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Abstract
Accurate estimation of mortality and time to death at admission for COVID-19 patients is important and several deep learning 
models have been created for this task. However, there are currently no prognostic models which use end-to-end deep learning 
to predict time to event for admitted COVID-19 patients using chest radiographs and clinical data. We retrospectively imple-
mented a new artificial intelligence model combining DeepSurv (a multiple-perceptron implementation of the Cox proportional 
hazards model) and a convolutional neural network (CNN) using 1356 COVID-19 inpatients. For comparison, we also prepared 
DeepSurv only with clinical data, DeepSurv only with images (CNNSurv), and Cox proportional hazards models. Clinical data 
and chest radiographs at admission were used to estimate patient outcome (death or discharge) and duration to the outcome. 
The Harrel’s concordance index (c-index) of the DeepSurv with CNN model was 0.82 (0.75–0.88) and this was significantly 
higher than the DeepSurv only with clinical data model (c-index = 0.77 (0.69–0.84), p = 0.011), CNNSurv (c-index = 0.70 
(0.63–0.79), p = 0.001), and the Cox proportional hazards model (c-index = 0.71 (0.63–0.79), p = 0.001). These results suggest 
that the time-to-event prognosis model became more accurate when chest radiographs and clinical data were used together.
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Introduction

As of November 2021, there are 250 million confirmed cases 
of COVID-19 worldwide, with more than 5 million deaths. 
The number of new cases is still increasing daily (https:// 
covid 19. who. int/). Therefore, it is essential for healthcare 
providers to efficiently triage patients with COVID-19. 
Predicting disease severity and progression in COVID-19 
patients is important, as early intervention has been shown 
to reduce mortality [1, 2].

The Cox proportional hazards model, which can contrast 
variables associated with event and time to event, is a fre-
quently applied analysis in medical research [3]. The model 
provides us not just the outcome (i.e., deceased or not) but 
also the time to event, which is more helpful for clinical 
practice. There are several studies which estimate the prog-
nosis of COVID-19 patients using this model [4–6]. These 
include models that predict the time to death [4], the severity 
of illness [5], and the length of hospital stay [6] for patients. 
In these studies, the Cox proportional hazards model showed 
high performance but it has a limitation. It assumes linearity 
rather than performing nonlinear analysis which could better 
reflect actual clinical characteristics [3]. For example, BMI 
is a known nonlinear risk factor for COVID-19 admission 
and death [7]. Therefore, there is a need for a better solution 
that focuses on nonlinear variables.

In recent years, deep learning has been attracting atten-
tion in the medical field [8, 9]. With deep learning, it is 
possible to extract the complex linear and nonlinear rela-
tionship between clinical characteristics and individual 
prognosis. Integrating deep learning into a Cox propor-
tional hazards model has led to the development of the deep 
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learning survival neural network (DeepSurv) [10]. This has 
been shown to perform as well or better than other survival 
analysis methods on survival data with linear and nonlinear 
covariates. The advantage of time-to-death estimation is that 
it can provide more information than the conventional binary 
classification task. Conventional binary classification does 
not estimate how many days until a patient is at increased 
risk of death. A time-to-death model, on the other hand, can 
estimate the risk of death over time from data at a fixed point 
in time (at the time of admission in this model).

Medical images are known to be useful for prognosti-
cation in COVID-19. For example, the usefulness of chest 
radiographs [11–14] and chest CT [15, 16] was reported. 
Although CT is three dimensional and highly sensitive, 
chest radiographs may be more useful in the COVID-19 
pandemic because they are relatively quick, low cost, port-
able, and accessible. Some reports show chest radiography 
for COVID-19 patients is indicative of the risk of hospi-
talization, duration of hospitalization, and risk of serious 
outcomes [12–14].

We hypothesized that we could build a better prognostic 
model by using chest radiographs with clinical data. Since 
DeepSurv does not have a mechanism to handle images, 
we developed a new model that integrated a convolutional 
neural network (CNN) which is one of the deep learning 
fields into DeepSurv. This allows us to handle both clinical 
data and images at once for prognosis estimation. So far, 
no study has developed an end-to-end deep learning model 
to predict time to event which combines clinical data and 
whole images as inputs. Using this newly created model, 

we predicted the mortality and time to death of patients 
hospitalized with COVID-19. Additionally, we scored the 
importance of the images compared to various clinical data.

Methods

Study Design

At first, we integrated a CNN into DeepSurv (DeepSurv with 
CNN model). Then, we developed and tested the model to 
estimate time to death for patients hospitalized with COVID-
19. After developing the DeepSurv with CNN model, we 
compared the importance relative to other clinical data and 
visualized the region of interest of the radiographs. For com-
parison, we also developed the model with only the CNN 
component (CNNSurv model), with only the clinical varia-
bles (DeepSurv-only model), and a Cox proportional hazards 
model. An overview of our study is shown in Fig. 1. Chest 
radiographs were collected from the Stony Brook Univer-
sity COVID-19 dataset [17] in The Cancer Imaging Archive 
[18]. Since this dataset is open source, there is no need for 
review by the ethics board. We have created this article in 
compliance with the STARD statements [19].

Study Patients and Ground Truth Labeling

This dataset was acquired at Stony Brook University 
from patients who tested positive by PCR for COVID-
19. Since this dataset was consecutively extracted from 

Fig. 1  Overview of the prog-
nostic models. We developed 
four prognostic models: a Cox 
proportional hazards model 
using only clinical data at the 
time of admission, a DeepSurv 
model using only clinical data 
at the time of admission, a 
DeepSurv with CNN model 
using clinical data at the time 
of admission and chest radio-
graphs, and a CNNSurv-only 
model using chest radiographs
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the electronic medical records, it is representative of the 
population at that center. The dataset consists of pre- and 
post-admission images (Xp, CT, MR, etc.) and a csv list-
ing test results and patient information. All imaging from 
the pre- and post-admission periods are available; those 
closest to the time of admission were extracted for this 
study. As for the latter records, only data at the time of 
admission were available, and none of the subsequent 
data during hospitalization were available. In this data 
set, anticoagulant therapy is used as a therapeutic inter-
vention. However, the data show no significant difference 
between those patients who did and did not take anti-
coagulant therapy [20–22], so the impact of therapeutic 
interventions taken prior to hospitalization on survival 
is likely to be minimal. Clinical data includes medical 
history, blood tests, and vital signs. This dataset included 
1384 COVID-19 patients. We extracted the one radio-
graph taken closest to the time of admission. All radio-
graphs were taken in anterior–posterior view. A total of 
1356 patients were used for this study after excluding 28 
patients who did not have a chest radiograph at admis-
sion. The eligibility flowchart is shown in Fig. 2. Clinical 
data and chest radiographs at admission were extracted as 

explanatory variables. As the ground truth, patient out-
come (death or discharge) and duration until the outcome 
were extracted and used as objective variables. Detailed 
demographics are shown in Table 1.

Clinical Data Selection

The objective was to create a model that could predict 
patient prognosis with data available at the time of hos-
pitalization. We chose variables which have been shown 
to be risk factors for severe COVID-19 [23–25]. Clini-
cal data includes gender, age, smoking history, BMI, and 
medical history (hypertension, diabetes, chronic heart 
disease, chronic renal failure, chronic lung disease, and 
malignancy). Additionally, vital signs (heart rate, systolic 
blood pressure, respiratory rate, and blood oxygen satura-
tion) and laboratory data (white blood cell count, sodium, 
potassium, c-reactive protein, aspartate aminotransferase, 
alanine aminotransferase, urea nitrogen, creatinine, lactate, 
brain natriuretic peptide, and d-dimer) were used. Mean 
vital signs and laboratory test results for each dataset are 
available in the Online Resource, Table 1.

Fig. 2  Eligibility diagram
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Data Partition

All patients were randomly divided into training and test 
datasets at a ratio of 4:1. Definition of training and test data-
sets are shown in the Online Resource, Methods a. Since 
the partition was performed on a patient basis, there was no 
overlap of images or patients among the respective datasets. 
The training dataset included 1082 patients and the test data-
set included 274 patients.

Image Processing

All chest radiographs in each dataset were resized to three 
sizes (256, 320, and 512 pixels). First, the longer side was 
downscaled while maintaining the aspect ratio. Second, the 
shorter side of the radiographs was padded black.

Model Implementation

We combined a CNN into DeepSurv [10]. Specifically, 
we concatenated the output of the CNN to the fully con-
nected layer of DeepSurv to create an end-to-end deep 
learning model. This model is composed of both CNN 
and MLP structures. During forward propagation, the out-
put of the CNN calculated from a chest radiograph is con-
catenated with clinical data and then they are passed to  
the MLP. The loss value is calculated on the output val-
ues of the MLP; in other words, it is calculated on both 
the radiograph and tabular data. The weights in both the 
CNN and MLP are then simultaneously updated. In each 
training session, the model took both the images and 
clinical data as input, predicted the outcome (death or 
discharge), and then both DeepSurv and the CNN in the 
model were simultaneously trained by back propagation.  
The CNN was developed using ResNet [26], DenseNet 
[27], and EfficientNet [28] architectures in the PyTorch 
framework [29]. It was trained from scratch with the 
training dataset using fivefold cross validation and inde-
pendently tested with the test dataset. All images were 
augmented using random rotation, random shift, bright-
ness shifts, and horizontally flipped. Detailed processes 
for development of the deep learning model are shown in 
the Online Resource, Methods b; machine environments 
are shown in the Online Resource, Methods c; an outline 
of the model is shown in the Online Resource, Fig. 1; and 
the source code is available online (https:// github. com/ 
deeps urv- cnn/).

Additionally, we prepared a CNNSurv model, DeepSurv-
only model, and a Cox proportional hazards model for com-
parison. For the CNNSurv model, chest radiographs were 
used to estimate patients’ prognosis. For the DeepSurv-only 
and the Cox proportional hazards models, clinical data were 
used. The CNNSurv model and the DeepSurv-only model 
were trained from scratch with the training dataset using 
fivefold cross validation and independently tested with the 
test dataset. As for the Cox proportional hazards model, 
principal component analysis was applied and used thirteen 
variables due to the large number of explanatory variables 
to prevent overfitting. Then the Cox proportional hazards 
model was independently evaluated with the test dataset.

Table 1  Demographics

Training/ 
validation dataset

Test dataset

Total no. of patients 1082 274
Male 621 159
Female 461 115
Age
  18–59 69 18
  60–74 277 69
  75–90 208 51

Period between admission and 
radiography (mean ± SD)

1 ± 1 day 1 ± 1 day

Smoking history 224 58
Body mass index, mean ± std 29.4 ± 6.0 29.2 ± 5.4
Disease history
  Hypertension 394 95
  Diabetes 221 53
  Chronic heart disease 151 42
  Chronic kidney disease 65 16
  Chronic lung disease 160 44
  Malignancy 79 14

Outcomes
  Death 141 39
  Discharge 941 235
  Ventilation 175 38
  ICU admission 215 45

Table 2  Results of each model

CNN convolutional neural network

C-index (95% CI) Brier score (95% CI) p value

Cox proportional hazards model 0.71 (0.63–0.79) 0.26 (0.20–0.32) 0.001
Deepsurv model 0.77 (0.69–0.84) 0.20 (0.13–0.27) 0.011
CNNsurv model 0.70 (0.63–0.79) 0.21 (0.19–0.23) 0.001
Deepsurv with CNN model 0.82 (0.75–0.88) 0.20 (0.13–0.27) ref

https://github.com/deepsurv-cnn/
https://github.com/deepsurv-cnn/
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Importance Values and Saliency Maps

Importance values for each explanatory variables includ-
ing chest radiographs were calculated using permutation 
importance with scikit-learn version 1.1.1 [30]. Permuta-
tion feature importance is a model inspection technique that 
is especially useful for nonlinear or opaque estimators. The 
permutation feature importance is defined as the decrease 
in a model score when a single feature value is randomly 
shuffled. This procedure breaks the relationship between the 
feature and the target; thus, the drop in the model score is 
indicative of how much the model depends on the feature.

A saliency map was generated for each chest radiograph 
to visualize the focus of the deep learning model as it esti-
mated patient prognosis. A classification activation map was 
applied to create class-discriminative visualization of the 
chest radiograph [31]. A detailed explanation of the saliency 
map generation model is shown in the Online Resource, 
Fig. 2, and the source code is available online (https:// github. 
com/ deeps urv- cnn/).

Statistical Analysis

To evaluate the performance of the prognosis prediction 
models, we applied Harrell’s concordance index (c-index) 
[32] of right-censored data and the brier score [33]. The 
c-index of the models compared progression informa-
tion (death or discharged, and duration) with the rank of 
the predicted risk score. In addition, the Kaplan–Meier 
method was used to stratify patients into high- and low-
risk subgroups according to the median progression risk 
score. Stratification performance was assessed using the 
log-rank test based on the predicted risk score of the strati-
fied subgroups [34]. Time-dependent area under the curve 
(AUC) was calculated based on the predicted results of the 
DeepSurv with CNN model. Different prediction models 
were compared using binomial tests to show the difference 
in performance. A p-value less than 0.05 was considered 
significant. All analyses were performed using R (version 
4.0.0.) and Python 3.8.1.

Results

Model Development

The models were each independently developed using 
the training dataset applied for 100 training epochs using 
fivefold cross validation. The final hyperparameters for 
the DeepSurv with CNN, CNNSurv, and DeepSurv-only 
models were the Adam optimizer (learning ratio = 0.001), a 
chest radiograph size of 256 pixels, a batch size of 64, and 
DenseNet. The cumulative contribution using the principal 

component analysis was 0.97 for the Cox proportional haz-
ards model.

Model Evaluation

The Cox proportional hazards model had a c-index of 
0.71 (0.63–0.79) and a brier score of 0.26 (0.20–0.32), the 
DeepSurv-only model had a c-index of 0.77 (0.69–0.84) 
and a brier score of 0.20 (0.13–0.27), and the CNNSurv 
model had a c-index of 0.70 (0.63−0.79) and a brier score 
of 0.21 (0.19−0.23), and the DeepSurv with CNN model 
had a c-index of 0.82 (0.75–0.88) and a brier score of 0.20 
(0.13–0.27). The c-index of the DeepSurv with CNN model 
was significantly higher (p-values were 0.001 compared to 
the Cox proportional hazards model, 0.001 compared to the 
CNNSurv model and 0.011 compared to the DeepSurv-only 
model) than the other models (Table 2).

Kaplan–Meier curves for risk stratification are shown 
in Fig. 3. As shown, the Cox proportional hazards model, 
DeepSurv model, CNNSurv model, and DeepSurv with 
CNN model were discriminative in stratifying patients 
into high-risk and low-risk subgroups with p-values of 
0.01, < 0.005, and < 0.005. Time-dependent AUC was over 
0.8 throughout the first week (Fig. 4).

Importance Values and Saliency Maps

The importance values showed that age was the most impor-
tant factor, followed by being male. Images were in the top 
five—the highest of all the examinations and laboratory 
tests done in the hospital (Fig. 5). As for the saliency maps, 
the hottest region was on the area of infiltration (Online 
Resource 1).

Discussion

In this study, we developed a deep learning-based model to 
predict mortality and time to event by integrating clinical 
data and imaging information of COVID-19 patients. To our 
knowledge, this is the first study to develop an end-to-end 
deep learning model to predict time to event which combines 
clinical data and whole images as inputs. The results showed 
that the c-index of the DeepSurv with CNN model was 0.82 
(0.75–0.88) in the test dataset, which enabled correct strati-
fication of COVID-19 patients. This model performed higher 
than the Cox proportional hazards model, CNNSurv-only 
model, and the DeepSurv-only model (p-value < 0.05). The 
time-dependent AUC shows excellent performance through-
out the first week.

Predicting disease severity and progression in COVID-19 
patients is important, as early intervention has been shown 
to reduce mortality [1, 2]. In COVID-19, for example, being 

https://github.com/deepsurv-cnn/
https://github.com/deepsurv-cnn/
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male, advanced age, diabetes, and chronic respiratory dis-
ease are risk factors [23–25]. Chest radiography is important 
as a versatile imaging modality that has shown promise in 
aiding diagnosis and prognosis during the COVID-19 pan-
demic [11–14]. By merging chest radiography information 
with known risk factors, our model showed higher perfor-
mance for estimating COVID-19 prognosis. There are some 
differences between our study and previous studies [35–44]. 
First of all, our model is a time-to-death predictive model 
with image and clinical data, which allows us to estimate 
how likely it is that death will occur in the days following 
hospitalization, rather than only a binary classification. In 
this respect, it differs from many previous studies [35–43]. 
On the other hand, one study showed a CNN and a random 
survival forest-based model that predicts death or discharge, 
with time to event for COVID-19 patients [44]. This study 
is similar in concept to ours. Although the implementation 
is well designed, the training of the CNN and the random 

survival forest was performed separately, while our model 
is trained simultaneously. Training simultaneously allows 
the model to represent more complex relationships between 
images and other explanatory variables. There is no study 
to implement a model which can predict time to event 
using end-to-end deep learning. Moreover, there has been 
no research comparing the importance of imaging among 
these factors. Here, we perform this comparison using per-
mutation importance [45]. The top 10 results showed that 
in addition to chest radiographs, age, gender, medical his-
tory (chronic heart disease, chronic lung disease), oxygen 
saturation, and blood tests (C-reactive protein, lactate, cre-
atinine) were important. The importance of age, gender, 
and medical history (chronic heart disease and chronic lung 
disease) have been reported in previous studies [23–25]. It 
also makes sense that oxygen saturation is important because 
it is an indicator of the severity of pneumonia. C-reactive 
protein and lactate represent the severity of the inflammatory 

Fig. 3  Kaplan–Meier plots. The high-risk and low-risk patients from each model were divided based on the median model output value. This 
plot shows the ground truth survival of these patients, and the shaded area represents the accuracy of the prediction
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response, and creatinine is a value indicating renal function. 
All of these are well-known indicators of severity [46, 47]. 
Chest radiographs contain information such as age, gender, 
and oxygen saturation, which are covariates, and permuta-
tion importance is known to be lower when covariates are 
present. Even under these unfavorable conditions, the fact 
that the image is ranked in the top five means that the image 
is of outstanding importance.

DeepSurv, which applies deep learning to the Cox propor-
tional hazards model, is gradually being introduced to the field 
of medicine [43, 48–50]. For example, it has been applied 
to head and neck cancer [48], oral cancer [43], lung cancers 
[49], and brain metastasis [50] to create more accurate and 
personalized prognostic models. However, the explanatory 
variables which can be used in the model are tabular data and 
not images. Until recently, it has been difficult to integrate 
images into a prognostic model. We can overcome this dif-
ficulty by the evolution of CNNs, starting with the neocog-
nitron [51], and advances in machine power. Our DeepSurv 
with CNN model shows the best performance and may predict 
prognosis more accurately than the conventional Cox hazards 
proportional hazards model [3] or the DeepSurv-only model 
[10], which use risk factors other than imaging.

The model presented here has implications for other dis-
eases which also currently rely on tabular clinical data to 
determine patient prognosis. For example, one of the most 
famous models for stratification of patient prognosis is the 
TNM staging of cancer patients [52]. Information about the 
tumor itself is aggregated into T, which most commonly uses 
only the diameter of the tumor. The malignancy of the tumor 
may be defined by the shape, volume, and internal properties 
of the tumor margins, but these are not taken into account in 
TNM staging. If imaging information can be used directly 
for stratification, as in our model, more individualized and 
accurate prognosis prediction will be possible.

Our model does not require high machine power, and the 
radiographs we handle are 256 × 256-pixel images which is 
much smaller than chest radiographs in digital imaging and 
communications in medicine format. Therefore, the model 
can be implemented into daily practice using any system 
with a central processing unit [53]. However, systems in 
hospitals are not simple, and in most cases, multiple systems 
coexist and cooperate with each other. Therefore, clinical 
implementation of this model may require additional invest-
ment in medical technology, such as an image extraction 
system from picture archiving and communication systems, 

Fig. 4  Time-dependent AUC 
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a computer analysis system for the images, and a system to 
provide the results to the physician.

This study had several limitations. The data in this study 
were collected from a single center. Further validation with a 
test dataset acquired in another institution is needed to show 
robustness of the model. In addition, this was a retrospective 
study and should be reviewed prospectively. In the clinical 
application of this model, it is best to retrain or fine tune it 
with data taken more recently because of the data set shift 
problem [54].

In clinical practice, patients admitted with COVID-19 
have a chest radiograph taken as routine clinical prac-
tice. Our model was able to predict patient survival with 
high performance by using conventional tests taken upon 
admission and patient information. It also revealed the 
importance of the images themselves compared to these 
tests. Predicting patient prognosis allows healthcare pro-
viders to perform appropriate triage and management, 
and optimize the use of resources. Application of this 
model may not only support patients but also the hospital 

systems which have struggled throughout this pandemic 
to maintain supplies. We plan to validate this model 
using a multicenter dataset and develop an even more 
comprehensive model which includes other pneumonias.
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