lipopolysaccharide (LPS)-induced
NF-κB activation via GPR109A in vitro in colonic cell lines and ex
vivo inmouse colon (66). In addition, the acetate/GPR43 pathway
stimulates potassium efflux and hyperpolarization in HT-29
and NMC460 colonic cells leading to NLRP3 inflammasome
activation (90). In concordance with these observations, IL-
18 is activated in colonic epithelial cells from mice fed on
high fiber diet following dextran sulfate sodium (DSS)-colitis
(90). These results confirm an important role of GPR109A and
GPR43 activation by SCFAs in controlling inflammation and
promoting epithelial repair in the colon. Interestingly, butyrate
enhances the MCT1 surface expression in the colonic cell line
C2BBe1 in a GPR109A-dependent manner (91), suggesting
a “cooperative role” between these proteins in mediating
butyrate effects.

With respect to innate immune functions, SCFAs induce
prostaglandin E2 release and expression of the anti-inflammatory
cytokine IL-10 through PTX-sensitive GPCRs, thereby inhibiting
inflammatory responses in human monocytes (61). The
molecular mechanism involved in pro-inflammatory mediator
suppression (e.g., LPS-induced chemokines and cytokines)
by SCFAs has not been completely determined in other
human/mouse mononuclear cell models (62, 67, 83). In
addition to the anti-inflammatory effects of the microbial
metabolism of dietary fibers to SCFAs, it is important to note

that such fibers may also modulate the intestinal immune
system directly. For instance, DF pectin (with low degree
of methyl esterification) blocks the pro-inflammatory Toll-
like receptor (TLR) 2-1 pathway in human dendritic cells
(DCs) and mouse macrophage cell lines as well as in an
ileitis in vivo mouse model (92). These results show that
DF regulates inflammatory reactions in intestinal immune
and epithelial cells not only after being metabolized by
gut bacteria.

The inhibition or reversal of the immune cell inflammatory
profile (M1-like macrophages toward a M0-like non-polarized)
or polarization toward M2-like anti-inflammatory macrophages
is a therapeutic target in the context of IBD. In this way,
butyrate effects on mouse IL-4-polarized M2 macrophages are
contradictory, as it enhances or suppresses Arg-1 and Ym1
expression (M2-profile markers) (93, 94). Therefore, clarification
is needed of SCFAs effect on macrophage polarization including
the evaluation of human ex vivo models and other markers that
could ensure stronger conclusions.

Also, SCFAs (mainly butyrate) have inhibitory effect over
HDACs activity promoting histone acetylation, affecting
gene regulation of cell proliferation, differentiation, and
inflammatory response, contributing to intestinal homeostasis
and cancer protection (67, 95–99). HDACs regulate innate
immunity pathways, controlling myeloid cell differentiation and
inflammatory response mediated by TLR- and IFN-inducible
gene expression (100). Furthermore, the use of HDACs inhibitors
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TABLE 3 | Impact of SCFAs on intestinal homeostasis.

Cell type Model SCFAs Effect Mechanism References

Epithelial

cells

Cell lines Caco-2 Butyrate 2mM ↑ TEER, ZO-1, occludin Activation of AMPK Inhibition of

MLCK/MLC2 pathway and

phosphorylationof PKCβ2

(77, 78)

Butyrate 5mM ↑ TEER, claudin-7, claudin-2 Not determined (79)

Caco-2, T84 Butyrate 5mM Propionate

20mM

↑ TEER,

↓ Claudin-2

Induction of IL-10RA through

STAT3 activation and HDAC

inhibition

(80)

Cdx2-IEC Butyrate 4mM ↑ TEER, claudin-1, ZO-1,

occludin

Induction of Claudin-1

transcription through SP1

(81)

IPEC-J2 Butyrate 1mM ↓ LPS impairment of intestinal

barrier

↑ Claudin 3 and claudin 4

Activation of Akt/mTOR signaling (82)

CCD841, KM12L4, and

HCT116

Butyrate 1mM Blockade of LPS-induced NF-κB Activation of GPR109A (66)

Primary cells Colon culture Butyrate 0.5mM ↑ IL-18 mRNA and protein Activation of GPR109A (68)

Mouse small intestine

organoids

Acetate, propionate and

butyrate 5mM

↑Fiaf, Hdac3, Hdac5

↓ Gpr43, Pparγ

Not determined (70)

Acetate, propionate and

butyrate 0.5mM

↑Promotion of organoids

development

Activation of GPR41 or GPR43

and MEK-ERK signaling

(69)

Immune

cells

Cell lines RAW 264.7 Sodium butyrate (NaB),

sodium phenylbutyrate

(NaPB) and sodium

phenylacetate (NaPA)

0.5–1mM

↑ IL-10

↓ IFN-γ-induced iNOS, TNF-α,

IL-6

Inhibition of NF-κB and ERK

signaling pathways

(83)

Primary cells Human LP

macrophages

Butyrate enemas 100mM ↓ Inhibition of NF-κB

translocation

Not determined (84)

Human monocytes Acetate, propionate and

butyrate 0.2–20mM

↑ PGE2
↓ MCP-1, IL-10

Activation of PTX-sensitive

GPCRs

(61)

PBMC Acetate, propionate and

butyrate 0.2–20mM

↓ LPS-induced TNF-α and IFN-γ Not determined

Human

monocyte-derived DCs

Propionate and butyrate

1mM

↓ LPS-induced chemokines and

cytokines (CXCL9-CXCL11),

cytokines (IL-6 and IL-12p40)

Not determined (62)

Mouse LP

macrophages and

BMDM

Butyrate 0.1–2mM ↓ LPS-induced mediators NO,

IL-6, IL-12p40

Inhibition of HDACs (67)

Mouse DCs Butyrate 0.125–2mM ↑ Foxp3+CD4+ T cells Inhibition of HDACs (85)

Mouse LP

macrophages and DCs

Butyrate 0.5mM ↑ Foxp3+CD4+ T cells Activation of GPR109A (68)

Mouse T cells Propionate butyrate 0.1mM ↑ Foxp3 and IL-10 in naïve

CD4+ T cells

Activation of GPR43 and

Inhibition of HDACs

(64, 86)

(e.g., valproic acid) reduce disease severity and inhibit colonic
proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) in
experimental murine colitis (101). These results are promising in
regard to the search of alternatives for IBD therapy and support
the importance of butyrate as an HDAC inhibitor.

REGULATION OF SCFA TRANSPORTERS
AND RECEPTORS IN THE INTESTINAL
MUCOSA

Physiological Regulation of Transporters
and GPCRs by Ligands
In line with the SCFAs production in the gut, prominent
expression of MCT1 and SMCT1 is observed in the colon of

humans, mice and rats, while much lower levels are detected
in ileum (see Table 2). Effective absorption of SCFAs from
the gut lumen requires an apical location of MCT1, however,
depending on experimental approaches it has also been detected
in basolateral membranes of the human colonic epithelium (53–
55). SMCT1, on the other hand, has been mainly detected in
the apical membranes in proximal and distal colon (55, 60),
as well as in the ileal enterocytes (55, 60, 102). Interestingly,
GF mice show a decreased expression of SMCT1 in colon and
ileum, which is recovered by recolonization of the gut with
bacteria (102).

MCT1 is considered to be the primary transporter for butyrate
uptake in intestinal epithelial cells and its expression is induced
by butyrate and fermentable carbohydrates, as demonstrated in
in vitro, ex vivo, and in vivomodels, as described below.
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Butyrate induces SLC16A1 (encoding MCT1) mRNA
expression coinciding with enhanced protein expression in
Caco-2 cells and in the apical membrane of human colonic
AA/C1 and C2BBe1 cells (91, 103, 104). In addition, the direct
effect of butyrate studied in ex vivo pig colonic mucosa culture
showed an up-regulation of SLC16A1mRNA expression (103).

These in vitro/ex vivo observation are confirmed in vivo
where gastrointestinal levels of MCT1 are enhanced in rats
receiving a pectin-supplemented diet, particularly in the apical
membrane of colonic mucosa, and increases the transepithelial
flux of butyrate (56, 91). Similar observations were made in pigs,
where SLC16A1 mRNA levels increased in cecal and colonic
mucosa after dietary supplementation with RS compared to
digestible starch (DS) (41). In contrast, SLC5A8 mRNA levels
(encoding SMCT1) were not affected by RS or DS diet (41),
showing a specific regulation of MCT1 expression by RS in
comparison to SMCT1. On the other hand, a high-protein
diet (with or without fermentable carbohydrates) lead to a
reduction in colonic MCT1/SLC16A1 expression in pigs without
affecting the butyrate levels (103). This was accompanied by
an induction of TNF-α, IL-8, and IFN-γ mRNA expression,
suggesting that the inflammatory environment influences in the
expression of the butyrate transporter. Similar as described for
SCFA transporters, epithelial GPR43 and GPR109A expression in
mouse and human intestinal mucosa is related to the proximity to
bacterial metabolite production in the colonic lumen (6, 66, 68),
suggesting that the levels of these proteins are controlled by
their own substrates. In line, GPR109A protein and gene levels
are reduced in the ileum and colon of GF mice compared to
conventional mice, recovering their normal levels after bacterial
re-colonization (102). Moreover, GPR43 expression is reduced
in intestinal mucosa of mice fed a “Western-like diet” high in
fat and sugar (6). These observations suggest that a reduction
in colonic SCFAs as a result of deficiency in specific bacteria
or a high fiber diet leads to down-regulation of these SCFA-
sensitive GPCRs. In contrast, intestinal mucosal levels of FFAR2
and FFAR3 (encoding GPR43 and GPR41, respectively) were
not different in pigs fed either a DS- or a RS-containing diet
(41), suggesting that dietary fiber does not regulate the gene
expression of its metabolite-sensing receptors in these animals.
Future studies need to address whether this is truly a species
difference or may be caused by experimental differences.

Taken together, it appears that particularly SCFA transporters
in the intestinal mucosa, especiallyMCT1, are highly regulated by
their substrates in healthy/non-inflammatory conditions, while
this is less well-established for the SCFA-sensing GPCRs. The
effect of inflammatory conditions on these mediators of SCFA
uptake and signaling is described next.

Interaction of SCFA Uptake and Signaling
With the Intestinal Mucosa in the IBD
Context
Among the deregulations detected in the intestinal mucosa of
IBD patients, it has been found that the SLC16A1 gene and
MCT1 protein expression is reduced in inflamed mucosa of UC
and CD patients (105–107). This may be direct effect of the

inflammation or caused by a reduction in butyrate-producing
bacteria (see for more details Microbiome changes in CD
and UC in relation to SCFAs-producers). In addition, butyrate
uptake, and oxidation is inhibited in UC patients compared to
healthy individuals (106). Most notably, a significant inverse
correlation is observed between butyrate uptake/oxidation
and the Mayo endoscopic subscore and Geboes histological
score (106). In particular, genes encoding enzymes involved
in butyrate metabolism/oxidation (such as ACSM3, ACADS,
ECHS1, HSD17B10, ACAT1, ACAT2, ABAT, ALDH1A1, ALDH2,
ALDH9A1, EHHADH, HADHA, HMGCL, and PDHA1) are
down-regulated in inflamed mucosa of UC patients (105–108),
revealing a specific inflammation-driven gene regulation in the
intestine. Interestingly, gene expression of ACSM3, ACADS,
ECHS1, HSD17B10 and ACAT2 (all enzymes involved in butyrate
oxidation), but not SLC16A1, increased in mucosa of UC patients
that responded to infliximab (human anti-TNF-α antibody)
therapy (although only ACSM3 mRNA levels were higher after
therapy than in healthy controls) (106). This suggests that
butyrate oxidation is impaired by mucosal inflammation and
butyrate supplementation alone would be insufficient to regain
homeostasis (106). Hence, these results show that inflammation
is tightly linked to the inhibition of genes related to SCFAs uptake
and metabolism.

The pro-inflammatory cytokine TNF-α inhibits butyrate
oxidation in normal colonic mucosa culture (109), reinforcing
the role of inflammatory mediators as part of the intestinal
SCFA uptake regulation. Similar observations were made in
vitro in intestinal HT-29 and (IEC)-6 cell lines showing that
inflammatory cytokines inhibit butyrate uptake (60), oxidation
and MCT1/SLC16A1 expression (105). Additionally, MCT1 was
downregulated in Caco-2 cells and ex vivo porcine colonic tissue
culture, exposed to TNF-α (103).

Regulation of MCT1 expression has mostly been studied in
IECs, although it alsomodulates immune cell functions (Table 2).
Interestingly, pro-inflammatory stimuli like lipopolysaccharide
(LPS) and TNF-α induce Slc16a1 mRNA and protein expression
in mouse peritoneal and J774.1 macrophages, suggesting
inflammatory macrophages are sensitive to butyrate (59), but
possible respond differently than intestinal epithelial cells.
However, more studies are needed to understand how MCT1 is
regulated in inflammatory macrophages and its implications for
IBD, as they are innate immune cells exacerbating inflammation
in intestinal mucosa.

In CD, GPR43 protein expression was lower in ileum of
patients either in acute/active or in the quiescent/remissive
phase when compared to control subjects (6), suggesting that
CD-specific factors are involved in the downregulation of
this SCFA receptor, where inflammation seems not to be a
crucial determinant.

Animal models have demonstrated the importance of
the SCFA/GPCR pathway in IBD. Acute and chronic DSS-
induced colitis leads to higher disease activity and colonic
inflammation in Gpr43 KO mice compared to WT littermates,
as characterized by increased histological score, neutrophil
infiltration together with TNF-α and IL-17 protein levels in the
colonic mucosa (15, 90, 110).
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Interestingly, high fiber diet or acetate/GPR43 activation
suppresses colonic inflammation through NLRP3 inflammasome
or cytokine/mediator regulation in DSS-treated GF and WT
mice, but not in Gpr43 KO mice (15, 90, 110), indicating
that GPR43 mediates the anti-inflammatory effects of SCFAs
in intestinal mucosa. In the same way, LPS-induced TNF-
α secretion in mouse-derived peripheral blood mononuclear
cells (PBMCs) was suppressed by acetate and reversed by an
anti-GPR43 antibody, confirming that acetate/GPR43 signaling
mediates anti-inflammatory effects (110). In support of a role for
GPR43 in the prevention of intestinal inflammation, mice treated
with a GPR43 agonist appear less susceptible to DSS-induced
colitis than WT controls (6).

However, not all GPR43-focussed studies appear to give
consistent results. A study by Sina et al. reported that Gpr43
KO mice actually showed less colonic mucosal damage and
inflammatory cell infiltration after acute or chronic DSS exposure
compared toWT littermates (111). Future studies need to address
whether these apparent contradicting results may be explained by
the use of different DSS concentrations, time of treatment and/or
transgenic mouse services.

Propionate and butyrate treatment increases the chemotactic
migration of ex vivo-cultured polymorphonuclear leukocytes
(PMN) from WT, but not from Gpr43 KO mice, suggesting that
GPR43 activation is relevant in PMN recruitment (111). These
observations support the fact that GPR43 activation by SCFAs is
important in mounting prompt immune responses.

Gpr41 and Gpr43 KO mice show an impaired immune
response when exposed to ethanol-induced gut barrier
disruption, 2, 4, 6-trinitrobenzene sulfonic-acid (TNBS)-induced
colitis, or oral infection with the mucosal pathogen Citrobacter
rodentium, which is characterized by a decreased neutrophil
frequency and expression of inflammatory-associated genes
(112). The activation of the acetate/GPCRs pathway accelerates
the immune response to C. rodentium infection in WT mice
demonstrating that IECs mediate the fast immune response
dependent on GPR41 and GPR43 activation (112). These
observations reveal differences between colonic inflammation
models in GPCR KO mice, as acute DSS-induced colitis is
characterized by a TH1-TH17 immune response and in chronic
phase is predominantly TH2-mediated (113). In TNBS-induced
colitis the immune response can be TH1, TH17, or TH2 depending
on the mouse strain (113, 114), with C. rodentium infection
inducing a TH1 immune response (115).

As described for Gpr43 deficient mice, Gpr109a KO mice are
more susceptible to chemically-induced colonic inflammation
and inflammation-associated colon cancer (68). However, the
butyrate/GPR109A pathway activates colonic homeostasis by
suppressing inflammation in colonocytes (mediated by IL-18
expression and NLRP3 inflammasome activation) (68, 90) and
LP macrophages / DCs by differentiating naïve T cells to Foxp3+

Treg cells and IL-10-producing T cells inWT, but not inGpr109a
KOmice (68).

Among the multiple factors involved in IBD pathogenesis, the
imbalance between Treg and T effector cells has been the subject
of considerable attention to improve IBD therapy. Therefore,
in addition to Treg induction mediated by butyrate-induced

macrophages and DCs (68), propionate also directly stimulates
Treg proliferation and function through GPR43 and HDAC
inhibition (64). Also, propionate and butyrate induce colonic
Treg differentiation from naïve CD4+ T cells upregulating Foxp3
transcription through histone acetylation (85, 86).

In addition, butyrate increases IL-10 production by ex
vivo-differentiated human Tregs with GPR43-agonists further
increasing the suppressive capacity of human Tregs (116),
reinforcing the previous evidence of tolerance induction by SCFA
in animal models.

As a side note, it is important to mention that depending on
the SCFA concentration and cytokine milieu the effects can be 2-
fold, either stimulating IL-10-producing T and Treg expansion
or T naïve differentiation into effector T cells (expressing T-
bet transcription factor and IFN-γ; TH1cells, or IL-17; TH17)
independent of GPR41, GPR43, or SMCT1, but dependent on
direct HDAC inhibitor activity (117, 118).

These findings generate new research questions in IBD
patient’s therapy, such as what is the best formulation of a DF-
enriched diet to induce gut immune tolerance? or what is the
effect of a high fiber diet or SCFA supplementation on Treg
function in IBD patients within an acute or chronic phase? In
summary, pharmacokinetic studies, high fiber diet design, and
another approach need to be explored to clarify novel therapeutic
options for IBD.

Mononuclear cells and neutrophils are innate immune cells
mediating the protection against pathogens through recognition
and elimination of antigens that cross the epithelial barrier
and cytokine/chemokine secretion, thus activating the adaptive
immune response. In these cells, expression of SCFA-activated
GPCRs is induced by inflammation; thus sensitivity to potential
anti-inflammatory actions of SCFAs is increased. Examples are
LPS from E. coli O55:B5 increases Gpr109a mRNA levels in
mouse macrophages (119), and also GPR43 mRNA expression
induced by TNF-α, GM-CSF (63) and TLRs (Toll-like receptors)
ligands (61, 63) in human monocytes. Moreover, the effect of
E. coli LPS on GPR43 mRNA expression in human monocytes
may be strain-dependent, as E. coli O55:B5 LPS induces GPR43
mRNA expression (63) whereas E. coli O127:B8 LPS does
not (61).

Taken together, these studies provide strong evidence for the
role of SCFAs/GPCRs (particularly GPR43 and GPR109A), in
maintaining colon integrity by inducing mucosa healing and
suppressing inflammation. These are relevant therapeutic targets
for numerous diseases, but in particular for IBD.

MICROBIOME CHANGES IN CD AND UC IN
RELATION TO SCFAs-PRODUCERS

Various changes occur in the intestinal mucosa of IBD patients
in active or quiescent status compared to healthy individuals,
one being the composition and function of the microbiota, a
change often referred to as dysbiosis. In general, dysbiosis in
IBD patients is associated with a decrease in the number of
SCFAs/butyrate-producing bacteria, in particular members of
the phylum Firmicutes. In addition, more specific studies show
that a decrease in F. prausnitzii, a butyrate producing-bacteria
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from the Clostridium cluster IV, is a hallmark of active IBD
patients, as reviewed previously covering different populations
(25, 26, 120–122). Additionally, CD appears to have a more
pronounced dysbiosis than UC, with lower diversity, altered
composition and an unstable microbial community (28). Thus,
CD and UC are being recognized as distinct diseases even at the
microbiome level.

At the species level, alterations in other butyrate-producing
species have been detected in UC patients, such as Roseburia
intestinalis and Roseburia hominis (25, 45). Alternatively, stool
samples of CD patients show an increase of Ruminococcus gnavus
and decrease of F. prausnitzii, Bifidobacterium adolescentis,
Dialister invisus, an uncharacterized species of Clostridium
cluster XIVa, and other SCFAs-producing bacteria (Blautia faecis,
Roseburia inulinivorans, Clostridium lavalense, and Bacteroides
uniformis) (27, 29).

The microbiome diversity is affected by geography, ethnicity
and lifestyle even in the healthy population (123), which also
includes the abundance of SCFAs/butyrate-producing bacteria.
However, the “environmental” factors in IBD remain unclear.
Reported dysbiosis in IBD patients from different populations
might be due to sample size, patient selection criteria or genetic
heterogeneity, therefore, further studies are required to clarify
differences in microbiome diversity among IBD patients.

As a consequence of the reduction in SCFAs-producers, SCFA
levels are often found to be decreased in fecal samples of IBD
patients. One study showed that acetate and propionate, but not
butyrate, are reduced in fecal samples of UC patients (45). In
another study, a reduction of butyrate and propionate in stool
samples of IBD patients was found (44). Similarly, a low content
of n-butyrate, iso-butyrate and acetate was detected in feces from
patients with severe UC. The reduction in SCFAs levels might
be related to disease activity, as a higher n-butyrate level was
detected in UC patients in remission compared to ones with
active disease (25).

THERAPEUTIC APPROACHES OF SCFAs
IN IBD AND DIVERSION COLITIS

SCFAs are considered a promising supplementary treatment in
the current clinical management of active IBD patients and
diversion colitis. Different approaches, including enemas of
butyrate and/or mixtures of SCFAs (acetate, propionate, and
butyrate) have resulted in diverse clinical outcomes (16, 124, 125).

The direct effects of butyrate or mixtures of SCFAs in enemas
showed clinical and histological improvement in active UC
patients and diversion colitis (84, 125–127). At the molecular
level, butyrate enemas decrease NF-κB nuclear translocation in
LPmacrophages in tissue sections from distal UC patients (84), as
well as in LPS-induced cytokine expression and NF-κB activation
in LP mononuclear cells and PBMCs from CD patients (128).

Alternatively, SCFAs enemas (100ml of 80mM acetate,
30mM propionate, and 40mM butyrate twice a day for 6 weeks)
produced clinical remission only in a subset of UC patients
(129). Butyrate enemas (60ml of 100mM once daily for 20
days) do not affect daily symptoms score, stool consistency and

frequency (Bristol scale), and oxidative stress in UC patients
in clinical remission, although they have a small effect on
inflammation parameters (130). Moreover, no endoscopic or
histological changes were observed in diversion colitis patients
treated with SCFAs enemas (60ml of 60mM acetate, 30mM
propionate, and 40mM butyrate twice a day for 2 weeks) (131).

Inconsistent effects of SCFAs intervention in murine models
undergoing colonic inflammation have been reported. For
example, SCFAs enemas did not prevent or reduce intestinal
damage in TNBS-induced colitis in rats (132), while butyrate
reduced colonic mucosal damage and serum inflammatory
cytokines (IL-6, TNF-α, and IL-1β) in DSS-treated mice (93). In
contrast, butyrate did not revert/prevent DSS-induced intestinal
damage in mice exposed to antibiotics (67). Similarly, butyrate
was less effective in eliciting an anti-inflammatory response in
the TNBS-induced colitis mouse model, vs. an injection of live F.
prausnitzii or F. prausnitzii supernatant, while they both induced
IL-10 and decreased IL-12 and TNF-α (133).

Interestingly, oral treatment with the spent medium
of a culture of the SCFA-producer Clostridium butyricum
(“supernatant”) decreased DSS-induced colonic mucosal damage
(134). These contradictory effects of butyrate or SCFAs might
be species-specific or due to the colitis model (DSS vs. TNBS),
commensal bacteria depletion, butyrate dosing and route of
administration. Still, these results suggest that, by itself, butyrate
or SCFAs are probably not as effective as administrating direct
live SCFAs-producing bacteria to the mucosa. As mentioned
earlier, there needs to be a constant production and delivery
of SCFA to the mucosa to have anti-inflammatory effects.
Nevertheless, anti-inflammatory effects of SCFAs seem (also) to
be directed to immune cells. Therefore, the success of SCFAs in
restoring intestinal mucosa homeostasis might be achieved by
enriching or recovering SCFAs-producing bacteria through the
use of pre- or probiotics.

Use of Prebiotics for SCFAs Production in
IBD
The definition of prebiotic is “a substrate that is selectively
utilized by host microorganisms conferring a health benefit”
(135). Typically, these substrates are not digested in the human
small bowel, thus promoting selective growth of beneficial
bacteria in the colon (136). It is therefore sensible to explore
the possible therapeutic role of different supplementary DF as
substrates for gut bacteria and SCFA production in order to
suppress inflammatory pathways in IBD patients, animal, and
in vitromodels.

A 4- and 12-weeks “intervention” with an oat bran-
supplemented diet resulted in an increase of fecal butyrate
concentrations and a decrease of abdominal pain or reflux in UC
patients (137). Moreover, a double-blind pilot trial demonstrated
that oral inulin (oligofructose)-supplementation was well-
tolerated by UC patients, with active disease and decreased
dyspeptic symptoms and, more importantly, a reduction in fecal
calprotectin, as an important marker of intestinal inflammation
(138). In contrast, the use of prebiotics has been associated to
side effects in CD patients, such as abdominal pain, flatulence,
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bloating, and diarrhea (139–141). Consequently, the adherence
to this supplementation may be compromised in clinical trials,
hindering an objective evaluation of the effect of the prebiotic
in IBD patients. It remains to be determined whether the
difference in patients’ response might be related to the specific
pathophysiology of both forms of IBD.

Neutrophils may play a dual role in IBD pathophysiology
(142). Over activation of neutrophils may cause excessive tissue
damage in UC patients, while defective neutrophil recruitment
fails to control microorganism invasion in CD, subsequently
leading to uncontrolled inflammation and formation of
macrophage-containing granulomas in an attempt to contain
the microorganism.

This aspect was addressed in CD patients receiving DF
supplementation to their enteral nutrition (143), which
resulted in an increase in GPR43+ neutrophil infiltration
when compared to enteral nutrition alone or patients in
remission. Thus, prebiotics may be used to improve intestinal
neutrophil recruitment.

In pigs fed an RS-supplemented diet, SCFAs
concentrations and abundance of butyrate- (F. prausnitzii)
or propionate-producing (Propionibacterium, Veillonella,
Phascolarctobacterium) bacteria were increased in the luminal
part of cecum and colon, while potentially pathogenic bacteria
(Escherichia coli and Pseudomonas spp.) were decreased
(41). Similarly, a high fiber diet protects mice against DSS-
induced colitis, increasing protective Bacteroidetes (families
Porphyromonadaceae and Rikenellaceae) and Firmicutes (family
Lachnospiraceae), compared to a zero fiber diet (90).

Recently, also other prebiotics have been tested to promote
intestinal SCFA production, including non-digestible dextrin
(DEX), α-cyclodextrin (α-CD), and dextran (DXR) that increased
acetate and propionate production in an in vitro fecal
fermentation model of human colonic microbiota (144). Thus,
non-digestible fibers may be a complementary therapy for
IBD to increase intestinal butyrate production, especially in
UC patients, as supporting evidence in animal and in vitro
models suggests their benefit in promoting SCFAs-producing
bacteria. Nevertheless, well-controlled randomized placebo-
controlled trials (RCT) are needed to fine tune a prebiotics
supplementation plan to manage gastrointestinal tolerance in
IBD patients, especially in CD, before rigorously confirming an
actual clinical improvement.

Use of Probiotics for SCFAs Production in
IBD
A probiotic is defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on the
host” (145). In IBD patients, the potential effect of probiotics in
inducing or maintaining remission, showed encouraging benefits
mainly in UC, as described below.

Two meta-analyses and systematic reviews of RCT of IBD
with probiotics showed that they have significant effects in
achieving remission, particularly for VSL#3 (mixture of four
strains of Lactobacillus, three strains of Bifidobacterium, and one
strain of Streptococcus salivarius subsp. thermophilus), being safe
and effective in achieving remission in UC patients (146, 147).
Moreover, the treatment with the probiotic preparation VSL#3

induced remission, as determined by a decrease in Ulcerative
Colitis Disease Activity Index (UCDAI) in 50–53% UC patients
with mild to moderately active disease (148, 149). In addition,
VSL#3 combined with Lactobacillus have a significant effect in
achieving clinical response in children with IBD (146). In an
alternative approach, UC patients benefitted from a Lactobacillus
probiotic when combined with prebiotics (146). Similarly, an oral
treatment with the non-pathogenic Escherichia coli strain Nissle
1917 (EcN) (for 12 months), reduced relapses of UC patients
in clinical remission, as compared to the standard treatment
with mesalazine (150). Also, Bifidobacterium infantis 35,624
supplementation (for 6 weeks) reduced plasmaC-reactive protein
levels and tended to decrease IL-6 levels in mild to moderately
active UC under treatment with mesalazine, compared to
placebo-supplemented patients (151).

So far, probiotic treatments have not shown a significant effect
in inducing or maintaining remission of active or quiescent CD,
or in preventing relapse of CD after surgically-induced remission
(146, 147). However, probiotics evaluated in these studies were
not butyrate-producing bacteria. Interestingly, a recent proof-
of-concept study explored the effect of six butyrate producers
(B. pullicaecorum 25-3T, F. prausnitzii, Roseburia hominis,
Roseburia inulinivorans, Anaerostipescaccae, and Eubacterium
hallii) in an in vitro fed batch system that simulates the mucus-
and lumen-associated microbiota. A co-culture of these bacteria
with fecal microbiota derived from CD patients with active
disease showed increased butyrate production and improved
epithelial barrier function in vitro (87).

These results encourage the exploration of pre- and probiotic
therapies for specific SCFAs/butyrate production in restoring
intestinal homeostasis and providing resolution and remission
in IBD patients. Such approaches may complement alternative
strategies to modulate microbiota, such as fecal microbiome
transplantation (FMT), which has generated inconsistent results
so far. As such, a detailed description of FMT is outside the scope
of this review. As promising these results seem, more robust
pre-clinical and further RCT studies are still necessary to test
safety and efficacy of new SCFAs- or butyrate-producing bacteria
(mixtures) with potential to be tested in association with FMT for
reconstituting a healthy microbiome.

CONCLUSIONS AND FUTURE
PERSPECTIVES

IBD is characterized by gastrointestinal dysbiosis, both in
patients and in animal models, which particularly impairs SCFA
production, thereby restraining energy supply to colonocytes
and local control of mucosal inflammation. UC and CD patients
show decreased butyrate-producing bacteria, especially F.
prausnitzii, and consequently, SCFAs are reduced in feces, as
well as butyrate uptake and oxidation, a process dependent on
the mucosal inflammatory context. Empirical modulation of the
microbiota using prebiotics or probiotics can increase SCFAs-
producing bacteria in vitro and in vivo, enriching microbiome
diversity in animal models and UC patients, demonstrating
clinical and histological improvement. However, limited
evidence exists indicating clinical improvement through theses
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therapeutics in CD patients; nevertheless, supplementation with
specific probiotics for butyrate formation may still provide new
avenues to manage disease activity. The mechanisms involved
in IBD pathophysiology are still not resolved, nor how butyrate
regulates inflammation, influences metabolism and transcription
in colonic mucosa. Future studies are needed to understand
how to specifically modulate the microbiota and thus predict
possible responses to therapy with personalized strategies in
intestinal inflammation.
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