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Chronic inflammatory pulmonary diseases are characterized by recurrent and persistent

inflammation of the airways, commonly associated with poor clinical outcomes. Although

their etiologies vary tremendously, airway neutrophilia is a common feature of these

diseases. Neutrophils, as vital regulators linking innate and adaptive immune systems, are

a double-edged sword in the immune response of the lung involvingmechanisms such as

phagocytosis, degranulation, neutrophil extracellular trap formation, exosome secretion,

release of cytokines and chemokines, and autophagy. Although neutrophils serve as

strong defenders against extracellular pathogens, neutrophils and their components

can trigger various cascades leading to inflammation and fibrogenesis. Here, we review

current studies to elucidate the versatile roles of neutrophils in chronic pulmonary

inflammatory diseases and describe the common pathogenesis of these diseases. This

may provide new insights into therapeutic strategies for chronic lung diseases.

Keywords: neutrophils, asthma, chronic obstructive pulmonary disease, cystic fibrosis, idiopathic pulmonary

fibrosis, fibrosis, fibrogenesis

INTRODUCTION

Pulmonary diseases are life-threatening conditions and an important cause of death worldwide.
Chronic pulmonary diseases account for about 1 in 15 deaths in the United States, and mortality
is increasing (1). According to current knowledge, chronic pulmonary diseases, including chronic
obstructive pulmonary disease (COPD), asthma, cystic fibrosis (CF), and idiopathic pulmonary
fibrosis (IPF), are characterized by chronic inflammation, repeated lung tissue injury and repair,
and eventually pulmonary dysfunction. Although therapeutic strategies have been developed,
effective therapy options are currently lacking for the middle and late stages of chronic pulmonary
diseases (2). Fibrogenesis is a common phenomenon in the middle-to-late stages of these diseases,
but the specific mechanisms are still unclear.

Generally, chronic inflammation may result from uncontrolled acute inflammation and may
lead to fibrogenesis if repeated damage-repair cycles occur. Pulmonary fibrogenesis is a process
of recurrent injury to the alveolar epithelium, followed by an uncontrolled proliferation of
fibroblasts and overexpression of extracellular matrix (ECM) (3). Abnormal pneumocyte apoptosis,
bronchiolar proliferation, and abnormal tissue remodeling are also involved in fibrogenesis
(4). Fiber deposits in the alveolar interstitial matrix eventually leads to fibrosis. Neutrophils, a
prominent subpopulation of immune cells in airways, have long been regarded as effector cells
in the defense against extracellular pathogens during acute inflammation. However, neutrophils
also participate in chronic inflammation in various diseases, such as rheumatoid arthritis (5, 6).
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Neutrophils play a modulating role in both innate and adaptive
immune responses (7). On the one hand, neutrophils adhere to
blood vessel walls, transmigrate to inflammatory sites following
chemokine signals, and maintain cellular homeostasis by
phagocytosis and degranulation or neutrophil extracellular trap
(NET) formation (8). On the other hand, neutrophils and their
effectors, including NETs, cytokines, exosomes, and autophagy,
directly and indirectly activate fibroblasts, and promote ECM
deposition. Most lung disorders, such as asthma, COPD, CF,
and IPF, are inflammatory diseases that are accompanied by an
increased number of neutrophils in the bronchoalveolar lavage
fluid (BALF) or lung tissue (9–11). The long-term imbalance
between pathogens and host defense contributes to the chronic
inflammatory disease (12). High mobility group box protein
1 released by necrotic neutrophils induces inflammation and
tissue remodeling by activating receptors for advanced glycation
and toll-like receptor and CXC chemokine receptor (CXCR)4
signaling (13). As a result, chronic pulmonary interstitial
inflammation, and fibrosis are induced and maintained.

In this review, we summarize how neutrophils restrict local
inflammation and have a specific role in promoting chronic
inflammation of the lung and pulmonary fibrosis. The review
will reveal the various roles of neutrophils and explore common
mechanisms of fibrogenesis in chronic lung diseases. This
knowledgemay inform treatment strategies for end-stage chronic
lung diseases.

NEUTROPHILS AS DEFENDERS AND AS
INDUCERS OF CHRONIC INFLAMMATION
AND FIBROSIS OF THE LUNG

Neutrophils contribute to nearly 60% of all leukocytes in
human body fluids (14). More neutrophils are found in the
pulmonary capillaries than in the systemic circulation, which
facilitates their rapid entry into the lung tissues in response
to infection and inflammatory stimuli (15). Primarily, they are
recruited in initial phases to exert pro-inflammatory effects.
These cells are recruited within minutes after injury and involved
in the removal of tissue debris. Neutrophils possess a series
of effector mechanisms to play their roles in disease. Apart
from phagocytosis, the recently discovered NET formation,
exosomes, release of cytokines and chemokines, and autophagy
all play a vital role in pulmonary diseases. These protective
mechanisms favor pathogen elimination and minimization of
collateral damage (16), and they have been observed in multiple
respiratory diseases, such as CF and asthma (17, 18). Following
phagocytosis, neutrophils activate apoptotic pathways to limit the
inflammation in the lung tissue.

Although neutrophils exert powerful antibacterial and
antiseptic properties, studies have found that the neutrophil/total
cell ratio in lung tissue is positively correlated with the lung
fibrosis degree (19). This indicates that neutrophils and/or
their products may contribute to fibrogenesis (20). The earliest
pathological change of pulmonary fibrosis is the injury of
pulmonary endothelial cells, followed by chronic injury of
lung epithelial cells and deposition of lung interstitial matrix.

Neutrophils induce endothelial and epithelial cell death
directly through NET formation (21) or release of invading
substance, such as angiopoietin-2, which promotes vessel
destabilization and facilitates neutrophil influx to lung tissue
(22). Neutrophils recruited to inflammatory sites affect the
function of parenchymal cells or via their mediators, such
as exosomes or cytokines (23, 24). Neutrophils secrete toxic
mediators, such as reactive oxygen species (ROS) and reactive
nitrogen species, that lead directly to tissue injury, or even
worse, induce another wave of chemokines that forms a positive
feedback loop. Moreover, some pathogens possess properties
to subvert the immune system, which causes neutrophils
to respond more aggressively, leading to untoward tissue
injury (25). For example, neutrophil drive the inflammation-
induced tissue damage in pulmonary tuberculosis and as such,
neutrophil counts are correlated with chronic inflammation in
tuberculosis (26).

Phagocytosis and Secretion of Traditional
Pro- and Anti-inflammatory Factors From
Neutrophils in Chronic Lung Diseases
The cytoplasmic granules of neutrophils contain large amounts of
lysozyme, alkaline phosphatase, antimicrobial proteins, defensin,
and phagocytin. These substances eliminate foreign pathogens
after their extracellular release by means of degranulation
or after phagocytosis of the pathogen and fusion of the
cytoplasmic granules to form the structure referred to as the
phagolysosome (8). Phagolysosomes are formed from neutrophil
granules (granule enzymes and ROS), lysosomes, and ingested
bacteria (27). Pathogen killing is mediated by granule enzymes
released from granules and ROS produced by mitochondria and
NADPH oxidase (NOX) complexes. Mitochondria-generated
ROS facilitate the innate immune function of neutrophils in
a NOX-independent manner (28). By contrast, NOX is the
only enzyme specifically used to produce ROS that participate
in the regulation of infectious diseases and inflammation.
However, NOX activity also leads to membrane depolarization
of phagosomes to provide a proper environment for these cell
organelles (29). The chemical elimination of pathogens prevents
the further spread of infection and inflammation and protects
the surrounding cells and tissues. Furthermore, proteinases and
bactericidal proteins help in tissue repair and ECM reduction.

When phagocytosis is ineffective, degranulation occurs in
response to stimuli. Neutrophils release granule contents in a
degranulation manner. In this process, a series of enzymes, such
as lysosomal enzymes and protease, are released. They help
control bacterial challenge, but the ECM will be digested as
a collateral side effect. Recurrent tissue damage and abnormal
tissue repair contribute to lung tissue remodeling, degradation,
and fibrogenesis. Neutrophil-derived matrix metalloproteinases
(MMPs) digest the ECM, elastin, and collagen to allow for
neutrophil transmigration from the bloodstream into tissues;
but in some disease contexts, they weaken the host defense and
contribute to tissue damage by degrading immune receptors
and collectins (13). MMP2 and MMP9 are key orchestrators
of emphysema (30, 31), indicating that MMPs are involved
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in pulmonary structural remodeling. In asthma, neutrophil
phagocytosis is decreased (32), whereas, ROS generation
is increased (33), which is highly correlated with tissue
inflammation. In the COPDmodel, a reduction inMMP9 levels is
correlated with disease alleviation (34). The dysregulated release
of myeloperoxidase (MPO) and neutrophil elastase contributes
to tissue damage and can exacerbate CF. Increased levels of
MMP8/9 and neutrophil elastase are also detected in patients
with CF (35). In the BALF and lung tissues from patients
with IPF, high concentrations of neutrophil-derived MMP2 and
MMP9 are detected, and MMP9 activity is positively correlated
with the neutrophil count in the BALF (36). Collectively, the
dysfunction of phagocytosis and degranulation favors ECM
destruction, which is the basis for tissue over-repair, remodeling,
and fibrogenesis.

NETs – Double-Faced Newcomers in
Chronic Lung Diseases
NETs are a mechanism of activated neutrophils to control
infection and inflammation by “trapping” pathogens
extracellularly in a suicidal or vital manner (37). The progress of
active NET release is known as NETosis. NETs can be produced
in response to infectious or non-infectious stimuli. Following
activation of NET cell death programs, suicidal NETs are released
by dying neutrophils 2–4 h after their activation (38) and are
composed of decondensed chromatin (including cathelicidin
LL-37, α-defensin, and neutrophil elastase), dissolved nuclear
membranes, and chromatin. NETosis can be accelerated by
the presence of bacteria as a way to wall off the infection and
to limit the pro-inflammatory cytokine secretion, which limits
the inflammatory response (39). Various agents, including
bacteria, fungi, protozoa, viruses, platelets, interferon (IFN)-α,
autoantibody, nitric oxide donors, can induce NET formation
(40, 41). Moreover, granular enzymes and ROS positively
regulate NET formation (41). In vitro, lipopolysaccharides
can also induce the generation of NETs (42). These results
indicate that NETs play a critical role in pathogen clearance and
tissue homeostasis.

Connective tissue growth factor (CTGF, CCN2) is a
matricellular protein implicated in fibrosis and an important
downstream mediator of TGF-β induced fibrosis (43). The
expression of CTGF is elevated in IPF, and confined to
proliferating type II alveolar cell and myofibroblasts (44).
CTGF may play a role in promoting fibroblast proliferation
and extracellular matrix production in pulmonary fibrosis
(44). Studies show a closely relationship between NET and
CTGF. Myofibroblast CTGF expression is enhanced by NETs
inducer (45), which also promote lung fibroblasts activation
and myofibroblast differentiation (45, 46). Fibrotic interstitial
lung biopsies demonstrate a close proximity between NETs and
alpha-smooth muscle actin (α-SMA)-expressing fibroblasts (45).

NETs are reported to participate in the pathogenesis of
multiple lung diseases, including pneumonia, acute lung injury,
asthma, COPD, and CF. Although NETs play an important role
in pathogen elimination and host defense, other evidence reveals
substantial damage to the lung epithelium and endothelium,

either directly or indirectly (21). Much of the literature on
NETs in pneumonia, acute lung injury, COPD, asthma, and
CF has already been reviewed in detail, so we will summarize
major findings here (47). Recent data suggest that NETs also
play an important role in autoimmune and autoinflammatory
pathologies (48, 49). NETs induce the activation of lung
fibroblasts, stimulate their differentiation into the myofibroblast
phenotype, and promote fibrotic activity via the expression of
interleukin (IL)-17, a primary initiator of inflammation and
fibrosis (45). In vitro, isolated NETs significantly increase the
levels of cytokines and stimulate macrophages to secrete IL-
1β, which promotes neutrophil and macrophage infiltration
in airways and contributes to lung fibrosis (50). As a result,
NETs amplify tissue inflammation along the NET-cytokine-
cell axis. Peptidylarginine deiminase 4 (PAD4), an essential
enzyme for NET formation (51), is elevated in the lungs of
COPD patients (52). In addition, the concentrations of NETs
and their components, including extracellular DNA, LL-37, and
CXCL8/IL-8, are increased in patients with neutrophilic asthma
and COPD, and these elevated levels are negatively correlated
with lung function (53). In COPD patients, NET levels are
also elevated in the sputum, and they are similarly negatively
correlated with lung function. In mice, reduced NET levels
following erythromycin administration can alleviate emphysema
and decrease the numbers of Th1, Th17, and myeloid dendritic
cells (54). Furthermore, NET components stimulate histamine
and leukotriene release, which may lead to further inflammatory
changes in asthma and COPD. Neutrophils of CF patients exhibit
a prolonged lifespan, which promotes NET production and
increased necrosis (55). Furthermore, the neutrophil count is
increased in patients with CF, and the levels of NET components
(extracellular DNA, neutrophil elastase, andMPO) are correlated
with disease severity (56). In addition, increased levels of
autoantibodies against NET components are correlated with
decreased lung function in patients with CF (56, 57). Despite
no currently proven direct connection between NETs and IPF,
the relationship between NET and pulmonary fibrosis formation
suggests a likely relationship between IPF and NETs. A recent
study showed that pulmonary surfactant protein-D can inhibit
NETosis in lipopolysaccharide-stimulated human neutrophils,
providing the potential to eliminate negative NET effects (58).

Exosomes – Tiny Multi-Agent Messengers
in Chronic Lung Diseases
Exosomes are extracellular vesicles <150 nm in size that are
released into the plasma by budding and carry proteins, lipids,
and nucleic acids. Exosomes are secreted by a wide range of cells
in response to different stimuli and play a role in information
transmission (59). As an intercellular communicator, exosomes
can reach distant cells quickly and affect their behavior via
interaction with surface markers. Exosomes acquiring the
CD63/CD66b phenotype are from neutrophils, with which
they can be traced extracellularly. Studies have shown that
exosomes are released into the lungs, and they are related to the
pathophysiology of lung diseases (60). Functionally, exosomes
eliminate pro-inflammatory chromosomal DNA fragments to
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maintain cellular homeostasis (61). Functional inhibition of
exosomes triggers the innate immune response to generate more
ROS by accumulating nuclear DNA.

Exosomes from activated neutrophils express higher
neutrophil enzyme than quiescent exosomes, which indicate
that exosomes show higher destructive effect in lung (62).
Neutrophil-derived exosomes can be immediately internalized
by airway smoothmuscle cells, thereby altering their proliferative
properties and contributing to airway remodeling (17). This is
associated with excessive neutrophil-driven inflammation and
local elevation in neutrophil elastase levels. Exosomes from
neutrophils enhance the proliferation of airway smooth muscle
cells to promote airway remodeling in patients with asthma, and
they play an important role in the progression of asthma (17).
In COPD, exosomes containing neutrophil elastase, which is
resistant to alpha1-antitrypsin, destroy the tissue architecture via
integrin Mac-1 and neutrophil elastase (62). Although studies
concerning neutrophil-derived exosomes and lung fibrotic
disease have not been identified, such exosomes potentially
contribute to the pulmonary architectural distortion in chronic
lung diseases. In turn, exosomes from lung fibroblasts activate
DNA damage response and epithelial cell senescence (63). In
systemic sclerosis, a systemic fibrotic disease, neutrophil-derived
exosomes inhibit the proliferation, and migration of human
dermal microvascular endothelial cells via S100A8/A9 in
neutrophils, this result indicates that exosomes from neutrophils
prevent lung remodeling (64). In mice with bleomycin-induced
pulmonary fibrosis, exosomes containing microRNA-22 can
ameliorate pulmonary fibrosis by suppressing transforming
growth factor (TGF)-β1-induced expression of α-smooth muscle
actin (65). This contrary effect of exosomes in fibric diseases is
mainly caused by the different functional components contained
in the released exosomes.

Autophagy, an Unusual Cell Death in
Chronic Lung Diseases
Autophagy is the lysosome-dependent process of cell organelle
self-degradation that is mediated under various cellular stress
conditions to maintain cellular homeostasis of cellular protein
synthesis, degradation, and recycling (66). Autophagy is crucial
for cellular function and can be seen in both physiological
and pathological processes in most cells, including neutrophils.
In recent studies, autophagy has shown a complicated and
important moderator function in pulmonary diseases (67). In
chronic lung diseases, autophagy helps to maintain the cell cycle
of lung fibroblasts and reduce the production of ECM.

In patients with asthma, autophagy levels of peripheral
blood cells in the sputum and peripheral blood eosinophils are
increased (68). Similarly, autophagy levels in airway tissues are
also increased in a murine asthma model. Inhibiting autophagy
reduces airway responsiveness, eosinophilia, and inflammation
in this murine asthma model (69). Smoke-exposed neutrophils
present increased autophagy and lose the ability to ingest
the respiratory pathogen Staphylococcus aureus (70). Moreover,
cigarette smoke exposure induces autophagic cell death in
neutrophils, leading to the development of emphysema (71).

These results indicate that the upregulation of autophagy in
neutrophils contributes to persistent inflammation and the
development of COPD.

However, studies concerning the autophagy of neutrophils
in CF and IPF are lacking. The level of autophagic Beclin-
1 is decreased in fibroblasts in fibrotic autoimmune diseases,
suggesting an inhibited autophagy status (72). Autophagy
stimulated by rapamycin (an mTOR inhibitor promoting
autophagy) causes the reduced expression of fibronectin and
α-smooth muscle actin in fibroblasts in vitro and exerts
an anti-fibrotic effect in the bleomycin model in vivo (73).
By contrast, inhibiting autophagy leads to an increase in
extracellular collagen production and fibroblast-myofibroblast
differentiation in pulmonary fibrosis (74, 75). In IPF, insufficient
autophagy promotes fibrogenesis by stimulating fibroblast
proliferation (76) and accelerates cellular senescence and
myofibroblast differentiation of lung fibroblasts, suggesting the
pro-fibrotic functions of insufficient autophagy in IPF (77, 78).
Macroautophagy and mitophagy are decreased in lung epithelial
cells and lung fibroblasts of IPF patients (54). Mitophagy,
a crucial process in cellular energy homeostasis, modulates
macrophage apoptosis and stabilizes macrophages to release
TGF-β1, thereby stimulating local fibroblast activation. Aging
mitochondria and impaired autophagy/mitophagy are involved
in the pathogenesis of IPF (75, 79). This result caters to the
fact that aging is a major risk factor for IPF (80). Blocking
mitophagy in alveolar macrophages protects against bleomycin-
induced fibrosis in mice (81). These results indicate an intimate
connection between autophagy and persistent inflammation, as
well as fibrosis, but more studies are needed to verify the specific
function of neutrophil autophagy in these diseases.

Some drugs show to be highly associated with autophagy. For
example, hydroxychloroquine blocks autophagy by impairing
the autophagosome-lysosome fusion and the degradation of the
autophagosome contents (82). Metformin, an insulin-sensitizing
drug, stimulates AMP-activated protein kinase, which enhances
autophagy by ULK1 (a key regulating protein of autophagy)
activation (83). Moreover, autophagy positively regulates NET
formation (84, 85), proposing that inhibition of autophagy using
pharmacological inhibitors may hinder the release of NETs.
Consequently, modulation of autophagy emerges as a promising
therapeutic option for the treatment of NET-driven disorders.

Cytokines and Chemokines as Positive and
Negative Regulators in Chronic Lung
Diseases
Neutrophils secrete a vast number of cytokines and chemokines,
such as pro-inflammatory cytokines (IL-1, IL-6, IL-17, and IL-
18), anti-inflammatory cytokines (IL-10, TGF-β1, and TGF-
β2), chemokines (CXCL1–11, CCL2–4, and CCL17–22), and
immunoregulatory cytokines IFN-γ, IL-12, and IL-23), all
of which act directly or indirectly on other immune cells,
contributing to tissue damage or repair (8, 29, 86). As a
key connector of the innate and adaptive immune system,
neutrophils interact with other immune cells, including T cells,
B cells, natural killer cells, macrophages, dendritic cells, and

Frontiers in Medicine | www.frontiersin.org 4 April 2021 | Volume 8 | Article 616200

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ding et al. Neutrophil Effects in Lung Fibrosis

mesenchymal stem cells (7). Particularly, IFN-γ, TGF-β, IL-6,
IL-17A, and IL-17F are functionally important in lung diseases.

IFN-γ shows anti-fibrotic effects by inhibiting the collagen
formation in fibroblasts in vitro. It also decreases the gene
expression of pro-fibrogenic factors, including TGF-β1 and
CTGF (87). Clinically, INF-γ is used to treat lung fibrosis in IPF,
despite its effectiveness being quite controversial (88).

TGF-β is a strong pro-fibrotic factor in the lung (89). Three
major mammalian isoforms of TGF-β have been identified: TGF-
β1, TGF-β2, and TGF-β3. TGF-β1 and TGF-β2 are secreted by
neutrophils. TGF-β induces the proliferation of fibroblasts and
macrophages via platelet-derived growth factor expression and
stimulates fibroblasts to generate superabundant ECM. Besides,

activated macrophages also express a vast number of pro-
inflammatory and fibrogenic cytokines, such as tumor necrosis
factor-α, IL-1β, and IL-13, triggering persistent inflammation
downstream and chronic lung fibrosis (89). Pulmonary TGF-β1
levels are increased in a model of experimental lung fibrosis, and
TGF-β1 overexpression induces persistent pulmonary fibrosis
via the SMAD3 signaling pathway (90). Smad3 gene knockout
protects mice from TGF-β1- and bleomycin-induced pulmonary
fibrosis (91).

In patients with IPF or acute exacerbation of IPF, IL-6 levels
in the BALF and serum are significantly higher compared to
healthy controls (92–94), indicating a close connection between
this cytokine and fibrosis pathogenesis. In IPF, IL-6 enhances the

FIGURE 1 | The multiple effects of neutrophils in lung fibrosis. Circulating neutrophils roll, adhere, crawl, and transmigrate to chemokines to lung tissue. In the lung

tissue, neutrophils play their roles via phagocytosis, degranulation, neutrophil extracellular trap (NET) formation, exosome secretion, release of cytokines, and

autophagy redox balance. The primary common features of these mechanisms are pathogen elimination, tissue repair, and cellular homeostasis, respectively.

However, the mechanisms that promote the progression of chronic inflammatory lung disease are quite different. Phagocytosis, degrandulation, NET formation, and

exosomes contribute to ECM injury and tissue damage-repair-remodeling. In addition to ECM damage, NETs play a role in activating immune responses and release

pro-fibrotic factor IL-17. Although neutrophil autophagy effect is limited, increased proportion of autophagy in neutrophil deduces the ability of eliminating

inflammation. A vast of pro-fibrotic cytokines released by neutrophils contribute to lung fibrosis formation, respectively. Transforming growth factor (TGF)-β promotes

persistent inflammation by macrophage activation and proliferation. interleukin (IL)-17 derived from neutrophils or NETs induces fibroblast proliferation and

myofibroblast differentiation. As a result, extracellular matrix (ECM) is over-expressed in interstitial tissue of lung. TGF-β, transforming growth factor-β; IL-17,

interleukin-17; NET, neutrophil extracellular trap; ECM, extracellular matrix; MPO, myeloperoxidase; ROS, reactive oxygen species; MMP, matrix metalloproteinase.
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proliferation of lung fibroblasts via SHP-2/ERK/MAPK signaling
(95). In addition, IL-6 promotes in IPF the resistance of lung
fibroblasts to Fas-induced apoptosis by overexpression of the
anti-apoptotic protein BCL-2 (96).

In human lung fibroblasts, IL-17A stimulates their
proliferation, generation of ECM, and differentiation into
the myofibroblast phenotype via the NF-κB pathway. IL-17
also promotes fibrosis via NETosis (97). IL-17 expresses in
NETs and promotes the fibrotic activity of lung fibroblasts
(45). Study shows that IL-17-producing cells and NETosis are
synchronous increased in psoriatic lesions. The expression of IL-
17 is increased in presence of NETs in vitro (97). Neutralization
of IL-17A can ameliorate bleomycin-induced lung fibrosis in
mice (98). These results indicate a pro-fibrotic role for IL-17A
in human lung tissue remodeling through direct effects on
lung fibroblasts (99). Superabundant neutrophils also lead to
tissue damage, and pulmonary fibrosis is significantly alleviated
when neutrophils are depleted (100). Collectively, neutrophils,
as a major source of inflammatory factors, play vital pro- or
anti-fibrotic roles in the lung. This dual effect is mainly caused
by differences in environmental conditions of the distinct
pulmonary diseases. Changing disease-related factors may
reverse the disease progression and promote recovery.

SUMMARY

Chronic inflammatory lung diseases are a group of neutrophil-
related disorders with poor prognosis inmiddle-to-late stages. To
sum up the common features of these diseases, first, neutrophilia
can be detected in the lung tissue or BALF. Second, protective
factors and pro-inflammatory factors coexist, but the balance is
disturbed under disease conditions. Third, specific neutrophil
functions are altered, such as enhanced ROS production, aberrant
NET formation, increased autophagy, and abnormal secretion
of cytokines. In contrast to the traditional view on these short-
lived cells, research corroborates the hypothesis that neutrophils
and their products contribute to inflammation removal, but also
chronic inflammation and fibrosis of lung tissue (Figure 1). The
shift in the balance toward tissue destruction may result in
persistent inflammation and fibrogenesis. Thesemechanisms also
explain the acute exacerbation of some chronic lung diseases

after experiencing infection. Avoiding infection is an important
preventive measure to control pulmonary fibrosis.

Given the role of neutrophils in fibrosis, strategies focusing
on neutrophil components may be effective, such as reducing
neutrophil numbers in the airway, decreasing protease and ROS
generation, decorating NETs, regulating autophagy, reducing
the expression or activity of TGF-β protein, and providing
exogenously exosomes containing microRNA. DNase and
NET-associated elastase that affect the formation of NET
may be helpful. Compound, such as hydroxychloroquine,
which can reduce NETs via blocking autophagy is also
considerable. Moreover, based on the tightly correlation
of NETs and lung function, NET is expected to be a
biomarker for evaluating criteria of lung function and fibrosis.
However, the effectiveness of these strategies is limited by
their off-target effects. More studies are needed to explore
the precise role of neutrophils in lung fibrotic diseases,
which will provide better evidence for the treatment of
these diseases.
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