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Mesenchymal stem cells (MSCs) are currently defined as multipotent stromal cells that undergo sustained in vitro growth and
can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and
immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety
of diseases (e.g., acute graft-versus-host disease, Crohn’s disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases
including heart failure and myocardial infarction). On the other hand, conventionally cultured MSCs reflect heterogeneous
populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC
markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification
of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss
the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche
homeostasis. The isolation of MSCs using selective markers (combination of PDGFR« and Sca-1) is crucial to address the many
unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.

1. Introduction

Bone marrow (BM) is comprised of hematopoietic stem
cell (HSC) and nonHSC populations. Mesenchymal stem
cells (MSCs) reside in the nonHSC fraction. HSCs form
the cornerstone of therapy for many hematological diseases.
MSCs, on the other hand, are nonhematopoietic cells ini-
tially identified in the BM [1-4] that can differentiate along
various mesenchymal lineages to generate fat, bone, and
cartilage. The hypothesized physiological function of MSCs
is to support hematopoiesis and stromal tissue regeneration.
Interestingly, these multipotent cells are found in a variety
of fetal and adult tissues in addition to the BM, including
umbilical cord blood [5, 6], dental pulp [7, 8], term placenta
[9,10], and adipose tissue [11, 12].

MSCs possess therapeutic potential for the repair and
regeneration of damaged tissues of mesenchymal origin
(13, 14]. Additionally, they have potent immunosuppressive
properties and are currently utilized to treat a wide variety
of autoimmune conditions [15-19]. Despite the large num-
ber of clinical studies now investigating the suitability of
MSCs as therapeutic agents, conventional adherence to a
plastic tissue culture substrate is still the most commonly
employed method for their isolation. However, isolating
MSCs in this way has several limitations. For example, such
MSC populations frequently contain contaminating cells.
Furthermore, the differentiation potential and proliferative
ability of traditionally isolated MSCs (also termed colony
forming unit-fibroblasts (CFU-Fs)) gradually diminish as
the cells mature [20]. MSCs may also acquire chromosomal
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abnormities that predispose them to malignant transforma-
tion [21]. Finally, prolonged culture on plastic dishes changes
the surface marker expression of MSCs, making identification
of selective makers difficult [22, 23]. For these reasons,
little information exists concerning the in vivo identity and
biological function of MSCs within the BM niche. Nonethe-
less, exciting progress has recently been made in terms of
elucidating reliable murine and human MSC surface markers
offering exciting experimental and therapeutic opportunity
(Figure 1).

This review summarizes the historical identification of
MSCs and important milestones in the evolution of MSC
research. We focus on the identification of MSCs in mouse
and human and describe the utilization of specific murine
and human MSC surface markers to facilitate the in vivo
localization and prospective isolation of these cells. Finally,
we summarize the evidence supporting a physiological role
for MSCs within the BM/hematopoietic niche.

2. Historical Perspective

Dr. Friedenstein initially identified BM-derived, plastic-
adherent cells that generated CFU-Fs when plated as single
cells in vitro [24, 25]. Dr. Friedenstein subsequently demon-
strated that these cells were capable of osteogenic differ-
entiation in vitro. The physiological function of MSCs was
next elegantly demonstrated by Reddi and colleagues, who
subcutaneously implanted biological matrices comprising the
shafts of long bones into allogenic rodents [26]. Bone and
cartilage formed on the implants after a period of time, and
the resulting bony ossicle supported hematopoiesis in vivo.
These data were the first to support the presence of stromal
progenitors and to illustrate their biological significance.
Largely based on these studies, the term “MSC” was coined in
1991 to describe stromal progenitor cells [27]. Although MSCs
have since become the subject of intense research, very little
was uncovered until recently in regard to their anatomical
localization, physiological function, and stromal hierarchy
[28].

3. Definition of MSCs

Traditionally, MSCs appear as spindle-shaped cells that form
colonies (i.e., CFU-Fs) following the culture of whole BM
on plastic substrates. The multilineage potential of these
colonies is then examined after a period of culture in
defined media that induces cell differentiation. Additionally,
phenotypic analysis of MSCs is determined by their culture
conditions. Therefore, MSC properties have historically been
described for plastic-adherent cells after prolonged in vitro
culture. Although conventionally cultured MSCs are not
characterized by unique markers and probably denote a
heterogeneous population, there is a consensus among the
scientific community that they do not express hematopoietic
markers. Hence, MSCs stand apart from HSCs. Furthermore,
the expression levels of stromal antigens in MSCs can vary
based on the culture conditions. The Tissue Stem Cell
Committee of the International Society for Cellular Therapy
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thus proposed a set of minimum criteria that define human
MSCs [29] as follows. The cell must be plastic-adherent
when cultured under standard conditions and express the
surface markers cluster of differentiation (CD) 73, CD90,
and CDI105, and not express CD45, CD34, CD14, CDIlb,
CD?79, or CD19. Additionally, human MSCs must be capable
of in vitro differentiation into osteoblasts, adipocytes, and
chondrocytes.

While this statement somewhat clarifies the cellular char-
acteristics of human MSCs, the situation remains unclear
for murine MSCs. Until recently, specific surface markers
for murine MSCs were lacking and murine MSCs were also
defined by plastic adherence, spindle-shaped morphology,
and trilineage differentiation. These definitions for MSC
isolated from both species have however generated contro-
versy. The classic definition of a stem cell requires that it
possess unlimited self-renewal ability and plasticity. Exper-
imentally, serial transplantation experiments demonstrating
that infused stem cells give rise to terminally differentiated
daughter cells, while maintaining their naive phenotype,
provide evidence of stemness. Such experiments were not
historically performed with MSCs, leading researchers to
consider that the term “MSC” had been inappropriately
applied [30].

4. Identification of Specific Murine
MSC Markers

The identification of specific murine MSC markers began
with the observation that hematopoietic and mesenchymal
lineage cells are derived from individual lineage-specific stem
cells [31]. Based on the hypothesis that MSCs most likely
reside in the endosteum, a detailed screening of candidate
surface markers was initially performed in the BM and
the collagenase-digested bone of mice. The surface markers,
platelet-derived growth factor receptor-a (PDGFR-«), and
stem cell antigen-1 (Sca-1) were significantly enriched in the
digested fraction of the bone, and PDGFR-a*Sca-1" (PaS)
dual positive cells were isolated and characterized [32, 33].
Notably, the resultant PaS cells fulfill the basic requirements
for the definition of MSCs in mice. These cells are capable of
unlimited self-renewal and can differentiate into osteoblasts,
chondrocytes, and adipocytes under appropriate conditions
in vitro [33]. PaS cells proliferate almost without senescence
when cultured on plastic, yielding more than 1 x 107 cells
from an original 5,000 cells seeded onto the substrate, with a
doubling time of 50.6 hours. Moreover, the CFU-F frequency
of Pas cells is approximately 120,000-fold higher than that of
unfractionated BM mononuclear cells.

PaS cells reside in the perivascular space adjacent to
vascular smooth muscle in mice. They express angiopoietin-1
(Ang-1) and chemokine (C-X-C motif) ligand 12 (CXCL12),
suggesting that these MSCs play a physiological role in
the maintenance of the hematopoietic niche. Transplanta-
tion experiments in which freshly isolated PaS cells were
intravenously injected into lethally irradiated recipient mice
demonstrated the stemness of PaS cells. Specifically, the
infused cells homed to their niche in the BM and continued to
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FIGURE 1: Prospective isolation of MSCs. Traditional MSC isolation by adherent culture on plastic tissue culture substrates (top). Following a
period of prolonged culture, the majority of the contaminating cells are washed away or overgrown, enriching for CFU-Fs (colony formation).
These MSCs have a spindle-shaped morphology and are capable of differentiating into adipocytes, chondrocytes, and osteoblasts in vitro.
Prospective isolation of MSCs by using specific markers via flow cytometry (bottom). This method allows the isolation of a pure population
of active, multipotent MSCs (naive MSCs) and avoids cellular contamination.

express the hematopoietic niche factors Ang-1 and CXCLI2,
while also differentiating into osteoblasts and adipocytes in
vivo. Sixteen weeks following cell transplantation, the mice
were sacrificed, and the PaS cells were isolated. Notably, the
isolated cells were still capable of both CFU-F formation and
trilineage differentiation in vitro.

The identification of PDGFR-« as a selective MSC marker
coupled with Cre/loxP-mediated lineage analysis [34] sug-
gests that a subpopulation of adult BM MSCs might have
a developmental origin in the murine neural crest [35, 36].
This is in agreement with a series of previously reported
developmental studies in quail, chick, and rat [37, 38]. Murine
and human MSCs are also an excellent cell source for the
efficient generation of high-quality induced pluripotent stem
cells [39, 40], which can in turn generate neural crest-like
cells. More recently, a transgenic mouse reporter line express-
ing GFP under the control of enhancer/promoter of nestin
gene, encoding an intermediate protein highly expressed in
the neural stem/progenitor cells [41], was successfully used to
identify and prospectively isolate murine MSCs in BM [42].
The nestin-GFP™ cells in this transgenic mouse also expressed
the intermediate filament protein Nestin and represented
a small subset of nonhematopoietic stromal cells in the
BM. These cells are anatomically located in the perivascular
space, in close proximity to catecholaminergic nerve fibers
and HSCs. In keeping with PaS MSCs, the nestin-GFP*
cells express hematopoietic niche factors and are capable of
trilineage differentiation both in vitro and in vivo. Nestin™
MSCs also play an important functional role in maintaining
the HSC niche. For example, the number of HSCs was

dramatically reduced in vivo following the depletion of nestin-
GFP" MSCs in mice, and the homing of transplanted HSCs
back to their BM niche was significantly impaired in these
animals following irradiation.

The studies discussed above are the first to identify
specific markers that can be used for the in vivo localization
and prospective isolation of MSCs. PaS and Nestin™ MSCs
have been analyzed in traditional stem cell assays (e.g.,
serial transplantation assays and clonogenic assays), which
confirmed their properties of self-renewal and potency. Our
own research group has also gained valuable insights into
the importance of these cells in maintaining the HSC niche
as well as the possibility of MSC subpopulations within
the BM. For example, it is not entirely clear if Nestin™
cells are the same as PaS cells. We know that Nestin®
cells largely overlap with the PDGFRa"CD51" population;
however, this population also contains Sca-1" and Sca-1"
cells (personal communication). These data suggest that
the Nestin™ population comprises both PaS and PDGFRa™
cells. Notably, investigations using nestin-Cherry [43] and
nestin-GFP [44] double transgenic mice detected nestin-
Cherry expression around the larger blood vessels in the BM
but not around the sinusoids, while nestin-GFP expression
was detected around both structures [45]. Thus, different
nestin promoter/enhancer-driven transgenes are apparently
expressed by different subpopulations of perivascular stromal
cells. Regardless, the identification and prospective isolation
of PaS and Nestin™ cells will provide indispensable informa-
tion for ongoing research into the biological function, stromal
hierarchy, and therapeutic potential of MSCs.



5. Identification of Specific Human
MSC Markers

Numerous putative human MSC surface markers (i.e., CD49a
[23], CD73 [1], CD105 [46], CD106 [47], CD271 [22], MSC
antigen-1 [48], Stro-1 [49], and stage-specific embryonic
antigen-4 [50]) have been identified thus far. These markers
are used singly or in combination to enrich for CFU-Fs in
human BM and avoid cellular contamination. Unfortunately,
many of these markers are widely expressed in stromal
cells and lack specificity, contributing to the significant
heterogeneity among CFU-Fs derived from single isolations.
The lack of specific MSC markers has thwarted attempts to
uncover the true identity and function of these stem cells in
vivo. Additionally, the traditional isolation of human MSCs
by adherence to plastic substrates attenuates the differentia-
tion potential and proliferative ability of CFU-Fs as the cells
senesce, greatly reducing their therapeutic potential [51].

Various techniques, such as culture under hypoxic con-
ditions, culture under nonadherent conditions, and supple-
mentation of the culture media with growth factors, have
been used in an attempt to avoid cellular senescence and
enhance the therapeutic properties of MSCs. For example,
human MSCs cultured as three-dimensional spheroids in a
model of peritonitis acquired enhanced anti-inflammatory
properties compared with those cultured under more con-
ventional conditions [52]. The spheroid-associated cells were
also smaller, allowing them to escape readily from the lung
circulation and migrate to a variety of organs after intra-
venous administration to mice. Other investigators showed
that long-term culture of MSCs under hypoxic conditions
helps to keep the cells in an undifferentiated and multipotent
state [53, 54].

As far as clinical applications are concerned, the num-
ber of clinical trials using ex vivo expanded stromal cell
populations for therapeutic purposes is rapidly increasing
(see http://www.clinicaltrials.gov/) [55, 56]. For example,
MSCs have shown promise for the treatment of acute
graft-versus-host disease, Crohn’s disease, multiple sclerosis,
osteoarthritis, and cardiovascular diseases. However, there
is little consistency in the methods used to isolate MSCs
for infusion, or in the media used to expand these cells
in culture. Commercially available MSC medium frequently
contains growth factors (required for cell expansion) that
most likely influence the fate and therapeutic potential of
the MSCs. These limitations further underscore the need to
identify specific surface markers that can be used to probe the
physiological functions and biological properties of human
MSCs expeditiously. The prospective isolation and culture
of such cells (with or without further manipulation) will
certainly allow for safer and more effective clinical treatments
in the future.

CD146 is one such marker that has helped discern the in
vivo localization and function of human MSCs [57]. CD146
is found on the surface of adventitial reticular cells that
reside in the endothelial space in human BM. These cells
also express typical stromal markers (CD105, CD49a, CD73,
CD90, and CD140b) and are capable of robust trilineage
differentiation. Their physiological function was shown in
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immunodeficient mice following subcutaneous transplanta-
tion of human CD146" clonogenic cells seeded onto a scaffold
(hydroxyapatite/tricalcium phosphate particles embedded
in a fibrin gel). The transplanted human CD146" MSCs
supported formation of bony ossicles and sinusoidal vascu-
lature and finally established a functioning hematopoietic
microenvironment. Immunohistochemical analysis demon-
strated that a small proportion of the infused cells targeted
the murine HSC niche, where they expressed Ang-1and other
supporting factors. The transplanted human CD146" MSCs
were reisolated, cultured, and subsequently shown to form
CFU-Fs capable of trilineage differentiation, demonstrating
the self-renewal potency of these cells.

MSCs were initially thought to reside only within the
BM, forming the stromal counterpart to HSCs. However, the
utility of CD146 as a prospective marker for human MSCs
is not limited to adult human BM, casting doubt on this
assumption. Crisan et al. [58] used immunohistochemistry
to examine various tissue types (e.g., adult and fetal human
skeletal muscles, pancreas, adipose tissue, and placenta) and
identified CD146, neuron-glial antigen 2 proteoglycan, and
PDGFRe as specific pericyte markers [58]. With the aid of
these markers, a pure population of pericytes was prospec-
tively isolated from each tissue type via flow cytometry. The
isolated pericytes expressed typical stromal markers (CD73,
CD90, and CDI105) and could be induced to differentiate
into muscle, bone, fat, and cartilage by using standard MSC
culture conditions and the appropriate differentiation factors.
These data clearly identify CD146 as a specific surface marker
of mesenchymal progenitor cells in a wide range of organs.

6. Role of MSCs In Vivo

The HSC niche provides a specialized microenvironment
that promotes stem cell maintenance and function [59-
63]. Several cells types, including osteoblasts, endothelial
cells, and adventitial reticular cells, have been suggested
to contribute to niche function [59, 64]. For many years,
MSCs were surmised to be among these cells, although until
recently, their participation has remained merely speculative.
Our previous observations that PasS cells reside in the HSC
niche (the perivascular space adjacent to HSCs) and express
niche factors (Ang-1 and CXCLI12) support the hypothetical
involvement of MSCs in the regulation of the HSC microenvi-
ronment [33]. Indeed, Nestin® MSCs apparently play a critical
role not only in the maintenance of HSCs within the niche,
but also in the homing of transplanted HSCs back to the BM.

Although a significant proportion of the perivascular
PDGFRa" cells described above express Nestin, the exact
impact of each subpopulation of perivascular cells on the
HSC niche remains to be elucidated. Recent data suggest that
nonmyelinating Schwann cells participate in the maintenance
of the HSC niche via activation of latent transforming growth
factor- [65]. It is noteworthy that these cells express Nestin,
thus evoking some controversy in the research field as to
their possible stemness. Recently, Ding et al. [45] confirmed
the importance of perivascular cells in maintaining the HSC
niche through the production of stem cell factor (Scf). HSC
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frequency and function were not affected when Scf was
conditionally deleted from hematopoietic cells, osteoblasts,
or Nestin® cells. However, HSCs were eliminated from the
BM when Scf was deleted from endothelial cells or Leptin
receptor-expressing perivascular stromal cells (which were
also positive for PDGFRa, PDGFRf, CXCL12, and alkaline
phosphatase expression). Clearly, much remains unknown
about the complex microenvironment of the HSC niche and
its regulatory factors. Nevertheless, the data suggest that one
or more MSC subtypes critically contribute to HSC niche
homeostasis.

7. Conclusions

The hypothesis that a rare population of multipotent stromal
progenitor cells or MSCs, capable of generating all stromal
cell subtypes, existed in the BM was greeted with almost
universal approval in the scientific world. However, until
recently little evidence supported the proposed physiological
functions of MSCs, including maintenance of the HSC niche,
replenishment of mesenchymal tissue, wound healing, and
tissue repair. An absence of specific MSC surface markers
proved to be a significant stumbling block to unraveling the
biology and function of MSCs. Nonetheless, the field has
lately taken a significant leap forward with the identification
of such markers in the mouse and human, allowing the
prospective isolation of MSCs for the first time. As a result,
we can now convincingly assay and confirm the stem cell
properties of MSCs and elucidate their biological functions
(their role in the maintenance of the HSC niche). We suggest
that the prospective isolation (e.g., combination of PDGFR«
and Sca-1) of MSCs will also allow scientists to address the
many unanswered questions related to these cells, and most
importantly, to advance MSCs as a therapeutic agent.
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