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Abstract

Purpose: To test if a RapidPlan DVH estimation model and its training plans can be

improved interactively through a closed‐loop evolution process.

Methods and materials: Eighty‐one manual plans (P0) that were used to configure

an initial rectal RapidPlan model (M0) were reoptimized using M0 (closed‐loop), yield-
ing 81 P1 plans. The 75 improved P1 (P1+) and the remaining 6 P0 were used to con-

figure model M1. The 81 training plans were reoptimized again using M1, producing

23 P2 plans that were superior to both their P0 and P1 forms (P2+). Hence, the

knowledge base of model M2 composed of 6 P0, 52 P1+, and 23 P2+. Models were

tested dosimetrically on 30 VMAT validation cases (Pv) that were not used for train-

ing, yielding Pv(M0), Pv(M1), and Pv(M2) respectively. The 30 Pv were also optimized

by M2_new as trained by the library of M2 and 30 Pv(M0).

Results: Based on comparable target dose coverage, the first closed‐loop reopti-

mization significantly (P < 0.01) reduced the 81 training plans’ mean dose to

femoral head, urinary bladder, and small bowel by 2.65 Gy/15.63%, 2.06 Gy/8.11%,

and 1.47 Gy/6.31% respectively, which were further reduced significantly

(P < 0.01) in the second closed‐loop reoptimization by 0.04 Gy/0.28%, 0.18 Gy/

0.77%, 0.22 Gy/1.01% respectively. However, open‐loop VMAT validations dis-

played more complex and intertwined plan quality changes: mean dose to urinary

bladder and small bowel decreased monotonically using M1 (by 0.34 Gy/1.47%,

0.25 Gy/1.13%) and M2 (by 0.36 Gy/1.56%, 0.30 Gy/1.36%) than using M0. How-

ever, mean dose to femoral head increased by 0.81 Gy/6.64% (M1) and 0.91 Gy/

7.46% (M2) than using M0. The overfitting problem was relieved by applying model

M2_new.

Conclusions: The RapidPlan model and its constituent plans can improve each other inter-

actively through a closed‐loop evolution process. Incorporating new patients into the origi-

nal training library can improve the RapidPlan model and the upcoming plans interactively.
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1 | INTRODUCTION

Knowledge‐based radiotherapy treatment planning is deemed to

reduce the inter‐planner varieties of plan quality1–13 and expedite

the planning process.14–17The RapidPlan module in Eclipse treatment

planning system of version 13.5 or later (Varian Medical Systems,

Palo Alto, CA) has commercialized the knowledge‐based solution18,19

and displayed good compatibility across patient orientations, treat-

ment techniques, and systems.20,21

Well‐trained RapidPlan models have outperformed conventional

trial and error‐based manual planning by reducing excess organs‐at‐
risk (OAR) dose with greater consistency.17,20,22–30 Should the model

performance be highly dependent on the library volume31 and aver-

age quality of the training plans,17,32 incorporating the model‐
improved constituent training plans into the model (closed‐loop)25

may potentially evolve the model as a cycle of interactive improve-

ment. There has been attempts to iteratively improve KDE (kernel

density estimation)‐based DVH prediction model. However, com-

pared with RapidPlan, the KDE algorithm did not consider division

between in‐field and out‐of‐field regions, and the generated point

objectives were tested on limited sample size based on Pinnacle

(Philips Radiation Oncology Systems, Fitchburg, WI),33 whose opti-

mization algorithm, progressive optimization algorithm (POA) is dif-

ferent from Eclipse's Photon Optimizer (PO). This study aims to

evaluate the performance of the closed‐loop model evolution on rec-

tal cancer patients in the environment of Eclipse RapidPlan V13.6

knowledge‐based treatment planning system.

2 | MATERIALS AND METHODS

As a summary, Fig. 1 displays a schematic workflow explaining the

evolution process and naming abbreviations.

2.A | Initial model configuration

The planning and modeling details can be found in our previous pub-

lications.17,20,34 In summary, 81 clinical VMAT plans (Pc) for preoper-

ative rectal cancer patients were refined manually by experts (best‐
effort manual plans, P0) to guarantee the initial plan quality and push

a stricter evaluation criteria on the closed‐loop method. Plans were

optimized to deliver 50.6 Gy and 41.8 Gy to 95% PTVboost and 95%

PTV respectively in 22 fractions.35 The extracted structure sets, pre-

scriptions, and field geometries of P0 were regressed as the initial

DVH estimation model (M0) and statistically verified using Varian

Model Analytics tool.36 Model‐generated optimization objectives and

priorities were assisted by additional manual constraints to make the

model comply with our clinical protocols. The validations on 100+

patients have demonstrated that M0‐generated personalized objec-

tives improved plan quality and consistency significantly compared

to the clinical plans.17,20

2.B | Model evolution

As shown in Fig. 1, the 81 constituent P0 of M0 were reoptimized

using M0 (closed‐loop), yielding training sets of first iteration (P1). To

simplify the scoring of plan quality and avoid observer‐dependent
evaluation preferences especially when the DVH lines have cross-

overs, three explicit endpoints: the mean dose to the femoral head,

urinary bladder, and small bowel (Dmean_FH, Dmean_UB, and Dmean_SB)

were compared33. Plans with reduced Dmean_FH, Dmean_UB, and

Dmean_SB were defined as improved plans (P1+). The first closed‐loop
reoptimization using M0 produced 75 P1+, which composed M1 in

addition to 6 P0 where the original plans were considered better.

Second closed‐loop reoptimization using M1 derived 23 P2+ of better

quality than both their P0 and P1 forms. The new model of each iter-

ation was configured with best plans from all previous optimizations,

hence M2 included 6 P0, 52 P1+, and 23 P2+. To be cost‐effective,
iterations were terminated when no or clinically negligible improve-

ment could be achieved anymore.

2.C | Model assessment

To monitor the impact of modifying the knowledge base, open‐loop
validation was performed on other 30 clinical VMAT plans (Pv) that

were not included in any model. All plans were renormalized to the

target prescriptions before comparing the OAR exposure. Specifi-

cally, open‐loop validation on 30 Pv were reoptimized using M0, M1,

and M2, producing Pv(M0), Pv(M1), and Pv(M2) respectively. The fol-

lowing metrics were evaluated: (a) homogeneity index

(HI ¼ ðD2% �D98%Þ=D50%), where Dx% indicates the dose to x% of

the volume; (b) conformity index (CI ¼ V100%Rx=Vtarget), where

V100%Rx and Vtarget indicate the volumes receiving at least 100% of

the prescribed dose and the target volumes respectively; (c) the

small bowel volumes receiving at least 35, 40, and 45 Gy (V35Gy_SB,

V40Gy_SB, V45Gy_SB); (d) the femoral head and urinary bladder vol-

umes receiving at least 40 and 45 Gy (V40Gy_FH, V40Gy_UB, V45Gy_FH,

and V45Gy_UB); (e) The maximum and mean dose to the small bowel,

femoral head, and urinary bladder (Dmax_SB, Dmax_FH, Dmax_UB;

Dmean_SB, Dmean_FH, and Dmean_UB). (f) Using an in‐house MATLAB

code, mean DVHs of 30 Pv and their reoptimized forms were calcu-

lated based on exported DVHs in tabular format, and were plotted

for comparison using SigmaPlot software (v. 10.0, Systat, San

Jose, CA).

To address the over‐fitting problem, the reoptimized 30 VMAT

validation cases using M0 (Pv(M0)) were added to the training library
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of M2, yielding model M2_new. The performance of M2_new was

tested on the 30 validation cases thereafter.

2.D | Statistical methods

Using SPSS (v21.0, IBM Analytics, Armonk, NY), normality was

tested using Shapiro–Wilk method. Normal and abnormal data were

analyzed by paired samples t‐test and Wilcoxon signed‐rank test

respectively (two‐tailed, significant level 0.05).

3 | RESULTS

3.A | Closed‐loop reoptimizations

After replacing the training library with 75 P1+ during the first

closed‐loop refinement, the 81 plans used to configure model M1

were of comparable HI and CI (mean difference < 0.03) relative to

the library of M0, but of consistently lower mean dose to all OARs.

Dmean_FH, Dmean_UB, and Dmean_SB in M1 library were significantly

reduced by 2.65 Gy (15.63%), 2.06 Gy (8.11%), and 1.47 Gy (6.31%)

respectively (all P < 0.01), relative to M0 library.

After updating the library of model M2 with 23 P2+ that were

superior to both P0 and P1 forms after the second closed‐loop reop-

timization, the changes of HI and CI were negligible (mean differ-

ence < 0.03), yet the Dmean_FH, Dmean_UB, and Dmean_SB of 81 plans

were further significantly reduced by 0.04 Gy (0.28%), 0.18 Gy

(0.77%), 0.22 Gy (1.01%) on average respectively (all P < 0.01), rela-

tive to M1 library.

More details are shown in Tables 1 and 2.

3.B | Validations

Based on 30 VMAT validation cases, knowledge‐based reoptimiza-

tions using various models yielded comparable target coverage

(mean difference of HI and CI < 0.01), but the impact on the

OARs were more complex and intertwined: relative to the results

of using M0, monotonically increased magnitudes of mean dose

reduction to two OARs were observed using the refined models

M1 and M2, by 0.34 Gy (1.47%) and 0.36 Gy (1.56%) on average

for urinary bladder, and by 0.25 Gy (1.13%) and 0.30 Gy (1.36%)

on average for small bowel. However, M1 and M2 increased the

mean dose to femoral head than M0, by 0.81 Gy (6.64%) and

F I G . 1 . A schematic workflow and naming abbreviations of this work.
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0.91 Gy (7.46%) on average. More details are shown in Tables 3

and 4.

Figure 2 plots the mean DVHs of 30 VMAT Pv that were reopti-

mized using models M0, M1, and M2 respectively, as represented by the

solid, dashed, and dotted lines. The largely overlapping DVHs of Pv(M1)

and Pv(M2) were considered as indicators of terminating further

iterations of closed‐loop model refinement. Figure 3 compares the

mean DVHs of 30 Pv that were reoptimized using models M0, M2, and

M2_new respectively, as represented by the solid, dash, and dash‐dotted
lines.

TAB L E 1 Dosimetric changes of 81 training plans after
incorporating improved plans from the closed‐loop reoptimization:
targets.

HI CI

PTVboost PTV PTVboost PTV

M0

Mean ± SD 0.06 ± 0.01 0.26 ± 0.01 1.06 ± 0.07 1.02 ± 0.02

95% CI 0.06–0.06 0.26–0.27 1.05–1.08 1.02–1.03

M1

Mean ± SD 0.05 ± 0.01 0.26 ± 0.01 1.09 ± 0.08 1.03 ± 0.02

95% CI 0.05–0.05 0.26–0.27 1.07–1.11 1.02–1.03

M2

Mean ± SD 0.05 ± 0.01 0.26 ± 0.01 1.09 ± 0.08 1.03 ± 0.02

95% CI 0.05–0.05 0.26–0.27 1.07–1.10 1.02–1.03

HI, homogeneity index; CI, conformity index; PTV, planning target vol-

ume; Mx, model after x round of closed‐loop refinement; SD, standard

deviation; 95% CI, 95% confidence intervals.

TAB L E 2 Dosimetric changes of 81 training plans after
incorporating improved plans from the closed‐loop reoptimization:
organs‐at‐risk.

M0 M1 M2

Femoral head

V40Gy (%) 0.03 0.01 0.01

V45Gy (%) 0.00 0.00 0.00

Dmax (Gy) 39.76 38.71 38.88

Dmean (Gy) 16.95 14.30 14.26

P <0.01 <0.01

Urinary bladder

V40Gy (%) 16.22 14.46 14.43

V45Gy (%) 3.28 4.20 4.15

Dmax (Gy) 49.24 49.86 49.90

Dmean (Gy) 25.40 23.34 23.16

P <0.01 <0.01

Small bowel

V35Gy (%) 3.89 4.75 4.55

V40Gy (%) 0.14 0.34 0.34

V45Gy (%) 0.00 0.00 0.00

Dmax (Gy) 39.85 41.56 41.46

Dmean (Gy) 23.29 21.82 21.60

P <0.01 <0.01

VxGy, volumes receiving at least x Gy; Dmean, mean dose; Dmax, maximum

dose; P values are for the comparisons of Dmean; Mx, model after x round

of closed‐loop refinement.

TAB L E 3 The open‐loop validation results of various models on 30
additional patients: targets.

HI CI

PTVboost PTV PTVboost PTV

Pv(M0)

Mean ± SD 0.05 ± 0.01 0.27 ± 0.01 1.09 ± 0.05 1.05 ± 0.03

95% CI 0.05–0.05 0.26–0.27 1.07–1.11 1.03–1.06

Pv(M1)

Mean ± SD 0.05 ± 0.01 0.26 ± 0.01 1.09 ± 0.06 1.04 ± 0.03

95% CI 0.05–0.05 0.26–0.27 1.07–1.11 1.03–1.05

Pv(M2)

Mean ± SD 0.05 ± 0.01 0.27 ± 0.01 1.09 ± 0.06 1.04 ± 0.03

95% CI 0.05–0.05 0.26–0.27 1.07–1.11 1.03–1.05

HI, homogeneity index; CI, conformity index; PTV, planning target vol-

ume; Pv(Mx), validation plans reoptimized using model Mx; Mx, model

after x round of closed‐loop refinement; SD, standard deviation; 95% CI,

95% confidence intervals.

TAB L E 4 The open‐loop validation results of various models on 30
additional patients: organs‐at‐risk.

Pv(M0) Pv(M1) Pv(M2)

Femoral head

V40Gy (%) 0.00 0.00 0.00

V45Gy (%) 0.00 0.00 0.00

Dmax (Gy) 37.42 38.29 38.07

Dmean (Gy) 12.20 13.01 13.11

P <0.01 0.05

Urinary bladder

V40Gy (%) 12.94 12.87 12.85

V45Gy (%) 2.84 2.83 2.78

Dmax (Gy) 49.17 49.16 49.00

Dmean (Gy) 23.08 22.74 22.72

P <0.01 0.66

Small bowel

V35Gy (%) 6.26 5.92 6.14

V40Gy (%) 0.83 0.82 0.83

V45Gy (%) 0.15 0.02 0.03

Dmax (Gy) 42.51 42.51 42.75

Dmean (Gy) 22.10 21.85 21.80

P 0.39*

Pv(Mx), validation plans reoptimized using model Mx; Mx, model after x

round of closed‐loop refinement; VxGy, volumes receiving at least x Gy;

Dmax, maximum dose; Dmean, mean dose; P values are for the compar-

isons of Dmean.

*Friedman test.

494 | WANG ET AL.



4 | DISCUSSION

In the first closed‐loop refinement, most (75/81, 92.59%) of the best‐
effort manual plans (P0) that were used to train the initial RapidPlan

model (M0) can be further improved by closed‐loop knowledge‐based
reoptimization using M0‐generated objectives. These results echoed

the superiority of knowledge‐based solution over the conventional

trial‐and‐error manual planning, in line with previous publica-

tions.17,20,22–27 It suggested that knowledge‐ and geometry‐based
dosimetric predictions can help avoid selecting suboptimal or conflict

optimization constraints as manual limitations.

For 23 out of 81 training sets, excessive dose to all OARs were

still deductable in the second closed‐loop reoptimization. However,

the magnitudes of improvement were very marginal, which were

treated as an indicator of iteration termination. It suggested exhaust-

ing potential of model evolution providing the anatomy and selected

beam geometry.

To extend the geometric diversity and representativeness of the

model, it is clinically desirable to enlarge the training set library by add-

ing new appropriate cases. This work suggests that closed‐loop reopti-

mization of the new candidate is beneficial before the incorporation,

to avoid introducing suboptimal plans into the knowledge base. Our

solutions of updating the training library with improved plans may bet-

ter preserve the anatomical variety, which distinguished our work from

Li's work where poor plans were filtered.37 To avoid unacceptable

geometric outliers, statistical verification assisted by Model Analytics38

can be helpful, where plans with Z‐scores > 3.5 were reviewed case‐
by‐case. By adding the validation plans into the improved model

library, the geometric representativeness were further improved.

The largely overlapping target DVHs in Fig. 2 echoed the compa-

rable target numeric in Table 3, providing relatively fair basis for the

comparison of the OAR dose in the open‐loop validation. However,

incorporating the improved plans into the knowledge pool of M1 and

M2 has made marginal and intertwined dosimetric changes in the

open‐loop validation than using M0: two OARs were better spared

using the models trained with better plans, at cost of excessive dose

to one OAR though.

Three possible explanations could be: (a) RapidPlan generates line

objectives under the lower bound of the estimation ranges (predicted

DVH‐1 standard error), which already makes the optimization fairly

challenging. The potential of dosimetric improvement based on the

same patient anatomy and beam geometry may have been exhausted

during the first round of knowledge‐based planning, making it less sen-

sitive to the even lower estimation and objectives generated by the

refined models. (b) A potential limitation of current RapidPlan algorithm

may also be ascribed to: achievable DVH of each OAR was modeled

and estimated independently, but OARs competed with each other

hence optimal results can hardly be achieved simultaneously. Additional

feedbacks such as patient‐specific adjustment of objective priorities

might be beneficial to balance the complexity. Similar tradeoffs and

overfitting problems were reported by Yuan, et al.19: although the

training set was good, prediction errors between different OARs were

still observed in some validation cases. The model generalization capa-

bility might be further improved by considering the OARs collectively,

which is worthy of future studies. (c) Table 5 compares the anatomic

statistics of the VMAT patients used for closed‐ and open‐loop itera-

tions: although the ranges were largely overlapping, disparities were

unavoidable because of the patient diversity. The similar patient anat-

omy and field geometry may partially explain the prevailed performance

of closed‐loop than the open‐loop iterations. That is why it is clinically

desirable to enlarge the model library continuously, and our closed‐loop
evolution method can better preserve the training set volume.

The overfitting problem of Fig. 2 can be relieved by Model

M2_new. As shown in Fig. 3, the reoptimized Pv using M2_new spared

F I G . 2 . The mean DVH plots of 30
VMAT validation plans using various model
M0, M1 and M2.
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femoral head better at comparable if not lower dose to the other

two OARs than the results of M0. This might be ascribed to the

improved geometric similarities of M2_new with Pv, which can be

applied clinically to further improve knowledge‐based planning. Con-

sidering the effects of overfitting reduction, similar methodology of

incorporating optimized plans into model training library and then

reoptimizing the plan is recommended in future clinical practice.

As a preliminary feasibility study, this work is limited by the sin-

gle treatment site and single treatment technique. Further work is

anticipated in the future to validate the extensibility of the method

in a clinical environment. In addition, the extra workload of refining

the training library with new patients can be partially conducted by

a scripting program, which will be developed in the future.

5 | CONCLUSIONS

Based on a rectal RapidPlan model, this study demonstrated that

the constituent plans used to develop the DVH estimation model

can be interactively improved by the model in a closed‐loop

TAB L E 5 The anatomic statistics of the 81 model cases (closed‐loop) and 30 validation cases (open‐loop).

81 model cases 30 validation cases

Min. Max. Mean Min. Max. Mean

Total volume (cm3)

PTVboost 53.31 618.09 179.54 65.99 474.06 170.69

PTV 844.12 1675.05 1207.99 776.29 1550.59 1090.8

Femoral head 95.82 334.91 199.88 108.43 346.00 241.89

Urinary bladder 55.19 744.34 283.19 63.88 693.7 250.41

Small bowel 60.27 1152.52 457.90 120.69 1025.27 517.89

Overlap with targets (cm3)

Femoral head 0 0.05 0 0 0 0

Urinary bladder 0.29 161.44 38.18 0.11 107.48 32.71

Small bowel 0 0 0 0 0 0

Overlap with targets (%)

Femoral head 0 0.02 0 0 0 0

Urinary bladder 0.21 39.01 13.70 0.17 51.06 12.40

Small bowel 0 0 0 0 0 0

Min., minimum; Max., maximum.

F I G . 3 . The mean DVH plots of 30 VMAT validation plans optimized using model M0, M2, and M2_new.
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reoptimization. Incorporating new patients into the original training

library can improve the RapidPlan model and the upcoming plans

interactively.

ACKNOWLEDGMENT

This work was jointly supported by Beijing Natural Science Founda-

tion (7172048), National Natural Science Foundation of China

(11505012), Capital's Funds for Health Improvement and Research

(2018‐4‐1027), the Fund for Fostering Young Scholars of Peking

University Health Science Center (BMU2017PY028 and

BMU2017PY003), Foundation of Science and Technology Depart-

ment of Sichuan Province (2018HH0099), and Beijing Natural Science

Foundation (1174016 and 1184014). The authors thank all physicists

and dosimetrists at Beijing Cancer Hospital for their assistance. This

work was partially presented at AAPM 2017 Annual Meeting.

CONFLICT OF INTEREST

This work was partially supported by Varian Research Collaboration

Grant. Dr. Yibao Zhang and Mr. Hao Wu received speaker's honorar-

ium from Varian Medical Systems.

REFERENCES

1. Chanyavanich V, Das SK, Lee WR, et al. Knowledge‐based IMRT

treatment planning for prostate cancer. Med Phys. 2011;38:2515–
2522.

2. Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for pros-

tate adaptive IMRT based on machine learning. Med Phys. 2011;

38:719–726.
3. Wu B, McNutt T, Zahurak M, et al. Fully automated simultaneous

integrated boosted‐intensity modulated radiation therapy treatment

planning is feasible for head‐and‐neck cancer: a prospective clinical

study. Int J Radiat Oncol Biol Phys. 2012;84:e647–e653.
4. Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ‐at‐risk

in head and neck IMRT planning: an intertechnique and interinstitu-

tional study. Med Phys. 2013;40:121704.

5. Wu B, Pang D, Simari P, et al. Using overlap volume histogram and

IMRT plan data to guide and automate VMAT planning: a head‐and
neck case study. Med Phys. 2013;40:021714.

6. Yang Y, Ford EC, Wu B, et al. An overlap‐volume‐histogram based

method for rectal dose prediction and automated treatment planning

in the external beam prostate radiotherapy following hydrogel injec-

tion. Med Phys. 2013;40:011709.

7. Good D, Lo J, Lee WR, et al. A knowledge‐based approach to improv-

ing and homogenizing intensity modulated radiation therapy planning

quality among treatment centers: an example application to prostate

cancer planning. Int J Radiat Oncol Biol Phys. 2013;87:176–181.
8. Berry SL, Ma R, Boczkowski A, et al. Evaluating inter‐campus plan

consistency using a knowledge based planning model. Radiother

Oncol. 2016;120:349–355.
9. Fogliata A, Nicolini G, Clivio A, et al. A broad scope knowledge

based model for optimization of VMAT in esophageal cancer: valida-

tion and assessment of plan quality among different treatment cen-

ters. Radiat Oncol. 2015;10:220.

10. Tol JP, Dahele M, Delaney AR, et al. Can knowledge‐based DVH

predictions be used for automated, individualized quality assurance

of radiotherapy treatment plans? Radiat Oncol. 2015;10:234.

11. Schubert C, Waletzko O, Weiss C, et al. Intercenter validation of a

knowledge based model for automated planning of volumetric mod-

ulated arc therapy for prostate cancer. The experience of the Ger-

man RapidPlan Consortium. PLoS ONE. 2017;12:e0178034.

12. Wang J, Hu W, Yang Z, et al. Is it possible for knowledge‐based
planning to improve intensity modulated radiation therapy plan qual-

ity for planners with different planning experiences in left‐sided
breast cancer patients? Radiat Oncol. 2017;12:85.

13. Wu B, Kusters M, Kunze-Busch M, et al. Cross‐institutional knowl-

edge‐based planning (KBP) implementation and its performance

comparison to Auto‐Planning Engine (APE). Radiother Oncol.

2017;123:57–62.
14. Chang ATY, Hung AWM, Cheung FWK, et al. Comparison of plan-

ning quality and efficiency between conventional and knowledge‐
based algorithms in nasopharyngeal cancer patients using intensity

modulated radiation therapy. Int J Radiat Oncol Biol Phys.

2016;95:981–990.
15. Zarepisheh M, Long T, Li N, et al. A DVH‐guided IMRT optimization

algorithm for automatic treatment planning and adaptive radiother-

apy replanning. Med Phys. 2014;41:061711.

16. Moore K, Scott Brame R, Low D, Mutic S. Experience based quality

control of clinical intensity modulated radiotherapy planning. Int J

Radiat Oncol Biol Phys. 2011;81:545–551.
17. Wu H, Jiang F, Yue H, Li S, Zhang Y. A dosimetric evaluation of

knowledge‐based VMAT planning with simultaneous integrated

boosting for rectal cancer patients. J Appl Clin Med Phys. 2016;

17:78–85.
18. Appenzoller L, Michalski J, Thorstad W, Mutic S, Moore K. Predict-

ing dose‐volume histograms for organs‐at‐risk in IMRT planning. Med

Phys. 2012;39:7446–7461.
19. Yuan L, Ge Y, Lee WR, et al. Quantitative analysis of the factors

which affect the interpatient organ‐at‐risk dose sparing variation in

IMRT plans. Med Phys. 2012;39:6868–6878.
20. Wu H, Jiang F, Yue H, Zhang H, Wang K, Zhang Y. Applying a

RapidPlan model trained on a technique and orientation to another:

a feasibility and dosimetric evaluation. Radiat Oncol. 2016;11:108.

21. Cagni E, Botti A, Micera R, et al. Knowledge‐based treatment plan-

ning: an inter‐technique and inter‐system feasibility study for pros-

tate cancer. Phys Med. 2017;36:38–45.
22. Fogliata A, Belosi F, Clivio A, et al. On the pre‐clinical validation of a

commercial model‐based optimisation engine: application to volu-

metric modulated arc therapy for patients with lung or prostate can-

cer. Radiother Oncol. 2014;113:385–391.
23. Nwankwo O, Mekdash H, Sihono DSK, et al. Knowledge‐based radi-

ation therapy (KBRT) treatment planning versus planning by experts:

validation of a KBRT algorithm for prostate cancer treatment plan-

ning. Radiat Oncol. 2015;10:111.

24. Tol JP, Delaney AR, Dahele M, et al. Evaluation of a knowledge‐
based planning solution for head and neck cancer. Int J Radiat Oncol

Biol Phys. 2015;91:612–620.
25. Fogliata A, Wang PM, Belosi F, et al. Assessment of a model based

optimization engine for volumetric modulated arc therapy for

patients with advanced hepatocellular cancer. Radiat Oncol.

2014;9:236.

26. Hussein M, South CP, Barry MA, et al. Clinical validation and bench-

marking of knowledge‐based IMRT and VMAT treatment planning in

pelvic anatomy. Radiother Oncol. 2016;120:473–479. [In press,

https://doi.org/10.1016/j.radonc.2016.06.022].

27. Fogliata A, Nicolini G, Bourgier C, et al. Performance of a knowl-

edge‐based model for optimization of volumetric modulated arc

therapy plans for single and bilateral breast irradiation. PLoS ONE.

2015;10:e0145137.

28. Chatterjee A, Serban M, Abdulkarim B, et al. Performance of knowl-

edge‐based radiation therapy planning for the glioblastoma disease

WANG ET AL. | 497

https://doi.org/10.1016/j.radonc.2016.06.022


site. Int J Radiat Oncol Biol Phys. 2017;99:1021–1028. [In press,

https://doi.org/10.1016/j.ijrobp.2017.07.012].

29. Kubo K, Monzen H, Ishii K, et al. Dosimetric comparison of Rapid-

Plan and manually optimized plans in volumetric modulated arc ther-

apy for prostate cancer. Phys Med. 2017;44:199–204. [In press,

https://doi.org/10.1016/j.ejmp.2017.06.026].

30. Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck

model: the objectives and possible clinical benefit. Radiat Oncol.

2017;12:73.

31. Boutilier JJ, Craig T, Sharpe MB, et al. Sample size requirements for

knowledge‐based treatment planning. Med Phys. 2016;43:1212–
1221.

32. Shiraishi S, Moore KL. Knowledge‐based prediction of three‐dimen-

sional dose distributions for external beam radiotherapy. Med Phys.

2016;43:378–387.
33. Fan J, Wang J, Zhang Z, et al. Iterative dataset optimization in auto-

mated planning: implementation for breast and rectal cancer radio-

therapy. Med Phys. 2017;44:2515–2531.

34. Jiang F, Wu H, Yue H, et al. Photon Optimizer (PO) prevails over

Progressive Resolution Optimizer (PRO) for VMAT planning with

or without knowledge‐based solution. J Appl Clin Med Phys.

2017;18:9.

35. Li J, Ji J, Cai Y, et al. Preoperative concomitant boost intensity‐
modulated radiotherapy with oral capecitabine in locally advanced

mid‐low rectal cancer: a phase II trial. Radiother Oncol.

2012;102:4–9.
36. Delaney AR, Tol JP, Dahele M, et al. Effect of dosimetric outliers on

the performance of a commercial knowledge‐based planning solu-

tion. Int J Radiat Oncol Biol Phys. 2016;94:469–477.
37. Li N, Carmona R, Sirak I, et al. Highly efficient training, refinement,

and validation of a knowledge‐based planning quality‐control system
for radiation therapy clinical trials. Int J Radiat Oncol Biol Phys.

2016;97:164–172.
38. Wang M, Li S, Yue H, et al. Modeling for knowledge‐based plan

assisted with model analytics. Chin J Med Phys. 2017;34:870–
873.

498 | WANG ET AL.

https://doi.org/10.1016/j.ijrobp.2017.07.012
https://doi.org/10.1016/j.ejmp.2017.06.026

