
Computational and Structural Biotechnology Journal 15 (2017) 463–470

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and
Pathways in Kidney Cancer
Mary Qu Yang a,b,⁎, Dan Li a,b, William Yang c, Yifan Zhang a,b, Jun Liu d, Weida Tong e

a Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock, USA
b University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA
c School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
d Department of Statistics, Harvard University, Cambridge, MA 02138, USA
e Divisions of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
Abbreviations: RCC, Renal cell cancer; ccRCC, Clear c
Expression quantitative trait loci; SVM, Support vecto
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and
expressed gene; DGM, Differential gene module; AUC, Ar
Operating Characteristic.
⁎ Corresponding author at: Joint Bioinformatics Grad

Information Science, George W. Donaghey College of
Technology, University of Arkansas at Little Rock, USA.

E-mail address: mqyang@ualr.edu (M.Q. Yang).

https://doi.org/10.1016/j.csbj.2017.09.003
2001-0370/© 2017 Yang et al.. Published by Elsevier B.V. o
license (http://creativecommons.org/licenses/by/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 April 2017
Received in revised form 16 September 2017
Accepted 24 September 2017
Available online 10 October 2017
Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC).
The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly
understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be
revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology ap-
proach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method in-
tegrated multi-layer information to infer causative mutations and disease genes. First, we identified differential
gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules
consisted of interacting genes that were involved in similar biological processes and their combined expression
alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis
revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our
study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1
and PBRM1, as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential
gene modules and their driver genes revealed by our study provided a new perspective for understanding the
molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient
datasets. Our study provided a new method for prioritizing disease genes and pathways.
© 2017 Yang et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Kidney cancer is the sixthmost common form of cancer for men and
the tenthmost common formof cancer forwomen. In 2016, over 63,000
newly diagnosed cases and 14,400 kidney cancer deaths were reported
in theUnited States [1]. The vastmajority of kidney cancers are renal cell
carcinomas (RCC), among which nearly 75% are clear cell renal cell car-
cinomas (ccRCC) [2]. Despite recent advances, metastatic RCC remains
largely an incurable disease [3,4]. Patients with this disease often have
no apparent symptoms or laboratory abnormalities in the early stages.
The incidence of ccRCC has been rising steadily in recent years due to
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the prevalence of adverse lifestyle changes and exposure to toxins
such as smoke [5].

ccRCC is characterized by the presence of VHL gene mutation in most
cases [6]. However, the loss of VHL alone is not sufficient for tumor initia-
tion and survival, and a fraction of ccRCCs contain wild-type VHL genes,
suggesting additional genetic alterations are required in the course of
tumor development. Recent large-scale sequencing studies of ccRCC, in-
cluding TCGA (The Cancer GenomeAtlas) project have discovered several
new and prevalent genomic mutations such as PBRM1 and BAP1 [7–9].
Despite these findings, the mortality rate of ccRCC has not significantly
decreased, indicating that the genetic basis of the disease occurrence
and development remains to be elucidated. Additionally, previous studies
have shown that ccRCC is a highly heterogeneous disease [10,11], creating
the need to identify new disease genes and pathways.

The expression quantitative trait loci (eQTL) analysis has been used
to identify single-nucleotide polymorphisms (SNPs) that are signifi-
cantly associated with gene expressions [12–14]. Most eQTL analysis
performed testing on transcript-SNP pairs to identify genetic mutations
that significantly affected individual gene expression. Here, we present-
ed a genemodule-based eQTLmethod to identify the somaticmutations
omputational and Structural Biotechnology. This is an open access article under the CC BY
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that are associated with gene clusters, which potentially function in the
same pathway. We first identified differentially expressed gene modules
(DGMs). The DGMs are comprised of a set of interacting genes based on
protein-protein interactions and expression profile. The Gene Ontology
analysis suggested that majority DGMs contained genes involved in the
same biological processes. Additionally, the genes inside the same DGM
tended to be co-expressed. Hence, these gene modules most likely
contained genes function together in the disease-affected pathway. Dis-
ease genes are not always differentially expressed. The integration of
gene expressions and protein interactions empower the discovery of dis-
ease genes, as disease genes without significant expression alterations
could be revealed by DGMs through interacting with the differentially
expressed genes in the gene modules. The subsequent eQTL analysis fur-
ther established the linkages of somaticmutationswith theDGMs. Collec-
tively, the DGMs and their associated genetic mutations lead to the
identification of novel disease genes and pathways. Moreover, we exam-
ined the DGMs on four independent ccRCC patient cohorts. The results
showed DGMs accurately classified the tissue types blindly.

2. Results

An interacting pathway regulates the expression of a group of genes
that often perform certain functions together. When a pathway is
perturbed by genetic mutations, then expression levels of interacting
genes associated with the pathway can be altered accordingly and can
further contribute to malignant transformation. By integrating gene ex-
pression and protein-protein interactions here, we developed a new
method of identifying gene clusters in the pathways impacted by the
disease. Then, we performed an eQTL analysis to infer potential driver
mutations and disease affected pathways. The procedure of our study
was illustrated in Fig. 1.

2.1. Differentially Expressed Gene Modules Identification

The RNA-Seq expression profile of 19,768 protein-coding genes was
obtained from TCGA 539 ccRCC and 72 paired normal tissue samples.
After filtering out the genes with very low expression levels (Methods),
a total of 16,343 genes remained for the subsequent analysis. Then, we
coupled gene expression and protein-protein using a network approach
to systematically reveal gene modules that were differentially expressed
Normalized gene 
expressions 

&

Protein-protein 
interactions

Genome-wide 
Somatic Mutations

Fig. 1. The procedure of our study. After the differentially expressed gene modules were identi
using eQTL analysis. Here, SMA-DGM refers to somatic mutations associated the DGMs.
in ccRCC. At first, each individual gene was employed as the seed of a
module, andnewgeneswere added to themodule in an iterativemanner.
At each step, all genes that interactedwith any genemember of themod-
ule were assessed using an activity score. A higher activity score sug-
gested the expression level of the corresponding module was more
likely associated with the tissue phenotype (Methods, Fig. 1). Hence, the
gene that maximized the activity score was selected and added to the
module. After a gene module was built, we applied three statistical tests
to evaluate the significance of the module compared to background. The
three tests included permuting tissue phenotype, randomizing genes in
the module, and randomizing genes in the module with the same seed
protein, respectively (Methods). Finally, we identified 1066 significant
gene modules with activity scores equal or larger than 0.34 (P-value b

0.001 in all three statistical tests, Fig. 1). We referred to these gene mod-
ules as differential gene modules (DGMs).

2.2. Performance Evaluation Classification Based on Differential
Gene Modules

The DGMs represented gene clusters that were significantly associ-
atedwith tissue phenotypes. Thus,we hypothesized that the expression
levels of DGMs can be utilized as features to distinguish ccRCC tissue
from normal tissue samples. We examined the hypothesis using the
TCGA-ccRCC dataset and three independent ccRCC patient datasets ob-
tained from GEO (Methods, Table 1) [4,9]. The TCGA dataset contained
an imbalance between ccRCC and normal samples (539 ccRCC versus
72 normal samples), whereas the other three data sets contained
more balanced samples (Table 1).

The differentially expressed genes (DEG) based evaluation was per-
formed for comparison aswell. The TCGA expression profile was gener-
ated using RNA-Seq data, whereas the expression profiles of the other
three independent ccRCC patient cohortswere produced usingMicroar-
ray data (Methods). We used edgeR for the TCGA RNA-Seq dataset, and
t-test followed by multiple-test correction for microarray datasets to
perform differential expression analyses (Methods, Supp. Fig. 1).

We conducted hierarchical clustering analysis, using DGMs and
DEGs, respectively, on the four ccRCC datasets including the TCGA
dataset, GSE36895, GSE40435 and GSE46699. For GSE36895 and
GSE40435, both usingDGMs andDEGs yielded distinctive tumor andnor-
mal tissue clusters with perfect homogeneity (Table 1). However, for the
fied by coupling PPI with gene expression, somatic mutations were linked with the DGMs

Image of Fig. 1


Table 1
The performance of DGM and DEG based hierarchy clustering and SVM classifiers on the TCGA ccRCC patient group and three independent ccRCC datasets.

ccRCC patient cohorts Normal Tumor Misclustered tissue samples AUC of the classifiers

DGM-based DEG-based DGM-based DEG-based

TCGA-ccRCC 72 539 2 4 0.942 0.767
GSE36895 23 29 0 0 0.923 1.0
GSE46699 63 67 9 15 0.953 0.949
GSE40435 101 101 0 0 0.956 0.997

The DGM based classifier significantly outperformed the DGE based classifier by 22.8%((0.942 -0.767) / 0.767, Table 1 bold number) on the TCGA-ccRCC which is an imbalanced data set
(72 normal vs 539 tumor samples).
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TCGA data and GSE46699, the clusters yielded by DGMs tended to be
more homogeneous as compared to the clusters generated by the DEGs.
Four tumor tissue samples were misclustered using DEGs (Fig. 2A top
panel, Table 1), whereas the number of misclustered tumor tissues was
reduced to two using DGMs for the TCGA data (Fig. 2A bottom panel,
Table 1). For the GSE46699, using DGM resulted in 9 misclustered
tumor samples (Fig. 2B top panel, Table 1), whereas using DGE yielded
15 misclustered ccRCC samples (Fig. 2B bottom, Table 1).
A.

C.

Fig. 2. The performance comparisons of clustering and classification based on DGMs and DE
expression of DGMs (top) and DEGs (bottom). (B) Hierarchical clustering of an independent
(C) The ROC curves of the classifiers using the expression of DGM and DEG for the TCGA datas
Moreover, we built SVM-based (Support Vector Machine) classifiers
to predict tissue type using the expression levels of DGMs and DEGs
genes as input features, respectively. The area under curve (AUC) of
the receiver operating characteristic (ROC) curve generated by three-
fold validationwasmeasured for classification performance assessment.
The AUC of the classifier using DGM as features is 0.942, which is signif-
icantly higher than 0.767 for the classifier using DEG as features, in
predicting TCGA dataset tissue types (Fig. 2C left panel). However,
B.

Gs. (A) Hierarchical clustering of TCGA 539 ccRCC and 72 normal tissues based on the
ccRCC (GSE46699) tumor and normal tissues based on DGMs (top) and DEGs (bottom).
et locate at left panel, for GSE46699 locate at right panel.

Image of Fig. 2
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additional classifications on three independent ccRCC datasets, which
included fewer but more balanced tissue samples than the TCGA
dataset, showed that theDEG-based classifiers performed slightly better
or very similar compared to the performance of DGM based classifiers
(Table 1, Fig. 2C right panel). Nevertheless, the DGM yielded good per-
formance more robustly in both classification and clustering and sug-
gests that genes in the differential modules were significantly
associatedwith ccRCC; they are coordinately expressed; and, they likely
function together in the disease pathways.

2.3. Functional Assessment of the Gene Modules

We conducted Gene Ontology (GO) analysis on individual
DGMs. The GO terms enrichment of were assessed by hypergeometric
test (P b 0.01). Given that the median size of the gene modules is
6, we found that 90.4%, 65.4% and 39.9% (963/1065, 696/1065, and
425/1065) of these modules contained at least two, three, and four
genes that participated in the same significantly enriched biological
process, respectively. In contrast, none of the random modules that
had the same topology and size as the DEMs contained more than one
gene in the same biological process.

Additionally, our expression analysis showed that the majority of
the genes in the DGMs appeared to be co-expressed (74.5%, 793/
1065). Thus, the significant modules more likely consisted of genes
functioning together in the disease-related pathways.

We found a total of 22 enriched biological process terms that
were significantly associated with at least 18.9% (201/1065) of the
DGMs (Supp. Table 1), including several known cancer-related biologi-
cal processes. For instance, 209 gene modules were prevalent in the
neurotrophin Tropomyosin Receptor Kinase (TRK) receptor signaling
pathway, a pathway involving malignant gliomas [15].

Moreover, we identified 26 Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways that were significantly enriched in at least
8.5% (90/1065) of the gene modules (Supp. Table 2). Thyroid cancer
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Fig. 3. The examples of differentially expressed genemodules. The genes colored in redwere up
the color is proportioned to log2 fold-change of the gene expression. Circle nodes refer to the e
the genes without significantly altered expression levels. (For interpretation of the references
pathway, a top-affected pathway in our list, was significantly associated
with 27.9% (297/1065) of genemodules (P b 0.05, hypergeometric test).
It has been reported that ccRCC ismost frequent of origin of thyroidme-
tastases and represents 12 to 34% of all secondary thyroid tumors
[16–18]. 18.4% (196/1065)modules included genes that are significant-
ly prevalent in fatty acid degradation pathways. Cellular proliferation
requires fatty acids for synthesis ofmembranes and signalingmolecules.
Dysregulation of cellular proliferation is associated with the occurrence
of cancer.

2.4. Gene Module-based eQTL Analysis

We performed eQTL analysis on differential gene modules. The mu-
tation of VHL, a known ccRCC causative gene, was found to be signifi-
cantly associated with multiple DGMs (FDR b 0.03, Fig. 3A and B).
These modules were enriched of genes in MAPK signaling pathway,
apoptosis, pathways in cancer (P b 0.03, hypergeometric test).

To further prioritize the most significant somatic mutations that
were associated with the differential gene modules, we employed FDR
b 0.0001 as the cutoff in the eQTL analysis. The number of somatic mu-
tations that were significantly associated with each differential module
was assessed. Overall, we found 780 of 1065modules were significantly
associated with at least one somatic mutation. The median number of
associated somatic mutations with DGMs is 8 (Supp. Fig. 2). 188 mod-
ules were significantly associated with five or less somatic mutations
(Table 2). Some mutated genes influenced many DGMs.

BAP1 and PBPM1mutations significantly impacted 42.5% (80 of 188)
and 18.1% (34/188) of the DGMs (Table 2). BAP1 loss has been reported
to define a new class of ccRCC and acts as a tumor suppressor [4]. In ad-
dition, ccRCC patients with BAP1 somatic mutations had poor 5-year
survival rates (P b 0.014, Fig. 4A). PBRM1 encodes a protein that changes
chromatin structure and influences p53 transcriptional activity. The
previous study suggested that PBRM1 protein is regulated by p53-
induced protein degradation in renal cell carcinomas [19]. Interestingly,
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Table 2
A total of 188 DGMs were significantly associated with five or less mutated genes (FDR b 0.0001).

Num. of mutated
gene(s) associated
with each DGM

Num. of
associated
DGMs

Mutated genes associated with the
DGMs⁎

1 116 BAP1(40), NOD2(18), RRM1(13), CSRNP1(8), PBRM1(8), CNTN1(5), PGM5(3), RBM27(2), FAM19A1(2), KCNT2(2), PHKB(2), ZNF624(2),
MARCH1(1), CACNA1E(1), IPO4(1), PLXNA2(1), SLC12A9(1), SLC15A4(1), SSRP1(1), TACC1(1), UBN2(1), ZNF844(1)

2 47 BAP1(23), PBRM1(13), RRM1(11), NOD2(9), SLC4A2(9), TTLL1(9), CSRNP1(2), PGM5(2), PHKB(2), March1(1), ATG3(1), ATG4C(1),
CD180(1), CNTN1(1), EPHA1(1), EVPL(1), LAMB4(1), PARD6A(1), RBM26(1), SETD2(1), SPTBN1(1), TMEM17(1), ZNF711(1)

3 16 BAP1(12), PBRM1(8), CNTN1(4), CSRNP1(4), PHKB(3), SLC4A2(3), TTLL1(3), CHD8(2), FAM19A1(2), NOD2(2), CACNA1E(1), FRS2(1),
RRM1(1), SPTBN1(1), UBA7(1)

4 4 PBRM1(5), BAP1(4), CAST(1), CD200R1(1), COL14A1(1), GRM3(1), NCOA5(1), PCOLCE2(1), ZNF572(1)
5 5 MEIS3(3), MOB3B(3), R3HCC1(3), SHISA5(3), WEE1(3), CAST(2), CD200R1(2), COL14A1(2), PCOLCE2(2), BAP1(1), RRM1(1)

⁎ The number in the parentheses after a gene symbol represents the number of the DGMs that were linked with this mutated gene.
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the mutations of somatic mutations of BAP1 and PBRM1 tend to be mu-
tually exclusive (P b 0.03, Fisher Exact Test, Fig. 4C). RRM1, a target of
five Food and Drug Administration (FDA) approved cancer drugs,
were significantly associated with 13.8% (26/188) of differential mod-
ules. RRM1 is involved in carcinogenesis, tumor progression, and in-
ducesmetastasis suppression though PTEN-regulatedpathways [20,21].

The other somatic mutated genes that significantly affected at least
5.3% of differential gene modules included NOD2, RRM1, CSRNP1,
SLC4A2, TTLL1 and CNTN1. The genetic alterations of these eight genes
were significantly associated with poor survival rates of ccRCC patients
(P b 0.054, Supp. Fig. 3). However, themutations only presented in 2.6%
(11/421) TCGA ccRCC patients. The association of the genetic mutations
and survival rage need to be interpreted with caution. Presently, the
A

C

Fig. 4. The analysis of the genes harbored significant somatic mutations and were associated
survival rate. (B) Five FDA-approved cancer drugs (colored in gold) target at RRM1. (C) The m
functional roles of eight genes in ccRCC have not yet been studied. Col-
lectively, our results indicated that the gene module-based eQTL analy-
sis yielded a list of putative disease genes, including known ccRCC genes
such as VHL, BAP1, and PBRM1, as well as novel disease genes.

3. Methods

3.1. The Whole-exome and Transcriptome Data of ccRCC Patients

The whole-exome sequencing and RNA sequencing data were
obtained from the TCGA data portal. The tumor and paired normal
tissue samples were collected from newly diagnosed ccRCC patients
having no prior treatment for this disease, including chemotherapy or
B

with the DGMs. (A) The ccRCC patients with BAP1 somatic mutations had poor five-year
utation of BAP1 and PBRM1 tend to mutual exclusively at P b 0.03.

Image of Fig. 4
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radiotherapy. The sequencing datawere generated using IlluminaHiseq
2000 pair-end sequencing. The ccRCC patients consisted of 65% male,
35% females, and represented 93% Caucasian, 3.4% African American/
Black, and 1.6% Asian. The median age of patients at diagnosis is
60.9 years [9]. The whole-exome sequencing reads from 417 of paired
tumor and normal tissue samples were aligned to human reference ge-
nome using Blat-like Fast Accurate Search Tool (BFAST) [22]. Then,
genome-wide somatic mutationswere detected using theMuTect algo-
rithm [23]. The RNA sequencing data was generated from 539 tumor
and 72 matched normal tissue samples. After poor quality reads were
removed using the srf2fastq tool (Staden package), the RNA sequencing
reads were aligned to reference transcript database using BWA algo-
rithm [24]. The genes that have the mean Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) values b 0.1 in tumor
samples as well as normal samples were removed from the expression
profile. The differential expressed genes were detected using edgeR
package in R [25]. The output of edgeR includes fold change and false
discovery rates for individual genes. The gene that satisfied two criteria
simultaneously, FC N 2 and FDR b 0.01, were considered as differentially
expressed genes.

We also attained three independent ccRCCmicroarray datasets from
the Gene Expression Omnibus database (GEO) for validation. The first
dataset (GSE36895) contained 23 normal and 29 tumor tissue samples
of a group of ccRCC patients [4]. The second dataset (GSE46699)
contained 65 normal and 65 ccRCC paired samples of individual patients
[26]. The third dataset (GSE40435) contained 101 normal and 101
paired ccRCC tissue samples [27]. The microarray data was generated
using Affymetrix Human Genome U133 Plus 2.0 arrays. We applied
t-test followed by Benjamini-Hochbergmultiple test correction to iden-
tify the differentially expressed genes in ccRCC.

3.2. Protein-protein Interactions

Protein-protein interaction (PPI) data were obtained by combining
five public PPI databases: intAct, MINT, BioGrid, DIP, and Reactome.
The intAct database is quite comprehensive, containing information
from 12 databases such as MINT, UniPort, mpidb, etc. Only human
PPIs were selected for our study. For instance, we used “homo_
sapiens.mitab.interactions” to attain human PPI in humans in the
Reactome database. After filtering the redundancy of the union set of
all PPIs, we attained a total of unique 440,747 PPIs. Then, we performed
two expression correlation assessments using the expression profile of
TCGA ccRCC tumor and normal tissue samples. The first correlation as-
sessment is simply the correlation of the expression levels of the two
genes across all tissue samples, while the second is the difference in
the expression level correlations of the two genes between tumor and
normal tissues. The PPI pairs that rank simultaneously below 5% in
both correlation assessments were removed. A total of 319,291 PPIs
were retained for differential gene module construction.

3.3. Gene Modules Construction

The expression levels of individual genes were normalized across
samples by Z-score transformation (μ = 0). A gene module started
with a seed gene. Then, more genes were added interactively into the
module based on PPIs and mutual information assessment. According
known PPIs at each step, all genes interacting with any gene members
in the current modules were evaluated bymutation information. Muta-
tion information measures the degree to which two random variables
are independent. When a random variable X is independent of another
random variable Y, the resulting mutation information is 0. Here, we
tested for whether the expression levels of gene modules (X) are asso-
ciated with tissue types (Y) (ccRCC versus normal). The candidate
gene thatmaximized themutual informationwas selected. Here, we re-
ferred to the value of mutual information as the activity score. As X is a
discrete variable, we discretized normalized expression level (Z) by
dividing the range of Z into equally spaced bins defined by split
points sk, resulting in the following expression for the activity score
calculation:

AS X; Yð Þ ¼
X

k

X

y
P sk b X b skþ1; Y ¼ yð Þlog2

P sk b X b skþ1; Y ¼ yð Þ
P sk b X b skþ1ð ÞP Y ¼ yð Þ

At each iterative step, we calculated the improvement of the activity
score. The searching procedurewas terminated if there is no further im-
provement by adding new genes into the gene module. Then, we per-
formed three statistical tests to assess the significance of all gene
modules. We permuted the tissue phenotype 1000 times to obtain the
null distribution in order to test the hypothesis that the gene module
is significantly associatedwith tissue phenotypes. Then, we constructed
the other twonull distributions by randomly selecting the samenumber
of genes as the gene module retaining seed genes, both with and with-
out seed genes, 1000 times to test the hypothesis that the genemodules
are significantly different from the background.

3.4. A SVM-based Classifier

A SVM R package “e1071” based on widely used “libsvm” was ap-
plied to build the classifier. We adopted “sigmoid” as the kernel func-
tion, and default values for all other parameters. The normalized
average expression levels of genes in DGMs were used as features for
the differential gene module-based classifier.

3.5. eQTL Analysis

We used Matrix eQTL to assess the association of somatic mutations
and differential gene modules [28]. The linear regression model was
adopted in the eQTL analysis. If any genemember in themodule had sig-
nificant associations with the point somatic mutations (FDR b 0.0001),
we considered the mutations to be associated with the gene module.

4. Discussion

The molecular pathogenesis of many cancer types, including ccRCC,
is poorly understood, and can be partially attributed to a limited under-
standing about comprehensive causative genes and pathways that gov-
ern disease initiation and development. The method we developed in
this study included two stages: constructing differentially expressed-
gene modules and identifying causative mutated genes associated
with genemodules. The results yielded by both steps can lead to an ex-
pansion of current ccRCC genes and pathways sets.

The differential gene modules were built by coupling known PPIs
and expression profiles of ccRCC patients. The number of PPIs has
been increasing exponentially in recent years. On the contrary, data-
bases of pathways remain incomplete and largely generic. At present,
the majority of the pathways represent summaries of the most con-
served components of such pathways and not necessarily what really
occurs in each individual case. In addition, pathways can change be-
tween tissues, cell types, individuals, and species [29]. Our method of-
fered a way to dynamically discover the ways in which gene clusters
function together in the disease state. Gene ontology and pathways en-
richment analysis suggested differential gene modules presented a set
of genes that function together in the same biological process related
to the diseases. Given that the median size of gene modules is six,
90.4% and 45% of gene modules contained at least two genes were sig-
nificantly associated with biological process and KEGG pathways, re-
spectively. In contrast, none of the random gene modules having the
same topology and size as the differential gene modules had two
genes associated with the same biological process or pathways. Thus,
our results have lead to the discovery pathways involved in ccRCC.
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We used normalized expression levels of gene modules as input
features to build a SVM-based classifier for predicating tissue types.
The classifier achieved over 0.97 AUC in classifying over 600 TCGA
ccRCC tissue samples, compared to 0.77 for a SVM classifier using the
expression levels of individual genes as input features. The differential
gene modules-based classifier achieved over 0.92 AUC for prediction
three independent ccRCC patient cohorts (GSE36895, GSE46699, and
GSE40435). Thus, the DGMs could be used as molecular signatures to
infer tissue phenotypes.

The eQTL has often been applied on transcript-SNP pairs. Here, we
implemented the eQTL mapping to the differential gene modules. As
the genemodules represent gene clusters in the same pathway, the sig-
nificant somatic mutations can be linked directly to the disease-affected
pathways and suggested potential association between mutations and
the pathways. The known ccRCC genes, BAP1 and PBRM1, were revealed
by our study. The mutations of BAP1 and PRMB1 were the most fre-
quently associated with DGMs (Table 2). The BAP1 encodes a protein
called ubiquitin carboxyl-terminal hydrolase BRCA1-associated protein
1 (BAP1). The BAP1 is associated with multi-protein complex, which
regulated several crucial cellular pathways including cell cycle, cell
death, the DNA damage response and gluconeogenesis [30]. BAP1 is in-
active in 15% of ccRCCs and the loss of BAP1 has defined a new class of
ccRCC [31]. The germline mutation of BAP1 has been associated with
high risk of neoplasms [32]. PRBM1 (Polybromo 1), a SWI/SNF chroma-
tin remodeling complex gene, is frequently mutated in ccRCC [33].

A set of new genes NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1,
as well as their associated gene modules, were identified. The mutation
ofNOD2 can lead to impaired activation of NFKB in vitro [34] and has as-
sociated with colorectal, ovarian and breast cancer [35–37]. RRM1 is re-
ported as metastasis suppressor gene by inducing expression of PTEN
[38]. Currently, five FDA approved cancer drug target at RRM1 (Fig. 3).
CSRNP1 involves in apoptotic process and may play a role in apoptosis
[39]. SLC4A2 encodes anion exchanger 2 (AE2) and AE2 has been associ-
ated with multiple cancer types [40]. CNTN1, a protein encoded by
CNTN1, promoted lung cancer invasive and metastasis [41]. Despite
that these genes have been linked to the tumorgenesis of various cancer,
their roles in ccRCC have not been extensively studied yet. The genes
and their associated DGMs can offer guidance to perform experiments
to further validate their functional roles in ccRCC. Thus, our two-stage
method provides a new way for identifying new disease genes and
their affect pathways.

Todate, PPI databasesmay still contain false positives, e.g., bias in the
PPI experiments (some proteins have been studied more than others).
Our co-expression assessments may help to reduce the negative effect.
Additionally, our results suggested that eQTL analysis could prioritize
disease candidate genes, however, true associations may be overlooked
and further experimental validation may be needed. The eQTL analysis
was based on transcription level, which are quantitative traits relying
on accurate and precise measurement of gene expression. Additionally,
the sample size may limit the sensitivity for identifying true associa-
tions. Similar to the GWAS study, increasing sample size will lead to
more association discovery. On the other hand, eQTL analysismay intro-
duce false positives. The significant expression difference between nor-
mal and tumor could also attribute to the other somatic alterations such
as copy number variations and methylation events. Nevertheless, our
study yielded novel candidate genes for further experimental valida-
tion, which could potentially advance our understanding of ccRCC.

5. Conclusions

Our method integrated whole-exome sequencing data, tran-
scriptome, and PPIs to identify disease genes. These genes harbored so-
matic mutations that significantly impacted the expression alteration of
differential genemodules. The differential genemoduleswere shown to
function in thebiological process and their expression levels can beused
as molecular signatures to predict unknown tissue types. Our results
confirmed several known ccRCC causative as well as novel genes in-
volved in diseases.
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