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Structural connectivity 
of the sensorimotor network 
within the non‑lesioned 
hemisphere of children 
with perinatal stroke
Brandon T. Craig1,2,3, Eli Kinney‑Lang1,2,3, Alicia J. Hilderley1,2,3, Helen L. Carlson1,2,3,4 & 
Adam Kirton1,2,3,4,5*

Perinatal stroke occurs early in life and often leads to a permanent, disabling weakness to one side 
of the body. To test the hypothesis that non‑lesioned hemisphere sensorimotor network structural 
connectivity in children with perinatal stroke is different from controls, we used diffusion imaging 
and graph theory to explore structural topology between these populations. Children underwent 
diffusion and anatomical 3T MRI. Whole‑brain tractography was constrained using a brain atlas 
creating an adjacency matrix containing connectivity values. Graph theory metrics including 
betweenness centrality, clustering coefficient, and both neighbourhood and hierarchical complexity 
of sensorimotor nodes were compared to controls. Relationships between these connectivity metrics 
and validated sensorimotor assessments were explored. Eighty‑five participants included 27 with 
venous stroke (mean age = 11.5 ± 3.7 years), 26 with arterial stroke (mean age = 12.7 ± 4.0 years), and 
32 controls (mean age = 13.3 ± 3.6 years). Non‑lesioned primary motor (M1), somatosensory (S1) and 
supplementary motor (SMA) areas demonstrated lower betweenness centrality and higher clustering 
coefficient in stroke groups. Clustering coefficient of M1, S1, and SMA were inversely associated with 
clinical motor function. Hemispheric betweenness centrality and clustering coefficient were higher 
in stroke groups compared to controls. Hierarchical and average neighbourhood complexity across 
the hemisphere were lower in stroke groups. Developmental plasticity alters the connectivity of key 
nodes within the sensorimotor network of the non‑lesioned hemisphere following perinatal stroke and 
contributes to clinical disability.

The perinatal timeframe is the most focused period of risk for stroke with the birth prevalence of perinatal stroke 
approaching 1:1000  births1. Perinatal strokes lead to lifelong disability for millions  worldwide1,2. Three types 
predominate including arterial ischemic stroke (AIS), encompassing both neonatal arterial ischemic stroke and 
arterial presumed perinatal ischemic stroke, and periventricular venous infarction (PVI)1,3. Males appear to 
have a higher prevalence than females for neonatal AIS and PVI, but not arterial presumed perinatal ischemic 
 stroke1. Although AIS and PVI groups differ in lesion size and location, they share the common complication 
of hemiparetic cerebral palsy—lifelong weakness to one side of the  body4.

The injured hemisphere has been a long-standing focus of research, however recent studies have begun to 
reveal atypical structure and connectivity of the non-lesioned hemisphere in children with perinatal stroke. 
The altered development of this uninjured tissue may play a major role in determining clinical  function5–8. 
Reconstruction of structural connectivity, via tractography using diffusion MRI, combined with mathematical 
models assessing topology of the human brain via graph theory, may help elucidate the role of the non-lesioned 
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hemisphere in perinatal  stroke5,9–11. Yet to be identified are the connectivity properties of key nodes within the 
sensorimotor network of the non-lesioned hemisphere that determine outcome.

Here, we utilize diffusion tractography combined with graph theory to investigate sensorimotor network 
topology of the non-lesioned hemisphere in children with perinatal stroke and assess relationships with motor 
function. We hypothesized that the sensorimotor network of the non-lesioned hemisphere reorganizes to prior-
itize connections between critical structures and that this reorganization is related to motor function.

Methods
A list of abbreviation can be seen in Supplementary Table 1.

Participants. Children with perinatal stroke were identified from a large population-based clinical  cohort12 
and a subset of that group was included here. This sample is the same as that reported in a previously published 
 study5. Inclusion criteria were: (1) MRI-confirmed unilateral perinatal stroke (AIS or PVI) as determined via a 
central review by a pediatric neurologist (AK) based on established  criteria13, (2) symptomatic hemiparetic cer-
ebral palsy (self-described functional limitations by child and parent and Manual Ability Classification System 
(MACS) score of 1–4)14, (3) age 6–19 years, (4) term-birth, and (5) anatomical T1-weighted and diffusion tensor 
imaging per below. Exclusion criteria were: (1) MRI contraindications, (2) evidence of multifocal, bilateral or 
diffuse injury at any location in the brain (including subcortical and deep grey structures), (3) unstable epilepsy, 
(4) poor image quality (venetian blind artifacts in T1 image or < 25 acceptable diffusion volumes confirmed by 
two neuroimaging scientists (BTC and AJH)), and (5) inability to process neuroimages.

Typically developing controls (TDC) similar in age were recruited from a large control  database15. Control 
participants had no history of neurological or neurodevelopmental conditions, were right-handed by self or 
parent report, and had no MRI contraindications.

All participants provided informed consent/assent or parental consent to participate in this study. This study 
was approved by the University of Calgary Research Ethics Board and all methods were performed in accordance 
with the relevant guidelines and regulations.

Neuroimaging acquisition. All participants completed a standard MRI Neuroplasticity Protocol on a 3 
Tesla General Electric MR750w scanner with a 32-channel head coil. High resolution T1-weighted fast spoiled 
gradient echo brain volume (FSPGR BRAVO) were acquired in the axial plane (voxels = 1 mm isotropic, 166–225 
slices, repetition time (TR) = 8.5 ms, echo time (TE) = 3.2 ms, inversion time (TI) = 600 ms, flip angle = 11°, dura-
tion =  ~ 6:00). Axially acquired diffusion tensor images were also collected (voxels = 2.5 mm isotropic, 32 non-
collinear directions, 60 slices, b-value = 750 s/mm2, 3 b = 0 volumes, TR = 11.5 s, TE = 69 ms, duration ~ 6:00).

Lesion characterization. Using T1-weighted anatomical images, lesions from AIS patients were classified 
into either proximal or distal M1 involvement, where proximal M1 occlusions had subcortical involvement (i.e., 
basal ganglia) and distal M1 occlusions did  not13. Lesion volume was measured using the semi-automatic tracing 
mechanism within  MRIcron16. First, a 3-dimensional fill was initiated at the centre of the lesion and dilated from 
the centre until it reached a change in signal intensity demarcating the lesion boundary. Lesion tracings were 
then checked manually on the axial, coronal, and sagittal slices and edited to ensure that only lesioned areas were 
included. Lesion volume (in cc) was then extracted and used in analysis as a potential covariate.

Image preprocessing. Processing steps are identical to our previously published work and are outlined in 
Fig. 15. Anatomical T1 images underwent preparation for anatomically constrained tractography (ACT)17. Due 
to the heterogenous nature of the size and location of perinatal strokes, multiple software packages were used 
to optimize the preprocessing and analysis pipelines. T1 scans were parcellated into gray matter, white matter, 
cerebrospinal fluid, bone, and air using the Statistical Parametric Mapping segmentation tool (https:// www. fil. 
ion. ucl. ac. uk/ spm/). To permit reconstructed streamlines to pass through subcortical motor structures (e.g., 
thalamus), we isolated subcortical structures using FMRIB Software Library (FSL)’s FIRST, then removed these 
structures from the termination processing within ACT 18. Once all segmentations were completed, the interface 
between gray and white matter was generated and this image served as both the initial tractography seed and 
termination point to constrain reconstructed streamlines to only white  matter17.

FSL’s FLIRT was used to linearly transform the T1 and respective segmentation masks and volumes into the 
participant’s diffusion image space. All final co-registered images were quality checked slice-by-slice axially.

Diffusion scans underwent standard pre-processing steps including eddy current and small motion correc-
tion by FSL’s eddy_correct. Subsequently, each diffusion volume was quality checked slice-by-slice coronally. 
Participants that had poor image quality due to artifacts, such as motion or echo planar imaging distortions 
were excluded from analysis. Whole-brain probabilistic constrained spherical deconvolution tractography using 
MRTrix3’s tckgen was employed using ACT (angle threshold = 45°; step size = 1 mm; FOD amplitude = 0.05; 1 
million streamlines)17,19.

Similar transformation steps as above were utilized to transform the automated anatomic labelling 2 atlas 
(AAL2) to each participant’s diffusion space. In addition, a non-linear transformation using FSL’s FNIRT was 
used to enhance accuracy of this final coregistration step. ROIs from the warped AAL2 atlases were used to 
constrain tractography to specific regions.

Quality assurance of image quality and processing steps were assessed slice-by slice axially by two researchers 
(BTC and AJH) at various steps. These included initial review of the scans before any processing, review follow-
ing processing of the DTI scan, review of the anatomical segmentation and production of the gray matter white 
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matter interface image, review of the tractography, and finally the review of the atlas parcellation registration to 
the patient’s brain (Fig. 1, denoted by asterisks).

Structural matrix processing. A whole brain, undirected 120 × 120 adjacency matrix was generated using 
MRTrix3’s tck2connectome. The number of streamlines that entered any ROI were used as network weights. 
Small sub-cerebellar ROIs were subsequently excluded and the non-lesioned hemisphere was isolated leaving 
a 47 × 47 ROI matrix where the matrix diagonal was set to  05. In controls, streamlines in the left ‘dominant’ 
hemisphere were used for comparison. The metrics mentioned below were extracted for the whole hemisphere 
as well as a subset of sensorimotor-related nodes identified using the AAL2 atlas. These nodes included the 
primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), thalamus, 
caudate, putamen, pallidum and one negative control node (inferior occipital gyrus, IOG) to establish func-
tional  specificity20. Density-based thresholding removed the bottom 25% of weights in each adjacency matrix 
to exclude spurious reconstructed fibres. Null, or randomized graphs, were generated by creating a randomized 
47 × 47 matrix using the Erdös-Renyi  algorithm21. Based on an average of each group’s sample size, 28 null graphs 
were generated for comparison.

Graph theory outcomes. General terminology. Graph theory definitions are explained graphically in 
Fig. 2. A node is defined as an atlas-based region of interest, such as the thalamus or M1. An edge is the connec-
tion that joins one node to another. Degree is defined as the number of edges associated with a given node. For 
example, if a node has 4 edges, it is connected to 4 other nodes and has a degree of 4. A path is defined as a finite 
sequence of distinct edges and nodes that join together two nodes of interest, such as the red arrows in Fig. 2A. 
A neighborhood is the set of nodes who are a path length of 1 away from a node of interest.

Betweenness centrality. Betweenness centrality assesses how ‘central’ a node is to the  network22. For example, 
in Fig. 2A, node G has a high betweenness centrality since any path between nodes O, B, Y, and T all must go 
through G. Nodes O, B, Y, and T are nodes of degree 1 (only one edge), also called leaf nodes. Thus, no path 
between any two nodes would pass through them in the network, resulting in a betweenness centrality of 0. 
Betweenness centrality for a node is defined below, where ρ is the number of shortest paths between h and j, and 
ρhj is the total number of shortest paths between h and j that pass through node  i22:

Figure 1.  Neuroimage processing steps. (A) Anatomical images were segmented based on tissue type and 
combined to create a gray matter-white matter interface (GMWMI) image. The AAL2 atlas (node atlas) was 
co-registered into patient diffusion space. For DTI images, eddy currents and small head motion was corrected. 
ODF maps were then generated and whole-brain tracts were reconstructed (restricted to only white matter 
using the GMWMI image) and seeded using the co-registered node atlas to generate an undirected 47 × 47 node 
adjacency matrix containing number of streamlines between node pairs (network weights). Network weights in 
the non-lesioned hemispheres were compared between groups of children with perinatal stroke (AIS, PVI) and 
the left hemisphere in controls. Asterisks highlight steps where quality assurance was performed by two authors. 
(B) Group average adjacency matrices for AIS, PVI and TDC participants as well as matrices containing 
standard deviations to visually illustrate variances between the groups. Images in (A) were generated using 
MRTrix3 (https:// www. mrtrix. org/) and images in (B) were generated using MATLAB (https:// www. mathw 
orks. com/ produ cts/ matlab. html). DTI diffusion tensor image, ODF orientation density function, AIS arterial 
ischemic stroke, PVI periventricular venous infarction, TDC typically developing controls.

https://www.mrtrix.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Clustering coefficient. Clustering coefficient assesses a node’s neighbours’ relative  connectivity22. Specifically, 
Clustering coefficient evaluates connectivity by determining the number of neighbours which are closed triplets 
(i.e. a node that is connected to two different nodes that are connected to each other; G-Y-T, for example in 
Fig. 2B) versus all triplets. The more connected a node’s neighbours are the higher a node’s clustering coefficient 
is. For example, node G has five neighbours. Two out of those five neighbours have a closed triplet, so G has a 
lower clustering coefficient compared to node V in which all neighbours contain closed triplets. Clustering coef-
ficient can be defined below, where  Cw is the weighted clustering coefficient,  ti

w denotes the number of triplets 
around i, and k being the number of edges that are connected to the vertex  i23:

bi =
1

(n− 1)(n− 2)

∑

h, j ∈ N
h �= j, h �= i, j �= i

ρhj(i)

ρhj
.

Figure 2.  Graph theory application. Figure depicts various topological representations to help explain graph 
theory concepts. Circles represent a node, whereas the lines represent the edge or weight between each node. 
In (A), the arrow represents the shortest path from node B to node V. In (B), the red triangles represent closed 
triplets, whereas the dashed triangles represent possible triplets.
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Hierarchical complexity. The concept of hierarchy in network topology is often of interest when assessing mod-
els through graph  representations24,25. The brain is a complex system, and as such, models of its topology require 
an appropriate tool to represent this complexity. To this end, hierarchical complexity has been proposed as a tool 
which can assess network-wide patterns in connectivity for nodes of the same degree. Hierarchical complexity 
assesses at any given node how many other nodes that given node is connected  to24. Here, in a highly ordered 
system, all nodes would be connected to other nodes with a similar degree. The more ordered a system is, the 
less complex it is. For example, in Fig. 2C, all nodes with a degree of 2 are connected to nodes of degree 3, mean-
ing that the system is very ordered and has a lower hierarchical complexity. In comparison, in Fig. 2D, nodes 
with a degree of 2 are connected to nodes with either a degree of either 3 or 4. This system is more complex 
and in turn has a higher hierarchical complexity. Hierarchical complexity is defined as follows, similar to prior 
 studies25,26. Let G = (V,E) represent a graph with given nodes V = {1,…,n} and edges E = {(i,j) : i,j ∈ V}. Also, let 
K = {k1, . . . , kn} be the set of degrees of G, K i is the number of edges adjacent to vertex i, with Kp representing 
the set of nodes of degree p. Then, if spi  is the neighbourhood degree sequence spi = {s

p
i (1), . . . , s

p
i (p)} of a node 

i of degree p, then the hierarchical complexity R is

where D is the total number of distinct degrees in the entire network, and µp is the mean of the jth entries of all 
p length neighbourhood degree  sequences24,25.

Neighbourhood complexity. Similar to hierarchical complexity, neighbourhood complexity assesses how many 
nodes is a given node connected to. This metric is calculated at the nodal level, e.g. each node’s unique neighbor-
hood is investigated with respect to their relative complexity. Average neighbourhood complexity is reported 
here as an average of all of the nodes’ neighbourhood complexities in the hemisphere of interest.

Clinical motor function. Children with perinatal stroke completed a battery of evidence-based, validated clini-
cal motor assessments administered by experienced pediatric occupational therapists. The assisting hand assess-
ment (AHA) assesses bimanual upper-extremity  function27. Children are asked to use their affected hand during 
a play-based task, leading to a score on each of 22 bimanual hand  actions27. Total scores are expressed as a logit 
unit out of 100 with higher scores indicating better  performance27. The Melbourne assessment (MA) is a uni-
manual upper-extremity function assessment of the affected  side28. Sixteen hand/arm functions are assessed, 
including grasping, reaching, and manipulation. Total scores are out of 100 with higher scores indicating better 
performance. In the Box and Blocks Test (BBT) a child is asked to quickly and accurately lift one block from one 
box over a partition and place it in another box as many times as they can within a 60 s  span29. Tests are com-
pleted for both the affected (BBTA) and unaffected hands (BBTU). Total scores represent the number of blocks 
transferred successfully.

Statistical analysis. Distribution normality was assessed using the Shapiro–Wilk Test of Normality and 
subsequent statistical tests were parametric or non-parametric as appropriate.

Differences in age and proportion of sex between the three groups were compared using a Kruskal–Wallis test 
and Pearson’s Chi-squared test, respectively. Relationships between lesion size, participant age, and all relevant 
outcomes were investigated using Pearson correlation coefficients (r) or Spearman’s rho  (rs). Betweenness central-
ity, clustering coefficient, and neighbourhood complexity was assessed for seven individual sensorimotor-related 
nodes including M1, S1, SMA, thalamus, caudate, putamen, pallidum and one negative control node (IOG). The 
above metrics (BC, CC, and NC) and hierarchical complexity were then assessed the non-lesioned hemisphere 
in its entirety (i.e. encompassing an average of all 47 nodes) between groups using either an analysis of variance 
or a Kruskal–Wallis test. Bonferroni correction for multiple comparisons was employed. Relationships between 
clinical motor assessments and graph theory outcomes, both at the nodal and hemispheric levels, were assessed 
using either Pearson correlations (r) or Spearman correlations  (rs), depending on normality. Results for the 
relationships between hemispheric averages and clinical motor outcomes were assessed both as a pooled group 
(i.e., AIS and PVI combined) and separated. All network metrics mentioned above were compared to metrics 
generated from a null, randomized graph between each group that underwent similar density-based thresholding. 
Cohen’s d was calculated for comparisons that were normally distributed to assess effect sizes. Post-hoc power 
calculations were performed using G*Power30 with an alpha-level of 0.05, an effect size of 1.0 (a conservative 
estimate based on current observed effect sizes), and the sample size of the two smallest groups in our study.

Results
Population. The initial sample consisted of 90 participants. Five were excluded due to poor image qual-
ity (n = 3) or inability to process data due to large lesions (n = 2). The final sample consisted of 85 participants, 
including 27 with PVI (63% male; mean age = 11.5 ± 3.7 years; range 6.6–19.7 years), 26 with AIS (58% male; 
mean age = 12.7 ± 4.0  years; range 6.6–19.0), and 32 TDC (53% male; mean age = 13.3 ± 3.6  years; range 6.4–
19.0 years). Median age and sex proportions did not differ between groups  (H(2,82) = 4.307, p = 0.366; χ2

(2) = 0.582, 
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p = 0.748). For AIS patients, 62% had proximal M1 occlusions (basal ganglia involvement) and the remaining 
38% had distal M1 occlusions (basal ganglia spared). Age, sex, and lesion size were not associated with any graph 
theory outcomes (all p > 0.05, all r ≤ 0.112).

A subset of the perinatal stroke population completed motor assessments. Due to small samples within each 
stroke subtype, participants were combined into one group to maximize statistical power. Forty-nine participants 
completed the AHA (mean logit score = 61.9 ± 18.2; AIS N = 26, mean logit score = 56.1 ± 18.7; PVI N = 23, mean 
logit score = 68.4 ± 15.7). Thirty-four completed the MA (mean = 76.7 ± 20.6; AIS N = 20, mean = 68.8 ± 22.4; PVI 
N = 14, mean = 88.0 ± 10.6). Forty-nine completed the BBT where the BBTA scores (mean = 29.3 ± 16.4) were 
lower than BBTU scores (mean = 46.5 ± 15.7;  t(46) = − 4.808; p < 0.001, d = 1.07). For AIS patients, 26 patients 
completed the BBT (mean BBTA = 23.0 ± 16.6; mean BBTU = 44.0 ± 14.5), whereas 23 PVI patients completed 
the BBT (mean BBTA = 36.3 ± 13.4; mean BBTU = 49.0 ± 16.8). 93% of participants completed at least two of the 
three motor assessments.

Sensorimotor network nodal metrics between groups. Primary motor cortex (M1). Group differ-
ences among sensorimotor network metrics as well as relationships with function are portrayed in Fig. 3. Be-
tweenness centrality of TDC M1 (309 ± 120) was higher  (H(2,82) = 52.63; p < 0.001) than AIS (68 ± 65; p < 0.001), 
and PVI (62 ± 55; p = 0.003). Clustering coefficient of TDC M1 (138 ± 23) was lower  (H(2,82) = 59.59; p < 0.001) than 
AIS (266 ± 75; p < 0.001) and PVI (226 ± 33, p < 0.001). Neighbourhood complexity of TDC M1 (0.018 ± 0.009) 
was lower  (H(2,82) = 7.92; p = 0.019) than AIS (0.053 ± 0.050; p = 0.028) and PVI (0.058 ± 0.050; p = 0.020).

Primary somatosensory cortex (S1). Consistent with M1, betweenness centrality of TDC S1 (295 ± 137) was sig-
nificantly higher  (H(2,82) = 31.01; p < 0.001) compared to AIS (137 ± 110; p < 0.001) and PVI (112 ± 87; p < 0.001). 
Clustering coefficient was lower  (H(2,82) = 44.26; p < 0.001) in TDC S1 (121 ± 24) compared to both AIS (211 ± 58; 
p < 0.001) and PVI (179 ± 36; p < 0.001). Neighbourhood complexity showed no differences (p = 0.13).

Supplementary motor area (SMA). Betweenness centrality of TDC SMA (18.1 ± 17.2) was lower  (H(2,82) = 26.28; 
p < 0.001) than AIS (87.8 ± 65.5; p < 0.001) and PVI (72.1 ± 66.7; p < 0.001). No other significant differences were 
found (all p > 0.19).

Subcortical gray motor areas (thalamus, caudate, putamen, pallidum). Clustering coefficient of TDC thalamus 
(268 ± 78) was higher  (H(2,82) = 19.3; p < 0.001) than both AIS (79 ± 26; p = 0.009) and PVI (58 ± 18; p < 0.001). No 
other graph theory metrics showed group differences for the other subcortical areas (all p > 0.24).

Inferior occipital gyrus (IOG). No differences were observed between any of the groups for any metrics in the 
IOG (p = 0.42).

Motor network metrics and clinical motor function. M1 clustering coefficient was inversely related to both the 
AHA  (rs =  − 0.329, p = 0.021) and the MA  (rs =  − 0.415, p = 0.015). S1 clustering coefficient was inversely associ-
ated with both the AHA  (rs =  − 0.446, p < 0.001) and MA  (rs =  − 0.502, p = 0.003). SMA clustering coefficient was 
inversely related to both AHA  (rs =  − 0.333, p = 0.019) and MA  (rs =  − 0.359, p = 0.037). No significant relation-
ships were found between any of the graph theory metrics for subcortical gray motor areas and clinical motor 
function (all p > 0.47). There were no apparent relationships with the graph theory metrics for IOG and any 

Figure 3.  Sensorimotor network node analysis. Sensorimotor node differences between the dominant 
hemisphere of controls to the non-lesioned, intact hemisphere of both stroke groups are shown. For the 
simplicity of the diagram, both arterial and venous strokes were combined as they displayed no differences from 
each other in any of the nodes. Red circles represent the nodes where both stroke groups showed higher values 
compared to controls, yellow representing no difference, and blue representing nodes of lower values compared 
to controls. Vertical lines represent an inverse relationship between the respective graph theory metric at the 
node of interest and the AHA. Horizontal lines represent the same inverse relationship with the node, but in 
relationship to MA instead. S1 primary sensory cortex, M1 primary motor cortex, SMA supplementary motor 
area, IOG inferior occipital gyrus, AHA assisting hand assessment, MA Melbourne assessment.
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motor function assessments (all p > 0.57). There were no significant associations between motor network metrics 
and the BBT (minimum p = 0.21).

Hemispheric network metrics between groups. Betweenness centrality was higher in both 
AIS (80.3 ± 7.6, p < 0.001, d = 4.27) and PVI (80.2 ± 5.3, p < 0.001, d = 5.58) compared to TDC (54.9 ± 3.6; 
 F(2,82) = 202.8; p < 0.001; Fig.  4A). Clustering coefficient in PVI (202 ± 17) was lower  (H(2,82) = 41.61; p < 0.001; 
Fig. 4B) compared to AIS (253 ± 36; p < 0.001) and TDC (235 ± 19; p < 0.001). Hierarchical complexity was higher 
 (H(2,82) = 25.27; p < 0.001; Fig. 4C) in TDC (0.256 ± 0.120) compared to PVI (0.128 ± 0.065; p < 0.001) and AIS 

Figure 4.  Hemispheric network metrics between group comparisons. (A) Betweenness centrality was higher 
in AIS and PVI compared to TDC. (B) Clustering coefficient was higher in TDC and AIS compared to PVI. 
Hierarchical complexity, (C) average neighbourhood complexity, (D) were higher in TDC compared to AIS and 
PVI. **p < 0.001, *p < 0.01.

Figure 5.  Hemispheric graph theory metrics and clinical motor function. (A) Hemispheric clustering 
coefficient was inversely related to AHA (A) and MA (B). The average neighbourhood complexity across the 
hemisphere was also inversely related to AHA (C). AHA assisting hand assessment, MA Melbourne assessment, 
AIS arterial ischemic stroke, PVI periventricular venous infarction.
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(0.178 ± 0.102; p = 0.008). Average neighbourhood complexity was higher  (H(2,82) = 33.27; p < 0.001; Fig. 4D) in 
TDC (0.248 ± 0.097) compared to PVI (0.119 ± 0.049; p < 0.001) and AIS (0.166 ± 0.076; p = 0.003). All metrics 
for each group differed compared to the null graphs (all p < 0.001).

Hemispheric network metrics and clinical motor function. Pooled clustering coefficient was 
inversely related to both the AHA  (rs =  − 0.538; p < 0.001; Fig. 5A) and MA  (rs =  − 0.535; p < 0.001; Fig. 5B). AIS 
average clustering coefficient was inversely related to AHA  (rs = − 0.485; p = 0.008; Fig. 5A) and MA  (rs =  − 0.325; 
p = 0.033; Fig.  5B). PVI average clustering coefficient was inversely related to AHA  (rs =  − 0.305; p = 0.031; 
Fig.  5A) and MA  (rs =  − 0.504; p = 0.002; Fig.  5B). Pooled average neighbourhood complexity was inversely 
related to AHA  (rs =  − 0.314; p = 0.028; Fig. 5C). AIS average neighbourhood complexity was inversely associated 
with AHA  (rs =  − 0.301; p = 0.039; Fig. 5C), but PVI was not. Betweenness centrality and hierarchical complex-
ity showed no significant relationships with motor function for either pooled or separated analyses (minumum 
p > 0.06). There were no significant associations between hemispheric outcomes and the BBT with groups pooled 
or separated (minimum p = 0.17).

Post hoc power analysis. Statistical power was estimated as 94.6% for the AIS vs TDC group comparison 
for hemispheric clustering coefficient, using an alpha-level of 0.05, sample sizes of n = 26 and n = 27, and a rela-
tively conservative effect size of d = 1.0. Power values for additional dependent variables were similar or higher. 
Our actual effect sizes reported above were much higher than this (d =  ~ 4.5), thus we feel confident that the 
likelihood of reporting a false positive (or false negative) was low.

Discussion
Evaluating both motor-related and hemispheric nodes, we used graph theory metrics to reveal consistent mod-
erate differences in structural connectivity of the non-lesioned hemisphere in children with perinatal stroke 
compared to peers. Modest relationships with clinical motor function were found, both at the sensorimotor 
network and hemispheric levels. Using graph theory to understand clinical function is a promising tool to better 
provide insights into how connections throughout the brain can develop in the face of early unilateral injuries.

Graph-theory metrics in sensorimotor-related areas of the non-lesioned hemisphere provided functionally 
specific insight. Key sensorimotor areas of M1, S1, and SMA showed consistent differences compared to TDC, 
along with significant relations to clinical measures. Both non-lesioned M1 and S1 of stroke participants dem-
onstrated a lower betweenness centrality and a higher clustering coefficient compared to TDC. This suggests that 
these nodes may be similar to ‘leaf ’ nodes (e.g., node O in Fig. 2B), where they occupy more terminal positions 
in the network, either describing a position at the start or end of a path. We also demonstrated that the more 
connected M1 and S1 neighbors were (e.g., node G in Fig. 2B), as determined by the clustering coefficient, the 
poorer was the motor function in the group of children with perinatal stroke. Higher network structural con-
nectivity as measured here by clustering coefficient may reflect compensatory inclusion of additional functions 
in the non-lesioned hemisphere from the lesioned possibly leading to crowding, and less central nodes, resulting 
in poorer function. This suggestion could be investigated more thoroughly using motor task fMRI to localize 
specific function.

The significant relationships between M1/S1 metrics and clinical motor function speak to the importance 
of the potential neuroplastic reorganization of these areas following perinatal stroke. Preclinical studies have 
demonstrated the ability of the brain to structurally adapt to early injury, where typical contralateral projections 
from the corticospinal tract can remain bilateral from birth, allowing the non-lesioned hemisphere to potentially 
control the paretic  limb8,31. This principle has been confirmed by multiple neurophysiological methods using 
transcranial magnetic stimulation to stimulate the non-lesioned corticospinal tract, characterizing these ipsilat-
eral connections and their relevance to hand function in children with perinatal  stroke32,33. The confirmation of 
such developmental neuroplastic mechanisms supported our hypothesis of increased neighbouring connectivity 
to support motor function. That M1 of the non-lesioned hemisphere contained a higher clustering coefficient 
compared to controls may further support our hypothesis that neighbouring connectivity patterns surrounding 
this critical motor-related node are relevant to motor function.

The non-lesioned hemisphere in its entirety showed differences compared to the dominant hemisphere in 
controls across all metrics, suggesting broad developmental differences occur after perinatal stroke. These metrics, 
based on averages across all nodes in the network, provide converging evidence with our prior study investigating 
different hemispheric connectivity measures that topological outcomes differ in children with perinatal stroke 
compared to  controls5. In the non-lesioned hemisphere, betweenness centrality, a measure of how ‘central’ a node 
is to the network, appeared to be higher in stroke populations compared to controls, suggesting that nodes may 
be more centralized after stroke. As such, the non-lesioned hemisphere may contain more ‘hub-like’ topology 
with some regions having greater bearing for connecting the white-matter tracts across the brain. In TDC, the 
development of structural connectivity trends from ‘global’ to ‘local’ with activity-dependent elimination of excess 
 synapses10. However, an early insult such as perinatal stroke may reduce this normal pruning process, leading to 
higher betweenness centrality in the non-lesioned hemisphere. This finding is consistent with previously pub-
lished work revealing a more globally efficient, or highly connected, network of the non-lesioned hemisphere 
compared to the dominant hemisphere of  controls5.

Hierarchical and neighbourhood complexities were higher in controls than stroke for the entire hemisphere, 
suggesting that stroke populations may have more ordered networks. This suggests that across the network, 
regions with similar white matter structural connectivity are more likely to be similarly connected, rather than 
complexly, such as the node E in Fig. 2C where all E nodes have a degree of two and all connect to nodes of 
a degree of 3. While ordered networks may instinctively be thought to be advantageous, recent research has 
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shown that more complex neurological networks are associated with the evolution of brain development across 
species along the phylogenetic  scale34. That both stroke groups had a less complex network in the non-lesioned 
hemisphere compared to the dominant hemisphere in controls suggests a differing developmental trajectory 
following early injury to the opposite hemisphere. Whether this differing trajectory is a relative delay or arrest, 
a shift in timing, or a prolongation of development is unclear and could be resolved with longitudinal studies. 
Group differences in network complexity also suggest that more typical brain structure (as seen in TDC) may 
be associated with more complex networks. It is imperative to explore developmental trajectories in a large typi-
cally developing cohort for a more comprehensive understanding of normal topological development so that 
we can define deviations from that trajectory in perinatal stroke and other neurological diseases. Finally, while 
group differences were present in our sample for both hierarchical and neighbourhood complexities at both the 
hemispheric and nodal levels there was a lack of association with function. This suggests that the complexity 
of topology may not be a strong predictor of motor function but rather reflects how connectivity patterns may 
be altered following an early brain injury. Future studies could examine how hierarchical and neighbourhood 
complexities relate to higher-level cognitive processing to elucidate how these complexities in network structure 
are associated with complexities in cognitive processes.

Three hemispheric graph theory metrics had significant relationships with clinical motor function. Clustering 
coefficient was negatively correlated with the AHA and MA tests and average neighbourhood complexity was 
negatively associated with the AHA. Compared to the TDC group, who had higher hemispheric clustering and 
neighbourhood complexity than stroke, we would expect to have seen the inverse relationship where a higher 
clustering coefficient and neighbourhood complexity would be associated with better clinical motor function. As 
these motor function tests require very specific neurological correlates to function, it is difficult to speculate why 
we saw such negative associations but their consistent presence across multiple outcomes suggests converging 
evidence. We would also not assume that such simple relationships would explain what must be complex relation-
ships between these many factors. Perhaps the additional investigation of functional connectome topology using 
functional MRI would provide a unique perspective to the connectivity patterns revealed by the hemispheric 
clustering and neighbourhood complexity.

Interestingly, when comparing the results from the hemispheric versus nodal metrics, we observed some 
opposing findings (i.e. hemispheric clustering coefficient lower in the stroke participants compared to controls, 
but higher when investigating M1 alone). This apparent higher clustering coefficient in M1 may be due to greater 
connectivity of the surrounding neighbours of M1, suggesting potential neuroplastic compensation leading to 
control of both the paretic and non-paretic hand. In TDC populations, normal pruning of excess synapses is 
based on activity-dependent contralateral control of the body. After perinatal stroke, activity-dependent pruning 
may result in bilateral control of the extremities in M1 of the non-lesioned hemisphere. Our recent task-based 
functional MRI study potentially confirms this hypothesis, where control of the ipsilesional hand activated areas 
were found to be remote from where M1 typically is  located35.

Another possibility may relate to the relative maturation of different systems at the time of injury; the motor 
system being partially developed while most other major networks are yet to be activated. This discrepancy might 
explain these contrasting metrics between the motor network as compared to the entire hemisphere. Also, as the 
hemispheric metric takes an average of all of the nodes of the hemisphere, it may be less functionally-specific 
compared to the nodal assessment of M1, which would presumably have a more defined relationship with motor 
function. This also adds an argument for the importance of how hemispheric results may obscure node- or 
network-specific outcomes and how paramount it is to describe both hemispheric and nodal outcomes. We also 
observed differential outcomes in hemispheric clustering coefficient according to stroke type where AIS had 
higher clustering and PVI had lower clustering compared to TDC. While lesions in AIS patients may be more 
heterogenous compared to PVI, which only involve periventricular areas, structural connectivity reorganization 
in children with AIS may involve different networks and in turn lead to increased clustering between networks. 
Whether these are attributable to differences in the size, location, timing of injury, or some combination of fac-
tors that may distinguish AIS from PVI is unknown.

We did not see any relationships between lesion size and any graph theory metric. Since we only investigated 
the non-lesioned hemisphere, perhaps lesion size does not influence network topological patterns in a direct 
way. Similar to our previous findings that thalamic volume following perinatal stroke was not related to lesion 
size, it is potentially the lesion location rather than lesion size that may more directly affect motor  function6. 
We also did not see any associations between the BBT and nodal or hemispheric graph theory metrics. This 
apparent lack of association may be because the BBT is a simpler, single-task unimanual motor assessment in 
contrast to the AHA and MA which are larger test batteries composed of multiple complex tasks. Possibly, more 
complex bilateral tasks tap multiple areas of the wider motor network and differences are more readily detectible 
via graph theory metrics manifesting as functional correlations compared to simple unimanual tasks such as 
BBT. Such findings support reconsideration of how commonly used but simple factors may have limited utility 
in predictive models of perinatal stroke outcome. Another example may be sex where males are well known to 
have a higher prevalence for NAIS (Dunbar, 2020) but we observed no sex-specific effects on network outcomes 
in the nonlesioned hemisphere.

Surprisingly, we did not see any relationships of motor function with subcortical gray matter nodes. Given the 
central role of the basal ganglia and thalamus in motor circuitry and the close relationship with outcomes after 
 stroke13, this finding is somewhat unexpected and the role of these structures in the non-lesioned hemisphere 
networks remains poorly understood. Our anatomically constrained tractography methods were fairly stringent, 
thus some reconstructed fibres may have been truncated when passing through narrow subcortical areas. Fur-
ther, lower signal quality in diffusion MRI near the inferior portions of the brain may have caused subcortical 
areas to have lower FOD amplitudes, thus terminating tractography streamlines. Particularly surprisingly was 
that we found no difference or relationship with motor function when examining the structural connectivity 
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of the non-lesioned thalamus. Previous volumetric studies have shown that the non-lesioned thalamus may be 
larger in size compared to controls and that the degree of size difference was associated with clinical  disability6. 
The thalamus is a highly complex and connected structure and more in-depth investigation potentially using 
tractography to parcellate the thalamus into functionally-specific nuclei may provide further insight.

While there are obvious differences in measures of structural and functional connectivity, the overarching 
theme that connectivity may be associated with function is shared. We have consistently found in this perinatal 
stroke population, altered functional and structural connectivity in sensorimotor networks of both hemispheres 
(and between hemispheres) with many metrics showing strong associations with sensorimotor  function36–40. The 
current findings that complex differences in sensorimotor network topology (via graph theory metrics) are also 
associated with function add additional evidence especially given that findings appear to be specific to the same 
sensorimotor network nodes as in prior studies. How these stories all come together is an ongoing avenue for 
future endeavours that multiple imaging modalities and multiple levels of analysis (i.e., measurement of “direct” 
functional and structural connectivity versus higher brain/hemispheric-level network topologies) will ideally 
help with, but at the present time, is unclear. The finding that many such metrics are clinically relevant suggests it 
is important to pursue if attempts to improve function in kids with hemiparetic cerebral palsy are to be realized.

Our study has limitations. The sample we chose included only children with perinatal stroke who could 
receive an MRI and had some voluntary hand movement, excluding those with the most severe disabilities (i.e., 
MACS score of 5). Our population was between the ages of 6–19 years to support adherence with scanning pro-
tocols and outcome measures, but we may be missing key neuroplastic developmental stages occurring earlier 
(and we did not observe relationships between any metric and age). We were not able to include the cerebellum, 
a key structure in the motor network. The diffusion MRI acquisition did not have a large enough field of view to 
include both M1 and the cerebellum in a portion of our study (~ 30%). The motor function analysis could not 
be stratified into different subtypes of stroke due to the sample size. The motor assessments used in the current 
study only investigate upper extremity function and inclusion of measures of lower extremity function as well 
as other domains such as language, cognition, and more may have been additionally informative. Future studies 
should collect functional assessments of all children to improve the power of the study, including assessments 
that are appropriate for testing function in both controls and those with hemiparesis for direct comparison. 
Comorbid diagnoses of epilepsy and attention deficit hyperactivity disorder occur in perinatal stroke, but we did 
not include these as covariates since this information was not collected. We do note that performance on motor 
function testing may have been affected by the presence of these comorbidities and the medication used to treat 
them. Finally, we only looked at very specific graph metrics while many others may be relevant or insightful. 
Instead, we attempted to ‘capture’ certain aspects of the network through these metrics such as how central a 
node is to the network, the connectivity of neighbours, and how complex connections are across the network.

Conclusion
Graph theory may be a useful tool in understanding the connectivity of the non-lesioned hemisphere in children 
with perinatal stroke. The structural connectivity of key nodes in the sensorimotor network of the nonlesioned 
hemisphere is altered after perinatal stroke and related to clinical function. Nodal analysis of such specific net-
works adds to global evaluations of structural connectivity in the non-lesioned hemisphere.

Data availability
All neuroimaging data in the present study will be deidentified and made available to qualified researchers upon 
a reasonable request. 
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