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Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by erosive
polyarthritis. Beyond joint pathology, RA is associated with neuropsychiatric comorbidity
including depression, anxiety, and an increased risk to develop neurodegenerative diseases in
later life. Studies investigating the central nervous system (CNS) in preclinical models of RA
have leveraged the understanding of the intimate crosstalk between peripheral and central
immune responses. This mini review summarizes the current knowledge of CNS comorbidity
in RA patients and known underlying cellular mechanisms. We focus on the differential
regulation of CNS myeloid and glial cells in different mouse models of RA reflecting different
patterns of peripheral immune activation. Moreover, we address CNS responses to anti-
inflammatory treatment in human RA patients and mice. Finally, to illustrate the bidirectional
communication between the CNS and chronic peripheral inflammation, we present the
current knowledge about the impact of the CNS on arthritis. A comprehensive understanding
of the crosstalk between the CNS and chronic peripheral inflammation will help to identify RA
patients at risk of developing CNS comorbidity, setting the path for future therapeutic
approaches in both RA and neuropsychiatric diseases.

Keywords: rheumatoid arthritis, neurodegenenerative diseases, depression, blood-brain barrer,
microglia, neuroinflammation
INTRODUCTION

The central nervous system (CNS) has long been considered to be protected from circulatory
inflammatory signals by the blood-brain barrier (BBB). However, an intimate crosstalk between
chronic peripheral inflammation and the CNS is evidenced by a plethora of neurological and
psychiatric sequelae associated with chronic inflammatory diseases like rheumatoid arthritis (RA).

RA is a systemic autoimmune disease characterized by synovial inflammation and deformation of
joints andadjacent bones. The pathogenesis ofRA is drivenbya complex interplay between the adaptive
org December 2020 | Volume 11 | Article 6121041
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immune system involving T-cells and autoantibodies as well as
innate immune components like myeloid cells and pro-
inflammatory cytokines (1–3). RA patients are highly predisposed
todevelopneuropsychiatric comorbidities.Theprevalenceofmajor
depressive disorder inRApatients was estimated to be 16.8%, by far
exceeding the general population (4, 5). Moreover, RA patients
show higher levels of anxiety (6) and impaired cognitive
performance (7, 8) compared to healthy individuals. Additionally,
almost 40%ofRApatients experience chronic pain,which is further
linked to depression and anxiety (9). Interestingly,mid-life RA lead
to an increased risk to develop dementia by 2.5-fold after a follow-
up period of 21 years (10). However, epidemiological studies on the
association between RA and individual neurodegenerative diseases
likeAlzheimer’sDisease (AD) and Parkinson’sDisease (PD) showed
contradictory results (11–16). Nevertheless, RA therapeutics
inhibiting pathogenetic pro-inflammatory cytokines like tumor
necrosis factor (TNF) and interleukin-6 (IL-6) alleviate symptoms
such as depression and anxiety (17, 18) and were linked to a reduced
risk of future neurodegeneration (19) in RA patients.

While precise pathological mechanisms causing CNS involvement
in RA are currently being investigated, most existing insights about
the propagation of peripheral inflammation into the CNS and
subsequent impairment of neural function are derived from animal
models of acute infection by administration of lipopolysaccharide
(LPS) or polyinosinic-polycytidylic acid (Poly(I:C)). In this context,
peripheral inflammatorymediators can enter the CNS across theBBB
or the choroid plexus, by the infiltration of blood-derived immune
cells or the inflammatory activation of endothelial cells (20–23).
Additionally, astrocytes and CNS-associated myeloid cells like
parenchymal microglia, meningeal, perivascular and choroid
plexus macrophages, acquire an inflammatory state. These
changes are referred to as “neuroinflammation” and may
ultimately be the link to neuropsychiatric symptoms by inducing
neuronal damage, impaired adult hippocampal neurogenesis, and
altered neurotransmitter signaling (20, 24–26).

Transferring these findings into the context of chronic peripheral
inflammation is urgently needed as neuropsychiatric comorbidity in
RA substantially contributes to disease burden and worsens
therapeutic response and outcome (27, 28). However, research on
this topic is hampered by the heterogeneity of present experimental
models (29) and immunophenotypes observed in RA patients (30–
32). The present review summarizes our current knowledge about
inflammatory alterations and neuronal dysfunction in the brain of
RApatients and rodentmodels. Vice versa, wewill also discuss how
the CNS is able to modulate the course of peripheral arthritis.
Additionally, we aim to highlight open questions and future
research strategies to better decipher and treat neuropsychiatric
vulnerability in chronic peripheral inflammation.
GENETIC LINKS BETWEEN CHRONIC
INFLAMMATIONANDNEURODEGENERATION

The clinical CNS involvement of some patients with RA has raised
the question of a shared genetic predisposition for RA and
Frontiers in Immunology | www.frontiersin.org 2
neurological or psychiatric diseases. A particular focus was aimed
towards neurodegenerative diseases, since the immune system is
increasingly being acknowledged as an important driver of
pathogenesis. Recently, a comparison of genome-wide association
studies (GWAS) on neurodegenerative and chronic immune-
mediated diseases revealed 15 single-nucleotide polymorphisms
(SNPs) jointly associated with RA and frontotemporal dementia
(FTD). Interestingly, themajority of those SNPs were located in the
human leukocyte antigen (HLA) region on chromosome 6 (33).
This region encodes a set of gene products essential for self- and
non-self-antigen presentation and immune function both in the
periphery and the CNS. The dense and overlapping organization of
HLA-genes on chromosome 6 did not allow the identification of
individual genes accounting for the shared risk between FTD and
RA. Shared disease-associated SNPs related to immune function
were also identified for RA and PD (34), amyotrophic lateral
sclerosis (ALS) and progressive supranuclear palsy (PSP) (33).
Yokoyama et al. identified few SNPs jointly associated with AD
and different immune diseases including RA (35). In contrast,
Mendelian Randomization studies showed no positive correlation
betweenknowngenetic risk factors forRAand incidence ofAD (15,
36) or vice versa (37). Interestingly, the polygenic risk for RA
integrating many known predisposing SNPs was correlated with
lower cognitive performance in healthy adolescents (38). Felsky
et al. demonstrated a correlation between polygenic risk for RA and
microglial density in thebrainof elderly individuals (39).Again, this
correlation was substantially driven by genetic changes located in
the HLA region on chromosome 6 (39). Taken together, HLA-
associated polymorphisms and immune-related genetic risk factors
for RA may contribute to comorbid cognitive impairment and
neurodegenerative diseases.
ROUTESCONVEYINGCHRONICPERIPHERAL
INFLAMMATIONTOTHEBRAIN

To induce neuroinflammation in the context of arthritis, peripheral
inflammatory signals must enter into the CNS. This is achieved by
several routes (Figure 1). First, circulatory pro-inflammatory
cytokines are able to enter the brain by volume diffusion in
circumventricular organs (CVOs), neuroanatomical sites of
increased BBB permeability located around the third and fourth
ventricles (20). Besides, studies based on LPS-induced acute
peripheral inflammation proposed the entrance of cytokines into
the brain by active transport or tight junction damage (40, 41). In
the context ofRA, disruptionof theBBBwas observed in a collagen-
induced arthritis (CIA) model (42, 43). This model is based on
immunization against collagen-II and strongly driven by T-cell-
dependent mechanisms. Correspondingly, brain homogenates of
CIA-induced mice showed an increased cell population expressing
monocyte markers C-C motif chemokine receptor 2 (Ccr2) and
Ly6c (44). This finding might indicate blood-derived myeloid cell
infiltration into the brain parenchyma, although perivascular or
meningeal localization of the detected cells was not excluded. In
contrast to CIA, BBB tight junctions remained intact in mice
December 2020 | Volume 11 | Article 612104
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overexpressing human TNF in the periphery (hTNFtg) (45),
a model characterized by a profound myeloid cell activation
without T-cell involvement (46, 47). In line with BBB integrity in
this model, single cell RNA-seq of cortical myeloid cells showed no
increase in thenumber of blood-derivedmonocytes or granulocytes
(45). In summary, findings on BBB disruption differ between RA
Frontiers in Immunology | www.frontiersin.org 3
animal models and evidence for CNS infiltration of peripheral
myeloid cells in RA is limited. The role of T cells in the CNS
involvement of RA is largely unaddressed.

Peripheral inflammation may also induce non-disruptive
alterations of the BBB, including an upregulation of leukocyte
adhesion markers and the secretion of inflammatory mediators
FIGURE 1 | Propagation of chronic peripheral inflammation into the central nervous system (CNS). Rheumatoid arthritis (RA) comprises a spectrum of different
peripheral immunophenotypes, including a lymphoid subtype driven by adaptive immune activation and a myeloid subtype characterized by the activation of myeloid
cells. While the lymphoid subtype is represented by the mouse model of collagen-induced arthritis (CIA), the human TNF-a transgenic (hTNFtg) mouse model
mimicks key aspects of the myeloid form of RA. Peripheral inflammation can reach the CNS via different gateways, including the vagus nerve, the somatosensory
nervous system, the meninges, the choroid plexus and the bloodstream. In both lymphoid and myeloid models of RA, the activation of microglia, astrocytes, and
perivascular macrophages as well as increased levels of pro-inflammatory cytokines and chemokines were described. While in CIA, these alterations were mainly
observed in the cortex (Ctx) and hippocampus (Hc), hTNFtg mice show a distinct regional distribution of neuroinflammation including the Ctx, striatum (Str), and
thalamus (Th), but sparing the Hc and the cerebellum (Cb). The blood-brain barrier (BBB) was proposed to be disrupted in lymphoid models, potentially allowing the
influx of blood-derived immune cells. In myeloid models, BBB integrity appears maintained, but endothelia display an activated signature and may contribute to the
secretion of cytokines and chemokines. Neuroinflammation in RA models was linked with impaired neuronal function due to altered neurotransmitter metabolism and
neural plasticity as well as synaptic and network refinement. Ultimately, these changes may cause neuropsychiatric symptoms. So far, behavioral phenotypes were
mainly found in lymphoid models of RA and are limited in the myeloid subtype. Figure created with BioRender (https://biorender.com).
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by endothelial cells (48). In hTNFtg mice, intercellular adhesion
molecule 1 (Icam-1) and vascular cell adhesion molecule 1
(Vcam-1) are induced in distinct brain regions, indicating
endothelial activation without tight junction leakage (45).
Interestingly, endothelial Vcam-1 was recently described to
mediate neuroinflammation and cognitive impairment during
aging. This process was accompanied by intravascular adhesion,
but not parenchymal infiltration of circulatory leukocytes (49).
In Complete Freud’s Adjuvant-induced arthritis, endothelia
contribute to vessel-associated micro- and astrogliosis and
subsequent hyperalgesia by vascular endothelial growth factor
2 (Vegf2)-dependent upregulation of Icam1 in the spinal cord
(50). Hence, BBB endothelial cells may act as an active mediator
of neuroinflammation rather than a passive barrier in the context
of RA.

Moreover, chronic peripheral inflammation is propagated into
theCNSbydirect neuronal routes. Pro-inflammatory cytokines like
IL-1b, IL-6, and IL-17were shown toactivateperipheralnociceptive
afferents (51). These neuronal afferents are involved in the
pathogenesis of arthritis, but also signal inflammatory cues to the
CNS.Accordingly, Hess et al. demonstrated a profoundly increased
pain response in the brains of hTNFtg mice and RA patients by
functional magnetic resonance imaging (fMRI), which was
reversible upon inhibition of peripheral TNF (52). This
modulation of CNS activity preceded the histopathological
amelioration of arthritis (52). Apart from the somato-afferent
nervous system, the vagus nerve may display a second neuronal
afferent route linking chronic peripheral inflammation and the
CNS. The vagal nerve is involved in the generation of behavioral
responses to LPS administration (53) and activated by TNF and IL-
1b in cytokine-specific electrophysiological patterns (54). Future
experiments transferring these findings into the context of arthritis
are needed.

Finally, further interfaces between the peripheral immune
system and the CNS, including the choroid plexus, the meninges
and the glymphatic system have hardly been studied in chronic
peripheral inflammation and might provide further insights into
the involvement of the CNS in RA. Moreover, gut microbiota can
modulate microglia and brain function (55, 56). As gut dysbiosis
was shown in RA (57), the gut-brain axis might as well
contribute to RA-associated neuropsychiatric comorbidity.
NEUROINFLAMMATION IN RA

After receiving inflammatory signals from the periphery, CNS-
resident cells, particularly microglia and astrocytes, are able to
acquire an activated phenotype and maintain a neuroinflammatory
state. Recently, we characterized myeloid cells in hTNFtg mice by
histology, flow cytometry, and scRNA-seq. We detected a strong
microglial activation signaturewith a downregulationof homeostatic
markers like transmembrane protein 119 (Tmem119), P2ry12, and
Fc receptor-like S (Fcrls) accompanied by the upregulation of CD45,
sialic acid-binding immunoglobulin-type lectin 1 (Siglec-1), several
complement factors, and chemokines as well as genes linked to
lysosomal function (45). Importantly, this microglial response was
Frontiers in Immunology | www.frontiersin.org 4
restricted todefinedbrain regions, including the cortex, striatum, and
thalamus, and reversed by inhibitionof peripheral humanTNFusing
infliximab, a clinically used compound for the treatment of RA (45).
In the cerebellum and hippocampus of hTNFtgmice, there was little,
if any, inflammatory response. This regional vulnerability of theCNS
may be linked to locally confined endothelial activation (45). The low
susceptibility of the hippocampus, a region involved in the
pathophysiology of depression and memory disorders, may explain
the absenceof depressive-like symptoms inhTNFtgmice (58).When
these mice were crossed with the 5XFAD model of AD, decreased
amyloid plaque load was detected. However, the authors also
suggested impaired synaptic integrity, which might be due to an
unselectively boosted phagocytosis of activated myeloid cells (59).
Behavioral analyses are needed to answer the question if TNF-driven
arthritis overall ameliorates or worsens AD-like phenotypes in
5XFADmice.

In contrast to microglia, the response of astrocytes is poorly
characterized in TNF-driven arthritis and only based on the
expression of glial fibrillary acidic protein (Gfap). While in
hTNFtg mice, reactive astrogliosis was concluded by increased
Gfap staining intensity in the cortex (59), arthritis driven by
overexpression of murine TNF was associated with activation of
microglia, but not astrocytes (60).

In contrast to TNF-driven arthritis, lymphoid cell-basedmodels
of RA like CIA or antigen-induced arthritis (AIA) were less
extensively investigated regarding neuroinflammation, mainly
focussing on the hippocampus and cortex. Several studies
reported an elevated expression of TNF, IL-1b, or IL-6 in the
hippocampus and cortex of arthritic mice (43, 44, 61, 62).
Moreover, microglial density and expression of the phagocytosis
marker CD68 were increased in the hippocampus during CIA (43,
61). Increased phagocytosis was corroborated by a decrease of
amyloid or tau pathology, when CIA was induced in AD mouse
models (43, 44). However, analyses of neuronal integrity and
behavior were not performed in these studies. Besides activation
of microglia, CIA led to increased numbers of Gfap+ astrocytes in
the hippocampus (61). Hippocampal inflammation in CIA and
AIA was associated with depressive-like behavior (61, 62).

Together, these data show neuroinflammation in immunization-
based RA models. Interestingly, hippocampal immune response in
these models indicates a different regional pattern of
neuroinflammation compared to myeloid cell-based, TNF-driven
arthritis. It is therefore tempting to speculate, that the peripheral
immunophenotype during chronic inflammation navigates regional
neuroinflammation. Importantly, several recent transcriptomic studies
point out the existence of different immunophenotypes in RApatients
(30–32). This includes phenotypeswith lymphoid-based andmyeloid-
based inflammation (30, 32), which reflects the pathophysiological
hallmarks of CIA and the hTNFtg model, respectively. Thus, a
comparison of BBB alterations, neuroinflammation, and
neuropsychiatric comorbidity between these different subtypes of RA
patientsmighthelp tounderstandpredisposing factors forneurological
or psychiatric comorbidity.

In RA patients, neuroinflammation has hardly been examined.
Analyses of human post mortem brain tissue indicated microglial
activation evident by downregulation of the homeostatic marker
December 2020 | Volume 11 | Article 612104
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P2RY12 in the cortex, but not the cerebellum of RA patients. This
finding matches with the regional CNS immune response
previously observed in hTNFtg mice (45). The cerebrospinal fluid
of RA patients contained increased levels of IL-1b compared to
multiple sclerosis (MS) patients and healthy controls (63).
Moreover, longitudinal proteomic analyses of CSF samples
derived from seven RA patients prior to and during infliximab
treatment identified a set of immune-associated markers including
complement factor B, which were reduced by TNF blockade (64).
Future studies are needed to translate further key aspects of
neuroinflammation detected in rodent arthritis models into
human diseased conditions.
STRUCTURAL ALTERATIONS AND
NEURONAL DYSFUNCTION IN RA

To eventually result in neuropsychiatric symptoms, neuroinflammation
is associated with impaired neuronal function. In this regard, several
mechanisms have been proposed: alterations in neurotransmitter
signaling, dynamic modulation of dendritic spines and neuronal
networks, and impaired adult hippocampal neurogenesis.

First, chronic peripheral inflammation was reported to affect
glutamatergic and serotonergic signaling. In a rat model of 2,4,6-
trinitrobenzenesulfonic acid (TNBS)-induced colitis, hippocampal
inflammation triggered altered glutamatergic signal transduction,
which was reversible upon anti-inflammatory treatment (65). In
the pathogenesis of depression, serotonin, a derivative of the
essential amino acid tryptophan, plays a key role. Krishnadas
et al. observed that serotonin transporter activity in the brainstem
assessed by nuclear imaging positively correlated with serum levels
of TNF and depressive symptoms (66). In patients with psoriatic
arthritis, treatment with the TNF antagonist etanercept for 6–8
weeks significantly reduced serotonin transporter activity, thereby
increasing serotonin availability in the synaptic cleft (66).
Collectively, chronic peripheral inflammation in RA may induce
neurotransmitter dysregulation in the CNS. As neurotransmitter
metabolism and recycling is a major homeostatic function of
astrocytes, a better understanding of astrocytic modulation
during RA-induced neuroinflammation may also provide further
insights into the role of different neurotransmitters in arthritis-
associated neuropsychiatric symptoms.

Secondly, changes in neuronal structure subsequent to chronic
peripheral inflammation may account for neuropsychiatric
symptoms. In acute inflammation induced by Poly(I:C), Garré
et al. observed increased loss of cortical dendritic spines
functionally resulting in learning deficits. Of note, these changes
were independent of microglia, but orchestrated by peripheral C-
X3-C motif chemokine receptor 1 (Cx3cr1)-expressing monocytes
and TNF (23). As TNF was linked to depressive symptoms in AIA
(62), it isof great interest toexaminedendritic spinedynamics inRA
mouse models. Besides remodeling dendritic spines, chronic
peripheral inflammation may induce complex structural network
rearrangements in the brain. Schrepf et al. demonstrated rewiring of
the brain connectome bymultimodal brainMRI in RA patients. In
particular, the inferior parietal lobe and themedial prefrontal cortex
Frontiers in Immunology | www.frontiersin.org 5
weremore strongly involved in several brain networks compared to
healthy controls (67).

Adult hippocampal neurogenesis, the generation of new
neurons in the dentate gyrus throughout lifetime, is a
physiological process contributing to learning, memory, pattern
separation and emotions. Adult hippocampal neurogenesis is
impaired in models of neurodegenerative diseases (68) and
depression (69), but is also affected by local and systemic
inflammation (24, 70). It has been investigated in several RA
models. Interestingly, in rodent models mimicking the lymphoid
subtype of RA, divergent findings were obtained. In AIA, a slight
increase in the proliferation of neural progenitor cells and the
number of surviving newly generated neurons were described (71,
72). In contrast, Andersson et al. recently showed reduced adult
hippocampal neurogenesis and smaller hippocampal volume in
mice withCIA (61). Impaired adult hippocampal neurogenesis was
mediated by inflammation-induced insulin-like growth factor 1
receptor (IGF1R) signaling. Interestingly, small hippocampal
volume in female RA patients correlated with more severe pain
andreduced levelsof seruminsulin-likegrowth factor1 (IGF1) (61).
Moreover, high IGF1R expression in leukocytes of RA patients
significantly correlated with symptoms of anxiety (61). Of note, the
study was restricted to female RA patients. It will be interesting to
study the role of IGF1/IGF1R in male RA patients, as the role of
gender inCNS involvementduringRAishardly investigated.Taken
together, the IGF1/IGF1R-axismight therefore serve as a biomarker
for some neuropsychiatric symptoms in RA patients. In contrast to
lymphoid-based models, a stepwise characterization of adult
hippocampal neurogenesis in the myeloid-like hTNFtg model
revealed no difference compared to wt controls (58). This is in
line with the observed resilience of the hippocampus to
neuroinflammation in this model (45, 58).

In summary, chronicperipheral inflammationduring arthritis is
propagated to the CNS and subsequently causes neuropsychiatric
symptoms by affecting neurotransmitter metabolism, dendritic
spine and neuronal network dynamics adult hippocampal
neurogenesis. It is important to note, that these changes appear to
depend on the particular peripheral immunophenotype.
CNS MODULATION OF ARTHRITIS

After highlighting the modulation of the CNS by RA, it is
noteworthy that recent studies propose effects of the CNS on the
severity and progression of arthritis, which are mainlymediated by
the autonomic nervous system. These findings illustrate the
reciprocal interaction between CNS pathology and RA and are in
line with the clinical observation that depression is frequent in RA,
but also predisposes for RA development (73).

To date, different mechanisms of systemic immunemodulation
by the CNS have been revealed. As amajor efferent routemediating
immune suppression by the CNS, the vagal nerve controls the
production of TNF and other pro-inflammatory cytokines (74).
This effect ismediated via the splenic nerve,which directly activates
b-adrenergic receptors on splenic CD4+ T cells expressing choline
acetyltransferase (ChAT). ChAT+CD4+ T cells in turn suppress
cytokine production in other immune cells by cholinergic signaling
December 2020 | Volume 11 | Article 612104
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via thea7 nicotinic acetylcholine receptor (75, 76). The therapeutic
potential of vagal nerve stimulation has been demonstrated in a rat
model of CIA (77) and a small group of RA patients, leading to
attenuated cytokine production and decreased disease activity
scores (78). Moreover, direct stimulation of splenic nerve
terminals by ultrasound altered gene expression profiles of B and
T cells and alleviated arthritis in the K/BxN serum transfer model,
which is mediated by antibodies against glucose-6-phosphate
isomerase (79). To date, it is hardly understood, how this
modulation of chronic peripheral inflammation via the
autonomic nervous system is orchestrated by central brain
regions. Two recent studies showed that central stimulation of the
locus coeruleus and the parietal cortex dampened zymosan-
induced arthritis in rats via sympathetic adrenergic signaling to
affected joints (80, 81). Interestingly, both brain regions are
activated by afferent vagal stimulation (80, 81).

Efferent modulation of peripheral inflammation by the CNS
raises the question, howneurological diseases influence the risk and
severity of arthritis. Lang et al. observed that neurodegeneration in
transgenic mice expressing the human tau P301S mutant (P301S
mice) was linked to higher induction rates and earlier onset of CIA
(44).As the number ofChAT+T cells in the spleenwas not different
in P301S mice (44), CNS modulation of arthritis might be
independent of the vagus efferent pathway.

Post-stroke immunosuppression is a transient condition of
mitigated immune function and increased vulnerability towards
infection following cerebral ischemia. This phenomenon was
recently linked to the suppression of peripheral natural killer
(NK) cells by catecholaminergic and glucocorticoid signaling via
the sympathetic nervous system and the hypothalamo-pituitary-
adrenal axis (82). Intriguingly, post-stroke immunosuppression
alleviated K/BxN serum transfer-induced arthritis in mice during
early disease stages (83). Collectively, these data suggest that
certain CNS regions may on the one hand be a target, but on the
other hand also a modulator of chronic peripheral inflammation
in the context of RA.
CONCLUSION

Besides joint pathology, patients with RA frequently show highly
relevant comorbidities involving the CNS resulting in aggravated
therapeutic response and outcome. Neuropsychiatric and
neurodegenerative disorders associated with RA are thought to be
at least partially linked to neuroinflammation targeting specific
Frontiers in Immunology | www.frontiersin.org 6
brain regions. However, the extent of neuroinflammation and how
much it contributes to CNS comorbidities in RA is still unclear.
More studies targeting the brain myeloid cell compartment in RA
and other peripheral immune diseases like ulcerative colitis would
shed more light on the pathogenesis of CNS comorbidities. In this
regard, the amelioration by TNF inhibitors like infliximab strongly
implies an RA-linked neuroinflammatory response different from
MS, which is aggravated or triggered by TNF inhibition (84). The
CNSmyeloidcell activationpattern inRAwas reported tobe similar
to the disease-associated microglia (DAM) profile observed in
neurodegenerative diseases (45, 85), an activation state distinct
from the pattern observed in the experimental autoimmune
encephalomyelitis model of MS (86). One exciting line of research
would be to explore a potential link of complement-dependent
synaptic degeneration as postulated in AD (87, 88) in the context
of RA.

The heterogeneity in BBB modulation, myeloid cell activation,
regional neuroinflammation, and adult hippocampal neurogenesis
observed in different RAmousemodels will have to be related to the
distinct immunophenotypes in RA patients. A major goal is the
identification of novel biomarkers defining RA patients at risk of
CNS involvement to enable an early interdisciplinary treatment.
Vice versa, such biomarkers may help to predict the risk of future
arthritis in patients with pre-existing neuropsychiatric diseases,
such as depression.

Finally, the bidirectional interaction between chronic peripheral
inflammation and the brain will enable innovative treatment
approaches for systemic inflammatory, neurological, and
psychiatric diseases.
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