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Introduction

Bone cells such as osteoblasts and osteoclasts must proliferate, 
migrate, attach, spread and differentiate from precursor cells orig-
inating from mesenchymal or hematopoietic stem cells. Cell-cell 
interaction through ephrins and Ephs regulates these processes. 
Analysis of animal models and human disease indicates that eph-
rins and Eph function in somitogenesis, craniofacial development 
and limb development. Once they form, bones are maintained by 
bone remodeling, which is also influenced by ephrins and Ephs. 
In addition, in bone diseases such as osteoarthritis, rheumatoid 
arthritis or bone-associated tumors such as multiple myeloma 
and osteosarcoma, signaling mediated by ephrins and Ephs likely 
affects disease progression.
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Bones cannot properly form or be maintained without cell-cell 
interactions through ephrin ligands and eph receptors. Cell 
culture analysis and evaluation of genetic mouse models and 
human diseases reveal various ephrins and eph functions in 
the skeletal system. Migration, attachment and spreading of 
mesenchymal stem cells are regulated by ephrinB ligands and 
ephB receptors. ephrinB1 loss-of-function is associated with 
craniofrontonasal syndrome (CFNS) in humans and mice. in 
bone remodeling, ephrinB2 is postulated to act as a “coupling 
stimulator.” in that case, bidirectional signaling between 
osteoclastic ephrinB2 and osteoblastic ephB4 suppresses 
osteoclastic bone resorption and enhances osteoblastic bone 
formation, facilitating the transition between these two states. 
Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts 
and enhances osteoblastic bone formation. in contrast 
to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since  
ephrinA2 reverse signaling into osteoclasts enhances 
osteoclastogenesis and ephA2 forward signaling into 
osteoblasts suppresses osteoblastic bone formation and 
mineralization. Furthermore, ephrins and ephs likely modulate 
pathological conditions such as osteoarthritis, rheumatoid 
arthritis, multiple myeloma and osteosarcoma. This review 
focuses on ephrin/eph-mediated cell-cell interactions in bone 
biology.
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Eph receptors belong to a subfamily of receptor tyrosine 
kinases activated by ligands called ephrins (Eph receptor interact-
ing proteins).1 Both Ephs and ephrins are divided into two A and 
B groups. Generally, EphA receptors (EphA1–A8, A10) interact 
with ephrinA (ephrinA1–A5) and EphB receptors (EphB1–B6) 
interact with ephrinB ligands (ephrinB1–B3), with some excep-
tions.2,3 As an exception, EphA4 binds to ephrinB2 and ephrinB3 
as well as to ephrinAs. From the extracellular N-terminus, Eph 
receptors are composed of an ephrin-binding domain, a cyste-
ine-rich region, two fibronectin type III domains, a juxtamem-
brane region, a kinase domain, a sterile a motif (SAM) and a 
C-terminal PDZ-domain binding motif. ephrinA ligands attach 
to the cell membrane via a glycosylphosphatidyl inositol (GPI) 
anchor, while ephrinB ligands are transmembrane proteins con-
taining a conserved cytoplasmic tail and a C-terminal PDZ-
domain binding motif. Eph receptors interact with ephrins at the 
cell surface, triggering bidirectional signaling: forward through 
Eph receptors and reverse through ephrins.4 Forward Eph sig-
naling depends on both Eph kinase activity and kinase-inde-
pendent signals, while reverse ephrin signaling depends on Src 
family kinases and other effector molecules.5 In communication 
between neurons and glia, arteries and veins, and many other cell 
types, activation of ephrin/Eph-mediated bidirectional signaling 
alters cell adhesion, migration and proliferation. Here we review 
literature relevant to expression and function of ephrins and Ephs 
in the field of bone biology (Fig. 1).

Stem Cell Attachment and Migration

Ephrin/Eph signaling reportedly mediates cancer cell migra-
tion and attachment and regulates similar migratory behavior of 
mesenchymal stromal/stem cells (MSCs) and dental pulp stem 
cells (DPSCs). MSCs contribute to skeletal tissue formation by 
differentiating into chondrocytes, osteoblasts, and tendon cells. 
When cultured human MSCs are treated with soluble EphB-Fc, 
MSCs become rounder and smaller, indicating that reverse sig-
naling through ephrinB inhibits MSC attachment (Fig. 1).6 By 
contrast, treatment of MSCs with ephrinB-Fc promotes MSC 
migration. This activity is likely mediated by forward signaling 
through EphB2, as MSCs lacking EphB2 are unaffected by this 
treatment.6

DPSCs reside in the perivascular niche of dental pulp, and 
their attachment and migration are dependent on ephrin/Eph 
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signaling.7 Like human MSCs, human DPSCs treated with 
EphB2-Fc become rounder and smaller, although MSCs and 
DPSCs respond differently to certain ephrin-Fc or Eph-Fc mol-
ecules in morphological and migration assays. Since ephrinB1 
gene expression is downregulated following tooth injury, ephrin/
Eph signaling in DPSCs may function in tooth repair.7

Somite Formation and EphA4

EphA4 signaling regulates formation of somites, which are 
blocks of mesodermal cells located on both sides of the noto-
chord. Somites, which are derived from unsegmented paraxial 
mesoderm called presomitic mesoderm (PSM), give rise to ver-
tebrae and ribs, muscle and other connective tissues. In fact, the 
ventral part of somite becomes the sclerotome and the caudal 
compartment of one sclerotome fuses to the rostral component 
of the consecutive sclerotome to form one vertebra through a 
process called resegmentation.8 Among factors that drive somite 
formation in early embryos, the basic helix-loop-helix transcrip-
tion factor Mesp2 is crucial for defining the segmental border. 
Notch signaling induces Mesp2 transcription at a future somitic 
compartment,9 and Mesp2, in turn, downregulates Notch signal-
ing in the anterior half of each presumptive segment.10

In the anterior PSM cells posterior to the presumptive somite 
boundary, EphA4 is induced as a direct transcriptional target 
of Mesp2,11 while cells in the posterior half of presumptive seg-
ment express ephrins.12 Interaction between EphA4 and eph-
rins is required for somitogenic boundary formation (Fig. 1). 
Consistently, ectopic Mesp2 expression induces EphA4 and leads 

to skeletal malformation.11 Similarly, forced expression of cMeso-
1, the chicken homolog of mouse Mesp2, in chick embryos 
results in ectopic boundary formation in the PSM.13 Of genes 
downstream of cMeso-1, only EphA4 is required for somitic 
boundary formation.13 Nonetheless, severe skeletal phenotypes 
have not been reported in EphA4 knockout mice,14 presumably 
due to EphA receptor redundancy.

Craniofacial Development and EphrinB1

In humans, ephrinB1 is encoded by the X-linked EFNB1 gene, 
and EFNB1 mutations are associated with craniofrontonasal syn-
drome (CFNS).15,16 Unlike other X-linked disorders, females are 
more severely affected than males (see below). CFNS is charac-
terized by cleft palate, hypertelorism, frontonasal dysplasia, agen-
esis of the corpus callosum, hypoplasia of the maxilla and other 
anomalies of neurological and skeletal development (Fig. 1).17 
Mice lacking ephrinB1 generated by crossing Efnb1 floxed mice 
with a line ubiquitously expressing Cre recombinase (Pgk-Cre) 
exhibit multiple skeletal malformations.18

In mice, proliferation of palatal mesenchyme cells controls 
palatal shelf outgrowth initiated from the invaginated surface of 
the maxillary processes beginning around embryonic day 11.5 
(E11.5). The palatal shelves are vertically positioned lateral to the 
tongue by E13.5 and then are elevated to a horizontal position, 
grow and fuse. ephrinB1 is required for this elevation and the 
PDZ target site of ephrinB1 is crucial for that activity. Forward 
signaling through EphB2 (previously called Nuk) and EphB3 
(previously called Sek4) cooperate in palate formation.19,20

Figure 1. ephrins and ephs in bone biology (an overview). rs, reverse signaling; fs, forward signaling; ant., anterior; post., posterior; PSM, presomitic 
mesoderm.
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Why are female CFNS patients more severely affected than 
males? In female ephrinB1 heterozygous mutants, X inactivation 
generates ephrin-B1-expressing and -non-expressing cells, and these 
two populations of cells segregate via “homophilic sorting,” causing 
abnormal tissue boundaries in calvaria, palate and other tissues.21,22 
This homophilic sorting process, termed “cellular interference,”23 
cannot occur in males. Inhibition of gap junction communication 
at ectopic ephrin/Eph boundaries may underlie CFNS.24

Osteoblast-specific conditional ephrinB1 knockout (KO) 
mice created using collagen a2 (I) promoter-Cre transgene show 
exencephaly due to reduced size of calvarial bones such as fron-
tal, parietal and interparietal bones in both mutant hemizygous 
males and homozygous females,25 in contrast to ubiquitous eph-
rinB1 KO mice, which show skull defects exclusively in hetero-
zygous females.18 Long bones of mice harboring conditional KO 
ephrinB1 in osteoblasts are also reduced in size and bone min-
eral density. Consistently, in vitro gain-of-function experiments 
of ephrinB1 suggest that ephrinB1 reverse signaling dephos-
phorylates TAZ (a transcriptional coactivator with a PDZ bind-
ing motif) within a protein complex, releasing TAZ from the 
complex to translocate into nucleus and to induce expression of 
osteoblast-specific transcription factor osterix, osteoblastic differ-
entiation and mineralization.25

Limb Development and Polydactyly

Besides craniofacial phenotypes, heterozygous female ephrinB1 
KO mice show polydactyly restricted to digits I or II in forelimbs 
or hindlimbs.26 Although sonic hedgehog (Shh) and homeobox 
A13 (Hoxa13) are implicated in polydactyly, their expression is 
not altered in the absence of ephrinB1.26 Curiously, expression 
of EphA7 (ephrinA5 is a cognate ligand) is markedly reduced in 
affected digits of Hoxa13 mutant mice and in mutant mesenchy-
mal cells together with loss of chondrogenic capacity.27 Ectopic 
EphA4 expression in limb buds of ephrinB1 heterozygous female 
mice at E12.5 is associated with the presence of an excess num-
ber of mesenchymal condensations.26 EphA4 expression is also 
altered in the polydactylous talpid 3 mutant in the chick.28 These 
data suggest that multiple ephrin/Eph family members including 
ephrinB1, EphA4 and EphA7 contribute to patterning of digits.

Bone Cells

Bone cells such as chondrocytes, osteoblasts, osteocytes and 
osteoclasts express a subset of ephrin ligands and Eph recep-
tors. Chondrocytes and osteoblasts are of mesenchymal origin. 
Osteoblasts differentiate through activation of Runt-related tran-
scription factor 2 (Runx2, also called Cbfa1) and osterix and 
secrete extracellular matrix proteins.29 A population of osteoblasts 
becomes embedded in bone matrix and terminally differentiates 
into osteocytes, which communicate with each other through gap 
junctions at the tips of dendrites extending into osteocytic cana-
liculi.30 Osteoclasts are specialized macrophages of hematopoietic 
origin that resorb bone.31 Osteoblasts and osteocytes express the 
receptor activator of NFkB ligand (RANKL), which, together 
with macrophage-colony stimulating factor (M-CSF), induces 

osteoclastic differentiation through activation of the transcrip-
tion factors c-Fos (encoded by Fos) and nuclear factor of activated 
T-cells c1 (NFATc1) in macrophagic precursors.32,33 These mono-
nuclear precursor cells fuse to form multinucleated osteoclasts. In 
addition to bone cells, endothelial cells and neurons in bones and 
in the bone marrow also express ephrins and Ephs. Therefore, 
diverse cell-cell interactions mediated by ephrins and Ephs occur 
in bone.34

Expression of Ephrins and Ephs in Bone Cells

Eph receptors and ephrin ligands are also found in chondrocytes, 
osteoclasts and osteoblasts and osteocytes. EphA4 is expressed in 
mouse growth plate cartilage, and its expression increases dur-
ing endochondral ossification. EphA4 is also expressed in human 
chondrocytic cell lines.35 Human articular cartilage cells express 
ephrinB2 and EphB4.36 During differentiation of cultured osteo-
clasts induced by RANKL, ephrinA2, B1 and B2, and recep-
tors EphA1, A2, A4 are dynamically expressed as revealed by 
RT-PCR (Fig. 2).37-39 Since expression of EphB receptors is not 
detectable in osteoclasts, ephrinB1 and B2 expressed on osteo-
clasts likely stimulate EphB receptors on non-osteoclastic cells 
such as osteoblasts. Cells in osteoblast cultures express most eph-
rinAs, ephrinBs, EphAs and EphB2, and their expression levels 
are generally uniform (Fig. 2).37,38,40 Osteocytes also express eph-
rins and Ephs (see below).

Endochondral Ossification and Ephrin/Eph

Several flat bones including calvarial bone form through the 
process of membranous ossification. Other bones, such as basal 
skull, long bones and vertebrae form through endochondral ossi-
fication.29 During development, mesenchymal cells condense and 
differentiate into chondrocytes to form avascular cartilage models 
of future bones. Chondrocytes within cartilage terminally differ-
entiate into hypertrophic chondrocytes, which produce vascular 
endothelial growth factor (VEGF) to stimulate angiogenesis. 
In the vasculature, ephrinB2 is expressed in arterial endothelial 
cells, while one of its cognate receptors, EphB4, is predominantly 
expressed in venous endothelial cells.41 Although formation of 
the primary blood capillary plexus reportedly requires signal-
ing mediated by ephrinB2 and its Eph receptors,42-44 it is unclear 
whether ephrinB2 functions in the blood capillary invasion into 
hypertrophic chondrocytes at the growth plate.

Concomitant with capillary invasion, osteoclast and osteo-
blast precursors enter into cartilage and replace it with bone.45 
Since atrial endothelial cells express ephrinB2 on their luminal 
side,46,47 interaction between ephrinB2-expressing endothe-
lial cells and EphB-receptor-expressing monocytes47 or MSCs/
osteoblast precursors likely promotes adhesion and transmigra-
tion of these cells, which may serve as a mechanism to deliver 
osteoclast and osteoblast precursors to hypertrophic chon-
drocytes, where they are exposed to respective differentiation 
cues including RANKL48,49 and bone morphogenetic proteins 
(BMPs). Curiously, ephrinB2 controls VEGF-induced angiogen-
esis50,51 and osteoclasts express ephrinB2.37 Thus it is tempting 
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to speculate that osteoclasts contribute to angiogenesis into the 
growth plate near the tips of capillaries, as do a group of osteo-
clasts at the tip of the osteon, which drill into cortical bone fol-
lowed by capillary penetration and osteoblastic bone formation 
around the capillary or the central canal. Consistently, in the 
absence of osteoclasts, parts of bone, which normally ossifies, 
remain avascular and cartilaginous.52

Bidirectional Osteoclast-Osteoblast Communication

Mice lacking the transcription factor c-Fos (Fos) lack osteoclasts 
and develop osteopetrosis.53 These mice also fail to express other 

Fos family proteins, Fra-1, Fra-2 and FosB, in osteoclast lineage 
cells, and overexpression of any Fos protein in Fos−/− hematopoietic 
precursors rescues osteoclastogenesis.54 Expression of Fos family 
proteins is essential to induce expression of the transcription fac-
tor NFATc1, the master regulator of osteoclast differentiation, 
which rescues osteoclastogenesis of Fos−/− hematopoietic precur-
sors.32,33 Several osteoclast-specific genes including tartrate-resis-
tant acid phosphatase (TRAP, Acp5), cathepsin K (Ctsk), chloride 
channel 7 (Clcn7) and matrix metallopeptidase 9 (Mmp9) are 
transcriptional targets of NFATc1.55 ephrinB2 was identified as 
an NFATc1 target gene in microarray screening for genes upregu-
lated following expression of a constitutively active form of an 
NFAT protein in Fos−/− hematopoietic precursors cultured in the 
presence of RANKL and M-CSF.37 Both ephrinB2 mRNA and 
protein are significantly upregulated during osteoclastogenesis 
in vitro, and immunohistochemistry indicates high ephrinB2 
expression in TRAP-positive osteoclasts in vivo.37 Addition of 
EphB4-Fc to osteoclastogenic cultures to stimulate reverse sig-
naling suppresses osteoclast differentiation via suppression of Fos 
and therefore Nfatc1 transcription, while cultured hematopoietic 
precursors lacking ephrinB2 differentiate more efficiently than 
do wild-type controls. Therefore, ephrinB2 is a negative regula-
tor of bone resorption (Fig. 3). The ephrinB2 C-terminal PDZ 
interaction site is indispensable for suppression of osteoclast dif-
ferentiation.37 A requirement for ephrinB2 interaction with PDZ 
domain effectors has also been reported for lymphatic develop-
ment.56 Dishevelled 2 (Dvl2) is a candidate PDZ domain effector 
that interacts with eprhinB2 during osteoclast differentiation.57

Conditional KO mice with myeloid lineage-specific deletion 
of ephrinB1 (Efnb1floxed/floxed, LysM-cre) show increased osteoclast 
formation and reduced bone mass, indicating that ephrinB1 
in osteoclasts negatively regulates bone resorption as does eph-
rinB2.39 Similar conditional ephrinB2 KO mice generated using 
the same LysMcre mice do not show reduced bone mass,37 sug-
gesting that ephrinB1 can compensate ephrinB2 functions, but 
not vice versa.

Forward signaling through EphB4 into osteoblasts enhances 
osteoblast differentiation both in osteoblastogenic cultures and 
in a1 (I) collagen promoter-EphB4 transgenic mice via inhibi-
tion of the small GTPase RhoA.37 Therefore, bidirectional sig-
naling between osteoclasts and osteoblasts is likely mediated by 
ephrinB1/B2 and EphB receptors including EphB4 (Fig. 3). On 
the other hand, osteoblasts also upregulate ephrinB2 in response 
to parathyroid hormone (PTH) or parathyroid hormone-related 
protein (PTHrP) signaling, and blockade of ephrinB2/EphB4 
interaction in osteoblasts inhibits mineralization.40 In mice lack-
ing the cytoplasmic adaptor protein b-arrestin2, PTH signifi-
cantly downregulates expression of ephrins B1 and B2 and Eph 
B2, B3, B4, A3 and A4 relative to levels seen in wild-type mice, 
consistent with enhanced PTH-stimulated osteoclastogenesis 
seen in these KO mice.58

EphrinB as a “Coupling Stimulator”

The “coupling” concept was postulated in the 1960s to explain 
the balance in bone resorption and formation observed at whole 

Figure 2. expression of ephrins and ephs during bone cell differentia-
tion. (A) Osteoclast differentiation is induced by rANKL and M-CSF in 
vitro and then ephrin/eph mrNA expression is monitored on the days 
indicated. (B) Osteoblast differentiation is induced by ascorbic acid and 
b-glycerophosphate in vitro and ephrin/eph mrNA expression was 
similarly analyzed. Bar height represents changes in relative expression 
levels of each gene, based mainly on rT-PCr data.37,38 Levels can be 
compared only within a gene, not across genes. ephrin and eph names 
in bold are discussed in detail in this review. Asterisks (*) indicate that 
mrNA expression levels are accompanied by corresponding changes in 
protein expression.37,38,40
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body and microscopic levels. Using a radiocalcium kinetics tech-
nique, investigators observed a positive correlation or “coupling” 
between whole body rates of bone resorption and formation.59 
Microscopic examination showed sequential bone remodeling 
in which bone resorption was followed by an equivalent amount 
of bone formation at each basic multicellular unit (BMU).60-62 
“Coupling factors” have been defined as osteoclast-derived mole-
cules that induce osteoblastic bone formation at the BMU level by 
either recruiting osteoprogenitors and osteoblasts or promoting 
their differentiation and activation. Proposed coupling factors, 
such as transforming growth factor b (TGF-b) and insulin-
like growth factor-I (IGF-1), are released from the extracellular 
matrix by bone resorption, while factors such as cardiotrophin-1, 
sphingosine-1-phosphate, BMP6 and Wnt10b are secreted from 
osteoclasts.63-67 By contrast, ephrinB1 and ephrinB2 are mem-
brane-bound and must function locally, unless released by shed-
ding,68 to facilitate transition from bone resorption to bone 
formation phase at the BMU.37,69 In rat alveolar bone remodeling 
models, Baron and colleagues demonstrated that mononuclear 
phagocytic cells occupy resorption lacunae (the reversal phase) 
for 2.5 to 4 d between resorption and formation.70,71 These mono-
nuclear cells are “bone lining cells” that remove collagen left by 
osteoclasts in resorption lacunae.72 Both bone lining cells and 
EphB4-positive pre-osteoblasts can directly interact with osteo-
clasts, allowing potential osteoblastic activation through eph-
rinB/EphB4.72-74 Since osteoclasts produce factors that not only 
stimulate but inhibit coupling, the above-mentioned factors may 
be considered “coupling stimulators” (Fig. 4).

EphrinA2 as a “Coupling Inhibitor”

Osteoclast-derived factors also negatively regulate osteoblasts 
and antagonize coupling. Osteoclast-derived ephrinA2, which 
is expressed early during osteoclastogenesis (Fig. 2), may be 
such a negative regulator. In addition to ephrinA2 anchored on 
osteoclast membranes, soluble ephrinA2 (and ephrinB2) gener-
ated by proteolytic cleavage (ectodomain shedding) may act at a 
distance on osteoblasts.38,68 In osteoblastogenic cultures, forward 
signaling through the EphA2 receptor expressed on osteoblasts 
inhibit both differentiation via activation of RhoA,38 and min-
eralization (Irie et al., our unpublished data). We propose that 
ephrinA2 and other osteoclast-efferent factors that negatively 
regulate bone formation be designated “coupling inhibitors” (Fig. 
4). Furthermore, reverse signaling through ephrinA2 into osteo-
clasts enhances osteoclastogenesis most likely via phospholipase 
Cg2 activation (Fig. 3).38 In addition to osteoclast-osteoblast 
interactions, osteoclast-osteoclast or osteoblast-osteoblast inter-
actions through ephrinA2 and EphA2 (EphA4) can also occur 
(Fig. 2).

Coupling inhibitors other than ephrinA2 have been identi-
fied. Semaphorin 4D, an axon guidance molecule, is expressed 
in osteoclasts and binds to its receptor, Plexin-B1, in osteoblasts. 
This interaction suppresses bone formation through activation 
of RhoA.75 Mice lacking BMP receptor type1A (Bmpr1a) spe-
cifically in osteoclasts show enhanced bone formation, suggest-
ing that BMP receptor signaling in osteoclasts suppresses bone 

formation perhaps through production of a coupling inhibitor 
that interacts with osteoblasts.76

Arthritis and Ephrin/Eph

Osteoarthritis (OA) is a common condition that affects joints, 
causing pain and stiffness, cartilage degradation and synovial 
membrane inflammation. Cartilage pathologies may be asso-
ciated with changes in subchondral bone. A subpopulation of 
osteoblasts derived from a human OA patients produces low 
levels of prostaglandin E2 (PGE2) show upregulation of EphB4 
by PGE2 and interleukin (IL)-17.77 Moreover, osteoclastogenic 
activity of OA-derived osteoblasts is reduced by stimulating 
EphB4 forward signaling by ephrinB2.77 In vivo studies are nec-
essary to determine whether manipulation of ephrins/Ephs alters 
OA progression. In addition, treatment of human OA chondro-
cytes with ephrinB2 inhibits expression of IL-1b, IL-6, matrix 
metalloproteinase-1 (MMP1), MMP9 and MMP13, among 
other catabolic factors, suggesting that ephrinB2 treatment may 
increase anabolic activity.36

Rheumatoid arthritis (RA) is a chronic, systemic inflamma-
tory disease that affects joints and many other tissues and organs. 
Kitamura et al. reported that ephrinB1 expression is significantly 
higher in synovial fibroblasts and exudate lymphocytes in patients 
with RA compared with those in OA.78 They also showed that a 
recombinant ephrinB1-Fc protein stimulates enhanced migration 
of normal peripheral blood lymphocytes, increases their TNF-a 

Figure 3. Osteoclast-osteoblast interactions through ephrins/ephs. 
ephrinB2 is expressed in differentiating and mature osteoclasts, while 
ephrinA2 is expressed in early differentiating osteoclasts.37,38 reverse 
signaling through ephrinB2, which may be mediated by PDZ domain 
proteins such as Dishevelled 2 (Dvl2),57 suppresses transcription of Fos 
and Nfatc1, thereby inhibiting osteoclast differentiation. reverse signal-
ing through ephrinA2 is mediated by activation of phospholipase Cg2 
(PLCg2).38 Forward signaling through ephB4 suppresses rhoA activ-
ity and thereby stimulates osteoblast differentiation, while signaling 
through ephA2 likely enhances rhoA activity and inhibits osteoblast 
differentiation.37,38 How rhoA activity is differentially regulated by 
ephB4 and ephA2 signaling is unclear.
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production, and induces RA synovial cells to produce IL-6.78 
High expression of ephrinBs and EphB kinases might be cor-
related with RA pathogenesis.79

Bone-Related Tumors and Ephrin/Eph

Multiple myeloma (MM) is a plasma cell malignancy often 
accompanied by bone osteolytic lesions.80,81 MM patients suffer 
pain, fractures and hypercalcemia. Osteoclastic bone resorption 
is elevated but osteoblastic bone formation is suppressed in MM 
patients, leading to osteolytic lesions. Pennisi et al. reported that 
ephrinB2/EphB4 expression in myelomatous bones is reduced.82 
Myeloma cells suppress osteoblast differentiation by secreting 
Wnt signaling inhibitors such as dickkopf 1 (DKK1), sclerostin 
and soluble frizzled receptor-like proteins (sFRPs),83-85 as well as 
BMP2 signaling inhibitors, such activin A.86 Since EphB4 is a 
target of Wnt signaling in some tumors,87 decreased Wnt signal-
ing in myeloma bone may suppress osteoblast differentiation, at 
least in part, by reducing EphB4 expression.

Osteosarcoma is a malignant bone tumor that usually develops 
in adolescence as rapid growth occurs. Genome-wide microarray 
analysis of patient osteosarcoma samples has revealed increased 
expression of the EPHA2 receptor and its ligand EFNA1.88 Other 
studies suggest that EFNB1 expression by osteosarcoma cells is a 
marker of poor prognosis.89 A staining pattern indicative of cyto-
plasmic ephrinA4 in primary osteosarcoma is associated with both 
progression and poor prognosis, while cytoplasmic and nuclear 

staining is associated with favorable prognosis.90 However, the 
roles of these ephrins and Ephs in osteosarcoma development and 
dissemination are as yet undefined. Curiously, ephrinA5 is down-
regulated in chondrosarcomas compared with normal cartilage.91

Concluding Remarks

In this review, we have discussed ephrins and Ephs expressed in 
bone cells, in particular, osteoclasts, osteoblasts and bone-associ-
ated tumor cells. Although little is known about function of eph-
rins and Ephs in osteocytes, these abundant bone cells do express 
ephrins/Ephs such as ephrinB1, ephrinB2 and EphB4,6,40,77 and 
blockade of ephrinB2/EphB4 interaction results in decreased 
expression of sclerostin, a potent inhibitor of osteoblastogenesis.92 
Therefore, osteocytes may communicate bidirectionally with 
osteoclasts or osteoblasts in response to various stimuli through 
ephrins/Ephs. Moreover, ephrin/Eph interaction in non-skeletal 
organs might contribute to bone phenotypes, given the con-
nection of bone with organs such as kidney, brain and gut.93 
Bidirectional exchange of findings relevant to ephrins and Ephs 
between multiple fields could shed new light on common mecha-
nisms governing modeling and remodeling of tissues.
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Figure 4. Coupling stimulators and inhibitors during bone remodeling. Bone matrix contains TGF-b (yellow stars) and iGF-i (yellow circles), which are 
released by osteoclastic bone resorption to stimulate coupling. Cells in the osteoclast lineage (red) produce various coupling stimulators and inhibi-
tors that act on osteoblasts or their progenitors (blue).
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