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ABSTRACT

Bacterial communities are often exposed to temporal variations in resource
availability, which exceed bacterial generation times and thereby affect bacterial
coexistence. Bacterial population dynamics are also shaped by bacteriophages, which
are a main cause of bacterial mortality. Several strategies are proposed in the
literature to describe infections by phages, such as “Killing the Winner”, “Piggyback
the loser” (PtL) or “Piggyback the Winner” (PtW). The two temperate phage
strategies PtL and PtW are defined by a change from lytic to lysogenic infection when
the host density changes, from high to low or from low to high, respectively. To date,
the occurrence of different phage strategies and their response to environmental
variability is poorly understood. In our study, we developed a microbial trophic
network model using ordinary differential equations (ODEs) and performed

‘in silico’ experiments. To model the switch from the lysogenic to the lytic cycle, we
modified the lysis rate of infected bacteria and their growth was turned on or off
using a density-dependent switching point. We addressed whether and how the
different phage strategies facilitate bacteria coexistence competing for limiting
resources. We also studied the impact of a fluctuating resource inflow to evaluate the
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INTRODUCTION

Theory in bacteria population dynamics

Bacteria are the most abundant and diverse organisms on earth (Whitman, Coleman ¢
Wiebe, 1998; Godfray, Knapp ¢ Oren, 2004). They occur in all habitats from the
atmosphere down to the deep oceanic subsurface (Flemming ¢~ Wuertz, 2019) and are
adapted to a variety of sometimes extreme conditions of temperature, pH, pollution, or
salinity, including substantial temporal fluctuations in these parameters. As one of the
main drivers of nutrient cycles, they are of great biological importance (Lladé, Lopez-
Mondéjar ¢ Baldrian, 2017). In natural food webs, bacteria are basal species that
establish an important connection between inorganic resources or dead organic matter and
higher trophic organisms (Steffan et al., 2017; Steffan & Dharampal, 2019). However,
the ever present question of “Why are there so many bacteria species and how can they
coexist despite competing for a limited number of resources?” remains unanswered.
This situation is similar to the “paradox of the plankton”: the observed diversity of
plankton species is very high despite the fact that the amount of resources restricts the
number of competitors (Hutchinson, 1961; Tilman, 1977, 1982). According to classical
niche theory, coexisting species should occupy different niches along gradients in
resources or environmental conditions to avoid competitive exclusion. Hence, species can
coexist if their niches are of limited similarity. This concept of coexistence is difficult to
apply to bacterial species, since many bacteria share the same resources and living
conditions. The lingering question consequently is: “How can hundreds of bacterial strains
coexist on one to few resources?” Some processes such as disturbances (Connell, 1978) and
chaotic dynamics (Huisman ¢ Weissing, 1999) can prevent the exclusion of species by
relieving competitive pressure and thereby increasing biodiversity on a few resources.
Alternatively, top-down control by keystone consumers (Paine, 1980; Leibold, 1996;
Power et al., 1996; Jochum et al., 2012) or complex food webs (Brose, 2008; Schneider et al.,
2016; Wang ¢ Brose, 2018) can prevent resource-driven competition and extinction.

In microbial communities, top-down control can be strongly driven by infection
processes that are the main cause of bacterial death and control of population dynamics
(Fuhrman, 1999; Noble, Middelboe ¢~ Fuhrman, 1999; Weinbauer et al., 2009). Hereby,
viruses exhibit a profound influence on the abundance and diversity of bacteria.

Control of bacterial population dynamics

Bacteriophages (phages) are viruses that exclusively infect bacteria. Their abundance
and distribution are linked to their hosts (Clokie et al., 2011). Phages can promote bacterial
diversity by acting as a top-down control for highly abundant species (Thingstad, 2000;
Ram, Keshri & Sime-Ngando, 2020; Zheng et al., 2021). Furthermore, phages can influence
their host by gene transfer (Day et al., 2017) or reprogramming of the host’s gene
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expression and metabolism (Long, Patterson & Paul, 2007; Hurwitz & U’Ren, 2016).
Therefore, phages are of particular interest regarding their relevance in ecosystem
functioning (Suttle, 2005). Similar to consumer-resource pairs, bacteria and phages
mutually affect each other’s population dynamics (Brockhurst et al., 2007; Matteson et al,
2012; Hiltunen et al., 2017). Bacterial hosts control phage production indirectly by

their physiology, such as growth rate, which is in turn often linked to the availability of
resources (Zimmerman et al., 2020). Phages employ different strategies or even switch
between them. Lytic phages infect and replicate inside their hosts, ultimately killing them
to spread (lytic infection). Temperate phages insert their DNA or RNA into the host
genome to be replicated with the host (lysogenic infection), but once they get activated they
enter the lytic cycle (Howard-Varona et al., 2017). In addition to phages, cell-debris is
released during host lysis, which is known as the viral shunt (Wilhelm & Suttle, 1999).
It has been calculated that the phosphorus concentration in the cell debris decreases by
up to 87% due to the high phosphorus concentration of the phages. The amount of carbon
and nitrogen in the cell debris corresponds to the concentration in the host cell (Jover et al.,
2014). The released cell debris is re-used by the surrounding bacterial community
(Middelboe, Jorgensen & Kroer, 1996). Thereby, the resource-supply shifts towards
bacterial reproduction while energy fluxes to protists and higher trophic levels are
hampered (Fuhrman, 1999).

Different phage strategies have been proposed, named “Killing-the-winner” (KtW),
“Piggyback-the-winner” (PtW), and “Piggyback-the-loser” (PtL). Other phage strategies
are “Piggyback-the-persistent”, describing a lysogenic phage strategy of constantly low
host abundance (Paterson et al., 2019), and “Make-the-winner”, describing a prophage
mediated viral defense (Dedrick et al., 2017; Knowles ¢» Rohwer, 2017). In KtW, phages
prevent the best bacterial competitor from building up high biomass and therefore
ensure coexistence with other bacteria of lower competition strength (Thingstad ¢ Lignell,
1997; Thingstad, 2000). Although the mechanism also applies for lysogenic phage
infections (Thingstad ¢ Lignell, 1997), the model used in previous studies describes a lytic
phage infection (Thingstad, 2000). In PtW and PtL, temperate phages are characterized by
a switch of lysogenic to lytic infection under different conditions. Under PtL, temperate
phages switch from lytic to lysogenic infections if host abundance is low (Knowles et al.,
2016), whereas temperate phages under PtW initiate lysogenic infections at high host
abundances and growth rates (Silveira & Rohwer, 2016; Knowles et al., 2016). Several data
sets have been published promoting either PtW (Silveira ¢~ Rohwer, 2016; Coutinho et al,
2017) or KtW (Liang et al., 2019) as the dominant phage strategy. However, different
phage strategies could be favored depending on environmental conditions (Bongiorni
et al., 2005; Weinbauer et al., 2009; Payet ¢ Suttle, 2013). The density and metabolic
activity of bacterial communities is affected by changes in the abiotic environment, which
result in selective consequences for phages and their infection mechanism.

Fluctuations in bacterial context
Most abiotic factors are not constant, but occur as random events or follow rhythms such
as day-night cycles, tide systems, or seasonal weather conditions. In bacterial communities,
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these variations often imply effects of varying resource supply. Many ecosystems are
affected by such fluctuations including seasonal ponds, intertidal ecosystems, groundwater
systems, flood plains, and riparian forests. The frequency and strength of temporal
variations have different effects, depending on the community they act on (Hutchinson,
1961). Fluctuations should have a great impact on bacterial communities, as their
duration is longer than bacterial generation times (Gibson et al., 2018). However,
microcosm-experiments have shown that resource fluctuations have a low impact on
bacterial communities, but strong negative effects on their predators (Karakog et al.,
2017, 2018). We assume that different phage strategies show different advantages to
overcome resource fluctuations. In our study, we analyze the impact of a fluctuating
resource supply on different phage strategies.

The quest for understanding the driving forces of bacterial diversity is challenging
because of the high complexity of natural food webs, displaying an interplay of various
mechanisms. These processes are hard to observe and dissect in nature. Laboratory
experiments can offer more controllability due to simplifications and the possibility of
replicates. Simplified mathematical models allow to extract particular mechanisms and to
investigate their patterns and their relevance to community dynamics. In our study, we
simulate in silico the effect of different phage strategies on bacteria that are exposed
to fluctuations in external resource supply by using ordinary differential equations
(ODEs).

We ask how the three phage strategy promote bacterial coexistence under (a) stable,
and (b) variable resource supply. The lytic and temperate phage strategies PtW and PtL
were modeled by adapting the lysis rate of the infected bacteria. Additionally, we included
a variable resource supply and the reuse of nutrients released by the viral shunt. With
our model, we want to understand how environmental variability and different phage
strategies shape bacterial population dynamics and coexistence.

Our results show that the viral shunt facilitates bacteria coexistence for all phage
strategies by an enrichment of the system. Especially, the lytic infection and PtW allowed
for bacterial coexistence at low resource supply, whereas PtL shifted the range of
coexistence towards higher resource levels. The temperate phage strategy PtW yields
bacterial coexistence in environments with low fluctuations over a limited range of
resources, whereas PtL stabilizes population dynamics over a wide range of stable and
fluctuating resource concentrations. We were able to show that the established lytic
infection model provides resilience when faced with resource fluctuations. An increase of
the bacterial growth rate leads to a stabilization of population dynamics at higher resource
fluctuations for the lytic infection and the PtL model. As bacterial survival also benefits
their phages, this result indicates that lytic phage infection, PtW, and PtL represent
different phage survival strategies to cope with environmental variability.

METHODS & MODEL
General model assumptions

The trophic interactions shown in Fig. 1 are quantitatively described by ordinary
differential equations (ODEs). The time-dependent densities By, Iy, and Py represent
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Figure 1 Conceptual graphic of a simplified bacteria-phage model with constant or fluctuating
nutrient supply. Color code represents fast (green) and slow growing bacteria (yellow) feeding on the
same nutrients (blue). Different phages (red or dark red) infect fast growing bacteria (dark green) and
slow growing bacteria (brown). Dependent on the infection mechanism: (1) Phages inside infected
bacteria enter the lytic cycle and lyse bacteria at a certain rate, thereby spreading phages and nutrients via
the viral shunt. (2) Phage inside infected bacteria enter the lysogenic cycle and reproduce with its host as a
prophage. The switch of lysogeny to lytic infection thereby variates with host abundances (PtW and PtL).
(3) Lysis spreads phages and nutrients via the viral shunt, which can be consumed by bacteria.
Full-size k&l DOI: 10.7717/peer;j.12194/fig-1

bacteria, infected bacteria, and phages of species k = 1,2, respectively. A nutrient density,
N, extends the system to analyze the impact of fluctuating resources on the population
dynamics.

ODE—model
The bacterial growth in the absence of the phage was described by a Type 2 functional
response (Monod, 1949) (Eq. (1)).

N

G(N) :xykm (1)

The metabolic rate x for heterotrophic bacteria (Makarieva et al., 2008) was used to
describe the bacterial growth rate scaled by a metabolic coefficient y, and Ny is the
half-saturation density. Both bacterial species k = 1,2 differ in their metabolic coefficient yi
to describe slow and fast growing bacteria (Table 2). The change of bacterial densities over
time reads

Bi=G(N)By— xBx — iByP . )
~~ ——

metabolic loss  loss via infection

Bacteria have a metabolic loss described by the metabolic rate x, which is assumed to be
equal for both species k = 1,2, and i is the adsorption rate of phage Py.

Infected bacteria are produced by bacteria getting infected by a phage. In the case of a
lytic infection, the infected bacteria have no own reproduction anymore. For the
lysogenic infection of a bacteria, growth is enabled (as in Eq. (1)). We include a switch
between the lysogenic and lytic life cycle for both temperate phage strategies (PtW and
PtL), enabling growth or not, respectively. The switching point is set to a lysis rate of
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Figure 2 Variation of the lysis rate for different phage strategies. The lytic infection (black) has a
constant lysis independent of host abundance. The temperate phage strategies switch between lysogenic
and lytic infections and are therefore simulated with a density dependent phage induction rate. “Pig-
gyback the winner” (pink) is defined by a lysogenic infection at high host abundances, the lysis rate is
thereby suppressed. In contrast, “Piggyback the loser” (blue) is defined by a lysogenic infection at low
host abundances. With increasing host abundance, the phages will enter the lytic cycle, so that the lysis
rate will rise. A switching point was set to a lysis rate of s = 0.0033 [h™"] (black dotted line), turning the
growth of infected bacteria on or off. Full-size K] DOL: 10.7717/peerj.12194/fig-2

0.0033 [h™'], which is reached at an abundance of non’infected and infected bacteria of
2.01%10° for PtL and 1.99*10® for PtW (Fig. 2; Figs. S1, S2).
Iy = (14 ¢)iBPy + G(N)I - x, - sl (3)
—_— ~—— ~~ ~~
gain of infection  growth lysogenic bacteria  metabolic loss  loss via lysis

The lysis of infected bacteria releases a defined fraction of phage biovolume, n, and
nutrients, (1 — n), that can be reused by the bacteria (i.e. the viral shunt). This lysis was
defined by the lysis rate, s.

Phage infection happens by chance and is described as a linear function with the
adsorption rate, i. We chose the same adsorption rate for both phages infecting slow
and fast growing bacteria. The infection of bacteria was defined as in Beretta ¢» Kuang
(1998); Gulbudak & Weitz (2019). It is assumed that, although many phages attach to a
bacterial cell, only one phage is responsible for the infection. We used a conversion factor,
¢, to resize the volume of bacteria to phages for infection (Eq. (3), (4)), because we
used the biovolume [pm3 mL™!] for phage and bacteria (Table 1). Phages can become
inactive by different chemicals or physical environmental factors, such as unfavorable
temperatures, pH, salinity, or ions (Joriczyk et al., 2011). That is described by the decay
rate, d. Combined, these processes define the rate of change for phage densities over time.
Pk = nsIk — CinPk — de (4)

~~ —— ~

phage release  loss via infection  phage decay

Resource change over time was simulated by using a chemostat model with a turnover
rate, D, and inflow supply concentration, Ny,
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Table 1 Normalized densities used for simulations.

Initial densities norm. Values References/Comments
Bacteria (By) 8.30 *10° particles mL™"  8.30 * 107" (Beretta & Kuang, 1998)
Infected bacteria (By) 1.70 * 10° particles mL™"  1.70 * 107" (Beretta & Kuang, 1998)
Phages (Py) 1.00 * 107  particles mL™*  3.10 *107* (Beretta & Kuang, 1998)
Nutrient (N) 0.60-30.00

Supply concentration (Ny) 0.60-30.00

Half-saturation density (Ng)  1.00 * 107 particles mL™ 1.00

Switch point PtW 1.99 *10°  particles mL™  19.8997500

Switch point PtL 2.01 *10°  particles mL™" 02010076

Half-saturation density (SH) ~ 4.00 * 10°  particles mL™"  4.00

Table 2 Rates [h™"'] and conversion rates used for all model simulations.

Values Units norm. Values References/Comments
Rates
Turnover rate (D) 1/24 h™ resource turnover/mean level for fluctuations
Metabolic rate (x) 0.0206 h™! adapted after (Makarieva et al., 2008)
Lysis rate (s) 0.3300 h™ (Gulbudak & Weitz, 2019)
Phage decay (d) 0.0866 h! (Gulbudak & Weitz, 2019)
Adsorption rate (i) 1.64 *1071° mLh™? 523 h!
Conversion rates
Metabolic scaling constant (yy) y1 = 3.75/7.5/15; y, = 2/4/8
Phage burst volume (n) 0.02 (Weitz, 2015)
Conversion factor viral infection (¢)  3.14 *10™* Ratio of bacterial-virus biomass
PtW: correction parameter (r) 0.50
PtW: correction parameter (H) 1.00
Amplitude (a) 0.00-0.99
Period of oscillation (T) 24/162/720/8,760 h

N=D(Ny—N)—- G(N)B, - G(N)I + (1 — n)sk (5)

—— —— ——’
bacterial consumption  lysogenic bacterial consumption viral shunt

The consumption of resources by bacteria is described by the Type 2 functional
response as in Eq. (1). The reuse of nutrients caused by the viral shunt is included
subtracting the fraction of released phage biovolume, n, (Weitz, 2015) of the total amount
of the lysate, s I;. The nutrients released by the viral shunt are thereby included to the total
nutrient supply and can be consumed by all growing bacteria.

External fluctuations
To include an external fluctuation of resources, a sine curve was used to modulate the
turnover rate, D, over time t. The sine curve is defined by the amplitude, a, and the period,
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T, describing the fluctuation around the mean resource supply, D. We used a < 1 to
guarantee positivity.

. (2r
Dy = <aD sin (7 t> + D> (6)

Defining phage life cycles by changing the lysis rate

The phage induction through different phage strategies is simulated by altering the

lysis function. The lytic infection is described by a constant lysis rate, s, as in previous
studies (Beretta ¢ Kuang, 1998; Gulbudak ¢» Weitz, 2019). The temperate phages are
characterized by a change of lysogenic to lytic infection. The PtL phage strategy describes
lysogenic infections at low host abundances (Knowles et al., 2016). At increasing host
abundances the phage enter the lytic cycle, which we described by an increasing lysis rate
(Eq. (7)). The PtW phage strategy argues the converse (Knowles et al., 2016), which we
specified as a suppressed lysis rate by more lysogenic infections at high host abundances
(Eq. (8)). We transformed the constant lysis rate, s, into a rate dependent on the host
density to simulate phage induction for both temperate phages. We use an increasing and a
decreasing sigmoidal function for PtL and PtW, respectively (Fig. 2). For comparability,
we fixed s = 0.330 [h™'] as the maximum lysis rate for all phage strategies (Fig. 2;

Figs. 3, S4). The half-saturation density, SH, for PtL was fixed to SH = 4*10” (Fig. S3).
The parameters for PtW were set to r = 0.5 and H = 1 (Fig. 54).

s(Be + L)’

(Be + I)* + SH )

SpiL =

N

(Bx+I)r)* + H ®

Sptw =

Parameter settings

The model’s initial densities of bacteria and phages, parameters and conversion rates
used for simulations are shown in Tables 1 and 2. For our initial values we choose the ratio
of 0.17 to 0.83 for infected to non-infected bacteria (Beretta ¢» Kuang, 1998). Other
quantities such as the inflow resource concentration (N), supply rate (N,), and
half-saturation density (Ny) were set to a parameter range, that created stable population
dynamics. We transformed the densities of bacteria and phages into biovolume (Table S1),
and normalized them by the half-saturation density (Ny). Different initial states were
tested and did not affect the results of the simulations. Therefore, the same initial states
were used for all calculations (Table 1). After numerical simulation of the model, the
normalized biovolumes of bacteria and phages were counted back into abundance for a
further evaluations.

Rates
To describe the growth and metabolic loss of the bacteria we used a metabolic rate for
heterotrophic bacteria (Makarieva et al., 2008), which we set to 40 [J (s * kg)™'].
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We transformed this rate to equalize the units [h™'] using the conversion rates of

(Peters, 1983). The virus decay rate was fixed to d = 0.0866 [h™'] and the lysis rate to

s = 0.330 [h™'] (Gulbudak & Weitz, 2019). The phage adsorption rate was set to
i=1.64*10""° [mL h™"], for both phages infecting slow and fast growing bacteria. This rate
had to be normalized, because we used the normalized biovolume of bacteria and phages
for calculations (Table S1). All rates used for simulations are listed in Table 2.

Conversion rates

Constants scale different parameters, such as the metabolic scaling constant, yy, to specify
bacteria growth. We fixed y; = 7.5 and y, = 4 to define fast and slow growing bacteria,
respectively (Brose, Williams ¢» Martinez, 2006). All other parameters are identical for
both bacteria species and their associated phages. The ratio of phage to bacteria biovolume,
¢, was used to adjust the loss of phage biovolume during the adsorption by the host.
The phage burst volume, n, has been set to 0.02 (Weitz, 2015). All values of the conversion
rates used for simulations are listed in Table 2.

The model was simulated using R 3.6.1 (R Core Team, 2020) on Ubuntu 18.04.5 LTS.
The packages odeintr_1.7.1 (Keitt, 2017) and EMD_1.5.8 (Donghoh ¢ Hee-Seok, 2009,
2018) were used for simulations. We used the solver “rk54_a”. For the graphical output the
packages ggplot2_3.3.0 (Wickham, 2016), viridis_0.5.1 (Garnier, 2018), imager_0.42.3
(Barthelme, 2020), and gridExtra_2.3 (Auguie, 2017) were used. The model code is
available at the github repository https://github.com/Es-Vo-26/Phage-Infection-Strategies.

RESULTS

Phage strategies
The different phage strategies were modeled by changing a constant lysis rate to a
density-dependent phage inductions rate (Fig. 2). Additionally, bacterial reproduction was
enabled for lysogenic but turned of for lytic phage strategies by including a switching
point (PtW, PtL). First, we calculated different time series with a fixed set of parameters
(Tables 1, 2) without and with phage infecting bacteria. Without infection, the bacteria
with a slower growth rate were outcompeted by the faster-growing bacteria (Fig. 3A).
Coexistence was enabled in the presence of the corresponding phage for all phage
strategies (Figs. 3B, 3C, 3D). Next, we used bifurcation diagrams to analyze the effect of
the viral shunt (Fig. S5) and to compare the stability of the different phage strategies
(Fig. 4). For evaluation of the system stability we examined coexistence of slow and fast
growing bacteria, persistence of the phage infection, oscillations, and species extinction
over a resource supply, Ny, systematically varying between 0.6 and 30. By including the
viral shunt (Eq. (5)) into the model the system got enriched. Thereby, slow and fast
growing bacteria could coexist at lower resource concentrations, and population
oscillations at high resource levels have been shifted to lower resource levels (Fig. S5).
The viral shunt was included to all phage strategies.

The lytic and the temperate phage model PtW resulted in coexistence of slow and fast
growing bacteria at lower resource supply (Figs. 4A, 4C). In comparison, bacterial
coexistence was shifted to a higher resource level for the temperate phage model PtL
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Figure 3 The presence of phages enables bacterial coexistence. Bacterial coexistence without and with
different phage infection mechanisms was tested. The graphic shows time series [days] of the different
phage-bacteria models with a constant resource supply, N = 2. Equal parameters and initial values were
chosen for all simulations (Table 1), with a metabolic scaling constant of y; = 7.5 for fast growing, and
y2 = 4 for slow growing bacteria. Color code according to Fig. 1.

Full-size K] DOI: 10.7717/peerj.12194/fig-3

(Fig. 4E). At higher resource supply, populations starts to oscillate, which is known as the
paradox of enrichment (Rosenzweig, 1971).

The different phage strategies featured considerable variability in coexistence and
stability. The proportion of infected bacteria was increased for PtL (Fig. 4E) compared
to the purly lytic infection and PtW (Figs. 4A, 4C). That results from the lysogenic
infection at low host densities allowing infected bacteria to reproduce and reaching high
abundances if the resource supply increases. The temperate PtW and the lytic strategy
showed oscillating population dynamics already at medium resource supply (Figs. 4A, 4C).
For the temperate model PtW the fast growing non-infected bacteria went extinct at
high resource concentrations over N, = 11.23, whereas the associated infected bacteria
and the phage persisted (Fig. 4C). The PtL model displayed large oscillations of the fast
growing bacteria at high resource supply. In contrast, the slow growing bacteria with the
infection showed weaker oscillations (Fig. 4E).

We repeated the analysis using an oscillating turnover rate. The relative amplitude
a = 50% and the period T = 7 days were kept fixed and nutrient supply N, was
systematically varied from 0.6 to 30 (Figs. 4B, 4D, 4F). The point of bacterial coexistence
and persistence of the phage infection for low resources was shifted to higher resource
levels, whereas overall species extinction for high resources was shifted to a lower
resource level. Thus, resource fluctuations reduced the range of bacterial coexistence for all
phage models (Figs. 4B, 4D, 4F). Similar to a constant resource supply the temperate phage
model PtW resulted in an extinction of the fast growing non-infected bacteria at high
resource levels, whereas infected bacteria were able to persist (Fig. 4D).
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Low periods and amplitudes do not affect bacterial systems

We investigated the impact of resource fluctuations on population stability by simulating
the three types of phage strategies while (a) independently varying relative amplitude a (0%
to 99%) and nutrient supply Ny (period fixed at T = 30 days); and (b) independently
varying period T (1 day to 1 year) and nutrient supply N (relative amplitude fixed at

a =90%) (Fig. 5; Figs. S6, S7, S8). The nutrient supply N, was varied from 0.6 to 8.

The number of persisting states was plotted in a 2D graphic for (a) increasing values of
amplitude or (b) period plotted over an varying resource supply. Since phages always
occur with their associated infected bacteria in our model results, we summarized phage
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and infected bacteria as one common state. The color depicts biodiversity, representing
the different model states from black (all bacteria and infections extinct) to yellow (all
bacteria and their infections can persist). Our results showed that all phage strategies were
not affected in their range of coexistence by an amplitude of 50% (Fig. 5 Column 1).
Similar, a resource supply period of T = 7 days did not change the range of coexistence for
all tested phage models. The combination of high amplitude with a reduced resource
supply period and low resource concentrations led to a collapse of bacterial populations.
Here, phage infection of the slow growing bacteria went extinct first (red area),

followed by slow growing bacteria (purple area) and the phage infection of the fast growing
bacteria (blue area) (Fig. 5). Bacterial coexistence and phage persistence (yellow area) was
not possible at low resource concentrations.

The phage models showed a great variance in their coping with resource fluctuations
(Fig. 5). In comparison with PtL, the lytic infection and the temperate infection PtW
enabled bacterial coexistence and persistence of the infection over a limited range of
resource supply. Here, the temperate phage mechanism PtW was most sensitive to
resource fluctuations (Figs. 5C, 5D). Especially low resource concentrations and an
increase of the turnover period over 7 days for PtW or over 10 days for the lytic infection
limited bacterial coexistence (Figs. 5B, 5D). For the temperate phage model PtL bacterial
coexistence and persistence of the phage infection were also reduced at low resource
concentrations (Figs. 5E, 5F). At a certain range of the nutrient turnover period (T = 30 to
T = 70 days) the phage infection of the fast growing bacteria got stabilized due to the
resource fluctuations (Fig. 5F). In contrast to the lytic infection or PtW, the PtL model
showed a stable bacterial coexistence and persistence of the phage infection over a broad
range of resource supply and fluctuations (Figs. 5E, 5F). Thus, PtL could be a preferred
phage strategy in environments with fluctuating resource conditions.

Interaction strength enables coexistence at higher resource
fluctuations

A change in interaction strength such as a more efficient infection by phages or uptake of
resources by bacteria had an impact on species coexistence (Fig. 6). We investigated the
impact of interaction strength on population stability by simulating the three types of
phage strategies. Low interaction strength was simulated by a decrease of bacteria
growth rates (y; = 3.75; y, = 2), whereas a more efficient interaction was described by
increased growth rates (y; = 15.0; y, = 8.0). The values of Table 1 were used to define
the medium interaction strength (as in Fig. 5). The number of persisting states was plotted
in a 2D graphic by varying the fluctuation period (1 day to 1 year) over an increased
nutrient supply Ny, varying between 0.6 and 8 (relative amplitude fixed at a = 90%) (Fig. 6).
The change of bacterial growth rates altered the resource supply range of species
coexistence. General low growth rates reduced the range of bacteria coexistence and the
persistence of the phage infection (Figs. 6A, 6D, 6G). whereas general high growth rates
expand the range of coexistence (Figs. 6C, 6F, 6I). Furthermore, a high growth rate
enabled bacteria coexistence at higher resource fluctuations for the lytic and the PtL
model, whereas low growth rates led to a decline of the biodiversity when resource
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fluctuations increase. Only for the temperate phage model PtW an increase in bacterial
grow did not affect bacterial coexistence at higher resource fluctuations.

DISCUSSION

We performed in silico experiments with three different bacteria-phage models, to
investigate the ability of different phage strategies to facilitate the coexistence of bacteria
competing for limiting resources. In their natural environments, microbial communities
are exposed to temporal variations in habitat conditions such as seasonality, rainfall, or
tidal rhythms. However, fluctuations in resource supply should have disruptive effects on
population dynamics, because bacteria are strongly coupled to their environment (Sorng
et al., 2016; Muscarella et al., 2019).

The viral shunt facilitates bacterial coexistence at low nutrient levels
As a first step, the viral shunt, as a result of bacterial lysis by phages, was included in all
our bacteria-phage models. The fraction of phages in the viral shunt make up 0.01% to
0.02% of the total bacterial biomass (Weitz, 2015) and therefore change the stoichiometry
of the cellular debris (Jover et al., 2014). The high phosphorus content of phages results in a
decrease of phosphorus in the viral shunt, if more phages are released. The carbon and
nitrogen content of the viral shunt is proposed to correspond to that of the lysed host
(Jover et al., 2014). Studies show that almost 30% of the phytoplankton carbon is released
by viruses (Talmy et al., 2019). The released nutrients are consumed by bacteria and
increase their reproduction in lytic bacteria phage systems (Fuhrman, 1999; Shelford et al.,
2012). An increase in available nutrients thereby enables bacteria to change their
environment faster, leading to stronger population-level effects on their resources and
consumers. In extreme cases, this leads to the extinction of community members and
biodiversity loss (Ratzke, Barrere ¢ Gore, 2020). In our study, we demonstrate that the
same mechanism acts in the temperate phage strategies PtW and PtL.

Lysogeny is proposed as a survival strategy for phages in oligotrophic environments
(Stewart & Levin, 1984), but also occurs frequently at high host densities (Silveira, Luque &
Rohwer, 2021). Our results show, that the lytic infection and the temperate infection
PtW enabled bacterial coexistence and stable infection dynamics at low nutrient
concentrations. The PtW model is defined by lytic infection at low host abundances,
which results in increased nutrient availability due to the viral shunt. This enrichment
due to a lytic phage infection shifts also the persistence of infected bacteria to a lower
nutrient level. In contrast, PtL shows lysogenic infection, if host abundance is low.

The lysogenic bacteria can reproduce and thereby increase the competition for limited
resources, which shifts the range of bacterial coexistence to higher resource levels.

In laboratory experiments it was shown that the lysis of lysogenic infected bacteria is
stochastic to some extent (Dennehy ¢ Wang, 2011). For PtL, showing an increased fraction
of lysogenic bacteria, this effect can also lead to a slight enrichment. We propose that lytic
phage strategies promote bacterial coexistence, stabilize phage infections and thereby
lead to increased diversity in oligotrophic systems.
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Studies have shown a collapse of cyanobacteria communities in lakes or marine
environments in response to nutrient enrichment. These collapses are related to an
increased abundance of cyanophages (Gons et al., 2002; Coello-Camba et al., 2020).

Our results show that phage infections destabilize bacterial communities by the viral shunt
at eutrophic conditions. Through enrichment by the viral shunt, population dynamics
oscillate already at lower nutrient concentrations, which is known as the paradox of
enrichment (Rosenzweig, 1971).

Temperate phage strategies show different patterns in population
dynamics

We focused on modeling three phage strategies and analyzed them regarding their
stability at increased energy input and resource fluctuations. The lytic infection (Beretta ¢
Kuang, 1998; Gulbudak ¢ Weitz, 2019) and temperate phage strategies PtW and PtL
(Knowles et al., 2016) were modeled by a change of the lysis rate. For the temperate phage
strategies we modeled a density dependent phage induction rate. Furthermore, we
included a switch point to allow lysogenic infected bacteria to grow and reproduce with a
prophage inside their genome, but turn off the growth for lytic infected bacteria.

The temperate phage mechanism PtL switches from a lysogenic to a lytic phage
infection if host density increases. Our results show that PtL yields more stable populations
and facilitates species coexistence across a broad range of resource supplies from
oligotrophic to eutrophic conditions. Under PtL the abundance of infected bacteria is
increased compared to the lytic model or PtW.

The lysogenic infection at low host abundances causes this effect, allowing more
infected bacteria to replicate with their prophage. At higher host abundances more phages
are produced due to an increase of the lysis rate, which controls bacterial density and
competition. The PtL mechanism acts as a top down control for bacteria and stabilizes
population dynamics. This results in stable coexistence of slow and fast growing
bacteria, where fast growing bacteria show stronger oscillations due to a stronger top down
control by their phages. Interestingly, studies have shown that better growth conditions
enabled by high resource availability can lead to beneficial mutations in the bacterial
genome (Wahl & Zhu, 2015), resulting in bacterial resistance against phage infection
(Gomez et al., 2015). Our model suggests that the PtL mechanism can create an
evolutionary pressure on bacteria under eutrophic conditions, potentially leading to
bacteria resistance against phages.

The temperate phage mechanism PtW is characterized by an increased lysogenic
phage infection at high host abundances (Knowles et al., 2016). Our results show that PtW
leads to a destabilization of population dynamics. As expected, the fraction of infected
bacteria increases at high resource concentrations, since more available nutrients lead to a
higher reproduction of the bacterial host. During a lysogenic infection, the host replicates
with its prophage, but is not directly killed by the phage. The phage cannot act as a
top-down control on bacteria anymore. This increases the resource competition between
non-infected and lysogenic infected bacteria as an indirect effect and thereby destabilizes
population dynamics. At high resource availability PtW leads to the extinction of the fast
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growing non-infected bacteria, whereas the infected bacteria and phage persists. These
infected bacteria are lysogenic infected bacteria, because their abundance is above the
included switch point. In our model the lysogenic infected bacteria can outcompete
non-infected bacteria because of the high phage number infecting bacteria at high resource
levels. In natural systems the number of phage coinfections increases at high microbial
abundances, which favors phage integration and thus lysogenic infections (Luque ¢
Silveira, 2020; Silveira, Luque ¢» Rohwer, 2021). A phage integration into bacterial
genome at high host densities can have advantages for bacteria. It has been shown that
lysogeny can alter the host’s genome and cellular processes (Menouni et al., 2015; Feiner
et al., 2015; Howard-Varona et al., 2017). Thereby, phages can slow down diversification
and increase genetic similarity in the host population (Weinbauer ¢» Rassoulzadegan,
2004). In a stable environment, this can increase the survival chances of bacteria and its
related phages. Alternatively, integration of phages due to lysogeny can also promote
adaptation and increase diversity (Weinbauer ¢ Rassoulzadegan, 2004), which can help
the bacterial host to acquire new ecological niches.

High interaction strength helps to overcome resource fluctuations
We also compared the stability of the different phage strategies under fluctuations by
modifying the resource inflow into the system. For this purpose, the amplitude and
turnover period of the mean resource supply were independently varied.

In natural soil systems, bacteria depend on an inflow of water and resources. It has
been shown that bacterial species richness is highest at intermediate water contents
(Bickel & Or, 2020). High rainfall events lead to highly connected systems, where
competition in the community is strong. This causes more negative microbial interactions,
leading to a loss of biodiversity (Ratzke, Barrere ¢» Gore, 2020). Our results show that
amplitudes up to 50% of the mean resource supply do not affect biodiversity. Higher
amplitudes in combination with a decreased turnover period of over 7 days lead to a
decline in bacterial coexistence and stable infection dynamics. Here, phages are more
affected by resource fluctuations. This is in line with microcosm-experiments showing that
fluctuations in resource availability have a more negative impact on predators than on
their prey (Karakog et al., 2018). Our results show that species can persist at higher
resource fluctuations if their growth rate is increased. High resource fluctuations at a low
mean resource supply only allow fast growing bacteria to persist in our model,
independent of the phage strategy. A stronger interaction to their environment due to
faster growth rates or more efficient use of resources can help bacteria to react to variable
environments. A fast adaption and effective interaction within variable and oligotrophic
environments are essential for bacterial survival.

Seasonality of phage strategies

Many studies demonstrate that infections show patterns of seasonality, that can be caused
by a change in environmental variation (Fisman, 2012; Hwang et al., 2017; Girard et al.,
2020). The three phage strategies analyzed in our study are assumed to be favored at
different resource levels or different time points in the year (Payet ¢» Suttle, 2013). Other
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studies (Maurice et al., 2013) demonstrated less evidence for seasonality of lysogenic
interactions but a strong dependence of lytic infections on resource concentrations.

All phage strategies tested in our model feature destabilization at high resource
fluctuations at a low mean resource supply. Other mechanisms can help to persist under
variable resource conditions and contribute to the stability of bacterial communities,
such as bacteria dormancy (Jones ¢ Lennon, 2010). Our results show that faster
exploitation of resources enabled bacteria existence and persistence of their infection
despite high fluctuations. A lytic phage infection at low host densities can enrich
oligotrophic systems by the viral shunt and thereby promote bacterial diversity. This effect
is enhances for high bacterial growth rates. However, only PtL showed persistence at high
resource fluctuations and therefore can act as a main phage strategy in highly variable
environments.

Increases in resource concentrations and fluctuations lead to diverse patterns in lytic
and temperate phage strategies (PtW, PtL). All models enable bacterial coexistence over a
broad range of resource supply and substantial variance in fluctuations. The temperate
phage strategy PtW and the lytic infection are more dependent on resource supply than the
temperate PtL model. Interestingly, the purely lytic phage infection enabled bacterial
coexistence and phage persistence over a broad range of nutrient fluctuations. This effect
was actually strengthened by a increase in bacterial growth rate for high levels of nutrient
supply.

The lytic phage infection depends on host metabolism and increase with host activity
(Maurice et al., 2013). Our results show, that an increase in host growth rate not only
supports the lytic phage strategy but also the resilience against nutrient variability. That
makes the lytic infection more sensitive to environmental conditions and seasonality.

The temperate phage model PtW is particularly vulnerable to enhanced resource
concentrations and fluctuations, which lead to a decline in biodiversity. Our results suggest
that PtW should be favored at low resource conditions with moderate environmental
variability. This could be met in highly diverse environments, where other predators such
as protists act as a top-down control for bacteria abundance. PtW could benefit their highly
abundant hosts by promoting their genetic adaptation due to the lysogenic infection
(Weinbauer ¢ Rassoulzadegan, 2004). Thereby, the PtW phage strategy would not
necessarily depend on seasonality.

In the last decades, anthropogenic influences caused climatic changes, affecting seasonal
patterns such as temperature, and the amount and days of rainfall. Furthermore, variable
and extreme weather events are proposed to increase in the following decades
(Intergovernmental Panel on Climate Change, 2014). The main drivers for microbial
community composition are the indirect effects of climate change such as soil water
content or resource availability (Deltedesco et al., 2020). Bacterial communities are coupled
to their environments (Song et al., 2016; Muscarella et al., 2019), which makes the
community structure highly sensitive to anthropogenic impacts (Rocca et al., 2019).

Our simulations show that a reduced resource availability due to prolonged turnover
periods leads to a rapid decline in bacterial coexistence. This effect would be increased in
structured environments, such as soil, due to limited diffusion of phage particles (Sousa ¢
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Rocha, 2019). Therefore we argue that increasing dry periods caused by climate change
would have disastrous effects on bacteria communities. Especially oligotrophic
environments would experience a decline in biodiversity. However, these aspects are
potential hypotheses for future studies.

CONCLUSION

Various mechanisms drive bacterial diversity, and it remains an ongoing challenge to
disentangle and understand their relative importance for bacterial coexistence. Model
systems can facilitate such understanding by segmenting complex interactions into
simplified mathematical models. We analyzed how different phage strategies shape
bacterial coexistence and persistence across gradients in resource supply and fluctuations.
We developed a microbial trophic network model for lytic and temperate (PtW, PtL)
phage strategies and performed ‘in silico’ experiments.

The lytic infections and PtW enabled bacteria coexistence at low resource
concentrations by an enrichment of the system via the lysis-driven release of nutrients.
Bacteria are highly coupled to their environment and are thereby affected by long periods
of resource turnover, especially if resource concentration is low. Surprisingly, the purely
lytic infection yields stable bacterial coexistence despite strong resource variability.

An increase in bacterial growth amplified this effect, suggesting that host activity not only
supports the lytic phage infection but resilience to environmental variability.

The temperate phage strategy PtW leads to a destabilization of population dynamics at
high resource concentrations or fluctuations. This effect is caused by a stagnated lysis at
high host densities, generating a reduction in top-down control of the bacterial
community. However, increased integration of phages into the host genome can lead to a
better adaption to new environmental conditions (Weinbauer ¢ Rassoulzadegan, 2004).
In contrast, the temperate phage strategy PtL enabled bacteria coexistence over a wide
range of resource concentrations and fluctuations. PtL could occur as the main phage
strategy in environments with large variations in resource availability, such as aquifers
or deep soil habitats. Finally, our results point out that all phage strategies define
independent strategies to overcome environmental variability. Our study highlights the
importance of bacteria-phage interactions for the maintenance of microbial diversity and
ecosystem functioning under high environmental variability.
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