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This paper discusses the impact on human health caused by the addition of antibiotics in the feed of food animals. We use
the established transmission rule of resistant bacteria and combine it with a predator-prey system to determine a differential
equations model. The equations have three steady equilibrium points corresponding to three population dynamics states under
the influence of resistant bacteria. In order to quantitatively analyze the stability of the equilibrium points, we focused on the basic
reproduction numbers. Then, both the local and global stability of the equilibrium points were quantitatively analyzed by using
essential mathematical methods. Numerical results are provided to relate our model properties to some interesting biological cases.
Finally, we discuss the effect of the twomain parameters of the model, the proportion of antibiotics added to feed and the predation
rate, and estimate the human health impacts related to the amount of feed antibiotics used. We further propose an approach for the
prevention of the large-scale spread of resistant bacteria and illustrate the necessity of controlling the amount of in-feed antibiotics
used.

1. Introduction

As the world’s population continues to increase, methods for
improving the production of livestock have become a great
challenge. The growth-promoting effects of antibiotics were
first discovered in the 1940s when chickens fed by-products
of tetracycline fermentation were found to grow faster than
those not fed with these by-products [1]. Since then, many
antimicrobials have been found to improve average daily
weight gain and feed efficiency in livestock in a variety of
applications [2–4], and this process has come to be known
as “growth promotion.” Antibiotics used in feeding not only
increase production but can also prevent disease. Infected
animals will not only affect the production capacity, but as
the stocking density increases, infection is more likely to
be transmitted at a faster rate. Therefore, the most effective
strategy to prevent epidemics in livestock is to add antibiotics
to the animal feed, which has become common practice [5].

Although the use of antibiotics as feed additives can
promote animal growth, there are also various side effects
that affect the human consumer.When antibiotics are used in
animal feed, resistance is likely to be selected for in the normal
and infected bodies, and therefore increase in prevalence
in the population [6–10]. Furthermore, Perreten et al. [11]
demonstrated that resistant bacteria are highly contagious,
and resistance can transfer to other strains through plasmids
or by direct contact. Therefore, other congeneric animals can
readily and rapidly become infected with antibiotic-resistant
bacteria.

Resistant bacteria not only transmit horizontally but
can also transmit across species. When animals harbor-
ing antibiotic-resistant bacteria come in close contact with
humans or are consumed by humans, the resistant bacteria
may transfer to the humans [12].

Harwood et al. [13] confirmed that resistant bacte-
ria could spread through sewage to reach the general
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environment. Consequently, if birds or other types of urban
wildlife were to drink the sewage, the resistant bacteria
would spread widely either through their feces or if directly
consumed by other animals. Resistant bacteria have been
found in wild rodents and in some domestic animals [14,
15]. Direct contact is another important way that resistant
bacteria can transfer from animals to humans. Van den
Bogaard et al. [16] and Donabedian et al. [17] conducted
experiments that demonstrated that resistant bacteria do
indeed have the ability of being transmitted from animals to
humans. Anderson et al. [18] indicated that different types
of resistant bacteria present in the food chain have different
effects on humans. In a review, Phillips et al. [19] explained
that the use of antibiotics in food animals poses a risk
to human health and listed the various ways that resistant
bacteria can transfer from animals to humans through the
food chain and by other means. Tollefson and Miller [20]
described the history of antimicrobial use and regulation in
animals, the related public health concern, the current animal
drug approval process in the United States, the international
perspective, and the Food and Drug Administration’s (FDA’s)
proposed procedures for evaluating the human health impact
of the antimicrobial effects associated with animal drugs
intended for use in food-producing animals. All of the articles
cited above clearly show that resistant bacteria can indeed
transfer from food animals to humans through direct contact
or consumption.

Once humans are infected with resistant bacteria, the
bacteria will readily transfer among the human population.
In order to prevent the wide spread of resistant bacteria
among humans, many researchers have studied the spread
process of resistant bacteria between humans in the hospital
and have proposed prevention measures [21–29]. However,
almost no quantitative analysis of the spread of resistant
bacteria from animals to humans has been performed to date.
In particular, no study has yet focused on the process of
transmission through the food chain, in which food animals
consume large amounts of antibiotic resistant bacteria and
then transmit the resistant bacteria to humans through direct
contact or predation, and the bacteria continue to spread
among humans. In this paper, we discuss this process and
report the results of a quantitative analysis of the effects
that the amount of antibiotics used as feed additive have for
human health.

Based on the resistant bacteria transmission rule, we use
Lotka–Volterra equations [30] to derive amodel of the spread
of resistant bacteria in a predator-prey system. Resistant bac-
teria can be viewed as an infectious disease in a predator-prey
system [31–36]. The predator-prey systems are key factors
in ecological systems. So many articles have focused on the
spread of infectious diseases in a predator-prey system [37–
43]. Some researchers have adopted a predator-prey model
with only the prey affected by disease and some of them are
representative: Anderson andMay [44], Chattopadhyay et al.
[35, 43], Xiao and Chen [45], Greenhalgh and Haque [46],
and Sinha et al. [47–52], whereas others havemodeled disease
in only the predator, for instants, Haque and Venturino [53,
54], Hilker and Schmitz [55], and Auger et al. [56]. Few
studies consider the predator-prey models with disease in

both predator and prey. Hsieh and Hsiao [57], Pada Das et
al. [58], and Gao et al. [59] modeled the situation in which
both the predator and the prey have the disease, but in the first
article, the disease was not contagious among the predators,
and in the second article, there was no cross-infection, and
in the third article, the diseases were transmitted vertically in
both populations. Briggs and Hoopes [60], Chaudhuri et al.
[61, 62] discussed cross-infection model. Furthermore, two
other models [63, 64] were presented in which the disease
could cross the species barrier in an interacting population.
We here present a model in which the infected disease is
represented by resistant bacteria that can be transmitted
between a prey and a predator in both directions through
contact or consumption.

This paper is organized in the following manner. Based
on the available evidence demonstrating that resistant bac-
teria can spread between different populations, we establish
differential equations model in Section 2. In Section 3, we
derive the equilibrium points, and discuss the nonnegative
points’ existence conditions. In Section 4, we analyze the
basic reproduction numbers. In this section, the threshold
parameters are related to meaningful biological conditions.
We then determine the stability conditions of the equilibrium
points and prove them. In Section 5, we provide numerical
results to discuss some interesting biological cases that our
model is able to exhibit and the role of some key parameters
in the system. We conclude by discussing the practical
significance and application of the model.

2. Model

In this model, food animals consume antibiotic-containing
feed over an extended period of time, and the bacteria evolve
resistance to the antibiotics. This resistance can spread to
humans via consumption or direct contact and then spread
among the human population. Thus, both food animals and
humans can be infected by the resistant bacteria. There are
four populations in our model: 𝑥

1
(𝑡) is the population size of

the susceptible food animals at time 𝑡. 𝑥
2
(𝑡) is the population

size of the infected food animals at time 𝑡. 𝑦
1
(𝑡) represents the

amount of susceptible humans at time 𝑡, and 𝑦
2
(𝑡) represents

the amount of infected humans at time 𝑡.
To construct the model, we made the following assump-

tions.

(1) There is no recovery or immunity from resistant
bacteria.

(2) The resistant bacteria can be transmitted vertically.
(3) 𝑏 is the growth rate of the food animals; 𝐾 is the

carrying capacity of the food animals.
(4) 𝛽
1
(0 < 𝛽

1
< 1) represents the conversion rate

from susceptible food animals to infected animals.
Since the quantities of the antibiotics added in feed
are usually stationary, the conversion rate from sus-
ceptible food animals to infected animals is constant.
The value of 𝛽

1
is only related to antibiotics in feed

additives and is not related to 𝑥
2
. To some extent, 𝛽

1

also represents the proportion of antibiotics in the
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feed. In this model, we do not consider the resistant
bacteria’s spread among food animals.

(5) To determine whether or not the food animals are
infected is nearly impossible; however, resistance in
the food animals does not affect the predation rate 𝑝.
Humans reproduce at a certain rate after eating: 𝑒𝑝 is
the predator’s reproduction rate, where 0 < 𝑒 < 1.

(6) 𝑑 is the death rate of infected animals;𝑑
1
is the natural

death rate of humans; 𝑑
2
is the human death rate due

to infection by resistant bacteria, 𝑑
2
> 𝑑
1
.

(7) 𝛽
2
is the infection rate among humans and 𝛽

3
(0 <

𝛽
3
< 1) is the infection rate from food animals to

humans. Due to the cross-infection mechanism of
resistant bacteria, the term 𝛽

3
𝑥
2
𝑦
1
characterizes the

transmission dynamics [63, 64]. The resistant bacte-
ria’s transmission in food animals is not considered.

Given the assumptions listed above, we obtain the following
autonomous nonlinear differential equations:

�̇�
1
= 𝑏𝑥
1
(1 −
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1
+ 𝑥
2
)
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(1)

To analyze the stability of the system, we first determine the
equilibrium points.

3. Equilibrium Points

3.1.The Existence of Nonnegative EquilibriumPoints. It is easy
to obtain the four nonnegative equilibrium points of model
(1). They are

𝐸
0
(0, 0, 0, 0) ,

𝐸
1
(

𝐾𝑑 (1 − 𝛽
1
)

(𝑑 + 𝑏𝛽
1
)

,

𝐾𝛽
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(𝑑 + 𝑏𝛽
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, 0, 0) ,
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) ,

(2)

where

𝑥
1
=
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2
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(3)

and𝑋 is the real positive root of the equation
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(5)

In the next section, we will discuss the stability conditions of
the different situations.

4. Qualitative and Quantitative
Analysis of the Model

For each equilibrium point, we focus on whether the suscep-
tible human can survive.

4.1. Qualitative Analysis of Model (1). First, we discuss the
biological significance of the three threshold parameters that
could be obtained from the stability analysis of the boundary
equilibrium points. We will discuss the basic reproduction
numbers in the following.
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We define

𝑅
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0
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1
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)

,

𝑅
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)

𝑑
2

,

𝑅
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𝑒𝑝 (𝑥
1
+ 𝑥
2
)

(𝑑
1
+ 𝛽
2
𝑦
2
+ 𝛽
3
𝑥
2
)

,

(6)

where 𝑥
1
, 𝑥
2
, and 𝑦

2
are as defined in Section 3.

Each of the threshold parameters has a clear and distinct
biological meaning.

For 𝐸
1
, the susceptible human growth rate is 𝑒𝑝𝐾(1 − 𝛽

1
)

and themortality rate is (𝑑
1
𝑑+𝑏𝑑

1
𝛽
1
+𝑏𝛽
1
𝐾𝛽
3
−𝑏𝐾𝛽

3
𝛽
2

1
)/(𝑑+

𝑏𝛽
1
), whereas the infected human growth rate is 𝑒𝑝𝐾(1 − 𝛽

1
)

and the mortality rate is 𝑑
2
.

𝑅
1

0
< 1 implies that the susceptible predators will become

extinct, while 𝑅
2

0
< 1 implies that the infected predators

will become extinct. Hence, the combination of these two
conditions results in 𝐸

1
being locally asymptotically stable.

For 𝐸
2
, the susceptible human growth rate is 𝑒𝑝(𝑥

1
+ 𝑥
2
)

and the mortality rate is (𝑑
1
+ 𝛽
2
𝑦
2
+ 𝛽
3
𝑥
2
).

𝑅
2

0
> 1 means that the infected predator population will

exist.
𝑅
3

0
< 1 implies that the susceptible predator population

will become extinct. Hence, the combination of these two
conditions results in 𝐸

2
being locally asymptotically stable.

Similarly, 𝑅2
0
> 1 and 𝑅

3

0
> 1 are the locally asymptotically

stable conditions for 𝐸
3
.

These conclusions are summarized in Table 1.

4.2. Quantitative Analysis of Model (1). In order to determine
the stability conditions of the equilibrium points, we calcu-
lated the Jacobi matrix 𝐽 = (𝐽

𝑖𝑗
)
4×4

for the equations, where
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(7)

4.3. Stability of the Boundary Equilibrium Point, 𝐸
0

Theorem 1. The boundary equilibrium point 𝐸
0
(0, 0, 0, 0) is

always unstable.

Table 1: Asymptotic states for all equilibrium points.

Equilibrium point Feasible conditions Dynamic behavior

𝐸
1

𝑅
1

0
< 1; 𝑅2

0
< 1

Two types of
predator become
extinct

𝐸
2

𝑅
2

0
> 1; 𝑅3

0
< 1

Susceptible person
becomes extinct

𝐸
3

𝑅
2

0
> 1; 𝑅3

0
> 1 All species coexist

Proof of Theorem 1. We obtain the Jacobi matrix for 𝐸
0
(0, 0,

0, 0) as

𝐽
0
=

[

[

[

[

[

[
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1
0 0 0

𝑏𝛽
1

0 0 0
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]

]

]

]

]

]
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The eigenvalues of 𝐽
0
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𝜆
1
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1
,

𝜆
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2
.

(9)

As a result of 𝜆
2
= 𝑏 − 𝑏𝛽

1
> 0, the boundary equilibrium

point 𝐸
0
(0, 0, 0, 0) is always unstable.

4.4. Stability of the Boundary Equilibrium Point, 𝐸
1

Theorem2. If𝑅1
0
< 1;𝑅2

0
< 1, the boundary equilibrium point

𝐸
1
(𝐾𝑑(1−𝛽

1
)/(𝑑+𝑏𝛽

1
), 𝐾𝛽
1
𝑏(1−𝛽

1
)/(𝑑+𝑏𝛽

1
), 0, 0) is locally

asymptotically stable.

The proof of Theorem 2 is provided in the Appendix A.

4.5. Stability of the Boundary Equilibrium Point, 𝐸
2

Theorem 3. If 𝑅2
0
> 1 and 𝑅3

0
< 1, the boundary equilibrium

point𝐸
2
(𝑥
1
, 𝑥
2
, 0, 𝑦
2
) is locally asymptotically stable, where 𝑥

1
,

𝑥
2
, and 𝑦

2
are as defined in Section 3.

The proof of Theorem 3 is provided in the Appendix B.

4.6. Stability of the Interior Equilibrium Point, 𝐸
3

Propose 1. If 𝑅2
0
> 1 and 𝑅

3

0
> 1, the interior equilibrium

point 𝐸
3
(𝑥
∗

1
, 𝑥
∗

2
, 𝑦
∗

1
, 𝑦
∗

2
) is locally asymptotically stable.

We only numerically investigated the system’s behavior
around the interior feasible equilibrium point 𝐸

3
and provide

the necessary numerical proof in the next section.

4.7. Periodic Orbit of Model (1)

Theorem 4. No periodic orbit of system (1) exists in

Ω = {(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) | 𝑥
1
> 0, 𝑥

2
> 0, 𝑦

1
> 0, 𝑦

2
> 0} ⊂ 𝑅

4
.

(10)

The proof of Theorem 4 is provided in the Appendix C.
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Table 2: Simulation results for fixed parameters: 𝑏 = 0.8, 𝐾 = 15, 𝑝 = 0.45, 𝑑
1
= 0.02, 𝛽

2
= 0.005, 𝑒 = 0.05, 𝑑

2
= 0.07, 𝑑 = 0.01, and

𝛽
3
= 0.08.

Reproduction numbers’ range 𝛽
1
varied in a range Stable equilibrium point Dynamic behavior

𝑅
1

0
< 1; 𝑅2

0
< 1 0.79 < 𝛽

1
< 1 𝐸

1
Both predators become extinct

𝑅
2

0
> 1; 𝑅3

0
< 1 0.14 < 𝛽

1
< 0.79 𝐸

2
Susceptible predators become extinct

𝑅
2

0
> 1; 𝑅3

0
> 1 0 < 𝛽

1
< 0.14 𝐸

3
All the populations coexist

5. Numerical Results and Parameter Analysis

5.1. Numerical Results. Based on the analysis in the section
above, conversion rate 𝛽

1
and predation rate 𝑝 that are the

key parameters not only can affect all the basic reproduction
numbers but also can be controlled by human. 𝛽

1
(0 <

𝛽
1
< 1) represents the conversion rate from susceptible food

animals to infected animals. In this paper, the conversion
from susceptible food animals to infected animals is only due
to the addition of antibiotics in the feed of food animals. In
another word, even though without contacting, susceptible
food animals can also convert to infected animals by eat-
ing feed with antibiotics. Therefore, the conversion rate 𝛽

1

depends on the amount of antibiotics used in feed. For the
same feed, the amount of antibiotics added is larger, there will
be more susceptible animals that convert to infected animals,
and the conversion rate is bigger.

For further analysis of the steady-state of the equilibrium
points and the parameter effects of 𝛽

1
and 𝑝, we illustrate

some key numerical solutions.
When the parameter values are fixed at 𝑏 = 0.8, 𝐾 = 15,

𝑝 = 0.45, 𝑑
1
= 0.02, 𝛽

2
= 0.005, 𝑒 = 0.05, 𝑑

2
= 0.07, 𝑑 = 0.01,

𝛽
1
= 0.1, and𝛽

3
= 0.08, we can calculate all of the equilibrium

points as

𝐸
1
(1.5, 12, 0, 0) ,

𝐸
2
(2.72, 0.39, 0, 1.23) ,

𝐸
3
(1.46, 0.18, 0.93, 0.48) .

(11)

The basic reproduction numbers are 𝑅2
0
= 4.34 > 1, 𝑅3

0
=

1.23 > 1, and as seen in Propose 1, the equilibrium point
𝐸
3
(1.46, 0.18, 0.93, 0.48) is locally asymptotically stable.
The numerical proof of Propose 1 is as follows.
For the interior equilibrium point 𝐸

3
(1.46, 0.18, 0.93,

0.48), the Jacobi matrix is

𝐽
∗

3
=

[

[

[

[

[

[

−0.08 −0.08 −0.66 −0.66

0.02 −0.05 0 −0.005

0.01 0.09 0.02 −0.03

0.31 0.36 0.46 −0.01

]

]

]

]

]

]

. (12)

The eigenvalues of 𝐽∗
3
are 𝜆
1,2

= −0.05 ± 0.15𝑖, 𝜆
3
= −0.63,

and 𝜆
4
= −0.05, and all the real parts of the eigenvalues

are negative. Hence, the Routh-Hurwitz criteria are satisfied.
Therefore, 𝐸

3
(1.46, 0.18, 0.93, 0.48) is locally asymptotically

stable.

5.2. Role of the Parameter 𝛽
1
in Model (1). 𝛽

1
(0 < 𝛽

1
< 1)

represents the conversion rate from susceptible food animals

to infected animals and also represents the proportion of
antibiotics in the feed. Therefore, as 𝛽

1
plays a major role

in the outcome of the model, we will discuss its effect
on the system. For convenience, our numerical results are
summarized in Table 2. The following initial values are used:
𝑥
1
(0) = 0.5, 𝑥

2
(0) = 0.4, and 𝑦

1
(0) = 1, 𝑦

2
(0) = 2.

In order to clearly show population dynamics for each
case, three numerical results are given in the following for
different values of 𝛽

1
.

(a) 𝛽
1
= 0.1.

In this case, the basic reproduction number is 𝑅2
0
=

4.34 > 1, 𝑅3
0

= 1.23 > 1 and so the interior
equilibrium point 𝐸

3
(1.46, 0.18, 0.93, 0.48) is locally

asymptotically stable (the proof is provided above).
The system tends toward the coexistence equilibrium
(Figure 1). When increasing 𝛽

1
from zero to 0.14,

there is only a quantitative change, and the system’s
qualitative behavior remains the same. At this time,
all the species coexist.

(b) 𝛽
1
= 0.5.

In this case, the basic reproduction number is 𝑅2
0
=

2.41 > 1, 𝑅3
0
= 0.40 < 1 and so the equilibrium point

𝐸
2
(1.18, 1.93, 0, 0.52) is locally asymptotically stable

(Figure 2). The susceptible humans die out and the
other three population types coexist in the system.
This behavior remains for 0.14 < 𝛽

1
< 0.79.

(c) 𝛽
1
= 0.96.

In this case, we can calculate the basic reproduction
number as 𝑅

1

0
= 0.20 < 1, 𝑅2

0
= 0.19 < 1

and so the equilibrium 𝐸
1
(0.008, 0.59, 0, 0) is locally

asymptotically stable. Both of the human populations
are extinct, and there are only food animals remaining
in the system (Figure 3). In thewide range 0.79 < 𝛽

1
<

1, the behavior of the system is qualitatively the same.

5.3. Role of the Parameter 𝑝 in Model (1). Besides the
parameter 𝛽

1
, we are also concerned about the role of the

parameter𝑝 in the system.𝑝 is the predation rate in themodel
(1). As a result of the predator reproduction is dependent on
its predation rate, so the change of predation rate affected
both prey and predator. Owing to the predation rate can be
controlled artificially, so predation rate is also a key parameter
we care about. In this section, we will discuss the role of
parameter 𝑝 in model (1). The conclusions are summarized
in Table 3. The initial value are 𝑥

1
(0) = 0.5, 𝑥

2
(0) = 0.4,

𝑦
1
(0) = 1, and 𝑦

2
(0) = 2, and the parameter values except
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Figure 1: Evolution of the system populations for 𝛽
1
= 0.1; other

parameters are as defined in Table 2.
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Figure 2: Evolution of the system populations for 𝛽
1
= 0.5; other

parameters are as defined in Table 2.

𝑝 are 𝑏 = 0.8, 𝐾 = 15, 𝛽
1
= 0.1, 𝑑

1
= 0.02, 𝛽

2
= 0.005,

𝑒 = 0.05, 𝑑
2
= 0.07, 𝑑 = 0.01, and 𝛽

3
= 0.08.

We describe the influence of predation rate on the system
under three different situations.

(a) 𝑝 = 0.05.

In this case, the basic reproduction number are 𝑅1
0
=

0.03 < 1, 𝑅2
0

= 0.48 < 1, and the equilibrium
𝐸
1
(1.5, 12, 0, 0) is locally asymptotically stable. Both

of the human populations are extinct, and there are
only food animals remaining in the system (Figure 4).
It is similar to the situation in Figure 3. In the wide
range 0 < 𝑝 < 0.104, the behavior of the system is
qualitatively the same.
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Figure 3: Evolution of the system populations for 𝛽
1
= 0.96; other

parameters are as defined in Table 2.

(b) 𝑝 = 0.25.
In this case, the basic reproduction numbers are 𝑅2

0
=

2.41 > 1, 𝑅3
0
= 0.71 < 1 and so the equilibrium point

𝐸
2
(1.18, 1.93, 0, 0.52) is locally asymptotically stable

(Figure 5). It is similar to the situation in Figure 2.
The susceptible humans die out and the other three
population types coexist in the system. This behavior
remains for 0.104 < 𝑝 < 0.351.

(c) 𝑝 = 0.55.
In this case, the basic reproduction numbers are 𝑅2

0
=

5.30 > 1, 𝑅3
0

= 1.41 > 1 and so the interior
equilibrium point 𝐸

3
(1.00, 0.12, 0.94, 0.26) is locally

asymptotically stable. The system tends toward the
coexistence equilibrium (Figure 6). It is similar to the
situation in Figure 1.When increasing 𝑝 from 0.351 to
1, there is only a quantitative change, and the system’s
qualitative behavior remains the same. At this time,
all the species coexist.

5.4. Role of the Parameters 𝛽
1
and 𝑝 in the System. In

the following section, we discuss the effect of 𝛽
1
and 𝑝

together, while maintaining the other parameters fixed as
defined in Table 3.We observed the dynamics when changing
the parameters 𝛽

1
and 𝑝 between 0 and 1. The resulting

image is shown in Figure 7, in which three different regions
were obtained after 3000 time steps, which are indicated by
different colors.

In region A, four populations can coexist. In region B,
the susceptible humans die out, and the other populations
coexist. In regionC, there are only food animals in the system.

Based on the conclusion shown in Table 1, the three
regions need to meet the following conditions:

region A:

𝑅
2

0
> 1, 𝑅

3

0
> 1 ⇐⇒ 𝑝 <

1

(10.7 (1 − 𝛽
1
))

, (13)
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Table 3: Simulation results for fixed parameters: 𝑏 = 0.8,𝐾 = 15, 𝛽
1
= 0.1, 𝑑

1
= 0.02, 𝛽

2
= 0.005, 𝑒 = 0.05, 𝑑

2
= 0.07, 𝑑 = 0.01, and 𝛽

3
= 0.08.

Reproduction numbers’ range 𝑝 varied in a range Stable equilibrium point Dynamic behavior
𝑅
1

0
< 1; 𝑅2

0
< 1 0 < 𝑝 < 0.104 𝐸

1
Both predators become extinct

𝑅
2

0
> 1; 𝑅3

0
< 1 0.104 < 𝑝 < 0.351 𝐸

2
Susceptible predators become extinct

𝑅
2

0
> 1; 𝑅3

0
> 1 0.351 < 𝑝 < 1 𝐸

3
All the populations coexist
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Figure 4: Evolution of the system populations for 𝑝 = 0.05; other
parameters are as defined in Table 3.
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Figure 5: Evolution of the system populations for 𝑝 = 0.25; other
parameters are as defined in Table 3.

region B:

𝑅
2

0
> 1, 𝑅

3

0
< 1 ⇐⇒ 𝑝 >

1

(10.7 (1 − 𝛽
1
))

,

𝛽
1
>

(0.469 (𝑝
2
− 0.081𝑝 + 0.008) (𝑝 − 0.091))

((𝑝 + 0.0035) 𝑝)

,

(14)
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Figure 6: Evolution of the system populations for 𝑝 = 0.55; other
parameters are as defined in Table 3.
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Figure 7: Changing 𝛽
1
and 𝑝 while maintaining the other param-

eters and the initial values fixed as defined in Table 3, three regions
were obtained after 3000 time steps.

region C:

𝑅
1

0
< 1, 𝑅

2

0
< 1

⇐⇒ 𝛽
1
<

(0.469 (𝑝
2
− 0.081𝑝 + 0.008) (𝑝 − 0.091))

((𝑝 + 0.0035) 𝑝)

.

(15)
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At the same time, the divide lines of the three regions can be
calculated. Divide line of region A and region B:

𝑅
3

0
= 1

⇐⇒ 𝛽
1
=

(0.469 (𝑝
2
− 0.081𝑝 + 0.008) (𝑝 − 0.091))

((𝑝 + 0.0035) 𝑝)

.

(16)

Divide line of region B and region C:

𝑅
2

0
= 1 ⇐⇒ 𝑝 =

1

(10.7 (1 − 𝛽
1
))

. (17)

6. Discussion

Three steady states were obtained from the model described
in this paper: in the first state, all populations coexist in the
system; in the second state, there are no susceptible humans
in the system, but the others coexist; and in the third state,
only food animals remain in the system. Among these cases,
only the first is a favorable outcome for humans. As shown
in Figure 4, for a fixed 𝑝, as the value of 𝛽

1
gets bigger,

the possibility of coexistence will be smaller, even becoming
impossible. Because the predation rate 𝑝 cannot be easy
controlled, in order to achieve the first state, we clearly need
to reduce the value of 𝛽

1
.

On the other hand, the recent increase in society’s
attention to food safety suggests that food animals that
consume antibiotic-containing feed might be consumed less
by humans, which would result in a decrease in the predation
rate 𝑝. At this point, to achieve coexistence, a smaller value of
𝛽
1
is needed.Therefore, proper control of the amount of feed

antibiotics used is necessary.

How can the value of 𝛽
1
be reasonably controlled? When

𝑅
2

0
> 1 and 𝑅

3

0
> 1, the four species can coexist, and

we obtain the relationship between 𝛽
1
and 𝑝 shown in

Section 5.2. Therefore, we can adjust the value of 𝛽
1
to satisfy

the condition of coexistence.
As the value of 𝑝 is not easy to measure and control, we

instead need to focus on controlling the amount of antibiotics
in the feed. As the value of 𝑝 is expected to decrease with
increased public awareness of food safety, controlling the
value of 𝛽

1
will become increasingly important. If we ignore

the amount of antibiotics used in feed, and the predation rate
continues to decrease, the antibiotic use rate could potentially
surpass our “safetymargin”without notice. In such a scenario,
the human population will be predominantly susceptible
and could become extinct in the most extreme case. In
order to avoid this situation, proper control of the amount
of antibiotics used in feed for food animals is extremely
necessary.

Appendices

A. Proof of Theorem 2

Proof. Let

𝑅
1

0
=

𝑒𝑝𝐾 (1 − 𝛽
1
) (𝑑 + 𝑏𝛽

1
)

(𝑑𝑑
1
+ 𝑑
1
𝑏𝛽
1
+ 𝛽
3
𝑏𝛽
1
𝐾 − 𝛽

3
𝑏𝛽
2

1
𝐾)

,

𝑅
2

0
=

𝑒𝑝𝐾 (1 − 𝛽
1
)

𝑑
2

.

(A.1)

For the equilibrium point 𝐸
1
(𝐾𝑑(1 −𝛽

1
)/(𝑑 + 𝑏𝛽

1
), 𝐾𝛽
1
𝑏(1 −

𝛽
1
)/(𝑑 + 𝑏𝛽

1
), 0, 0), the Jacobi matrix is

𝐽
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑏𝑑 (𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

𝑏𝑑 (𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

𝑝𝐾𝑑 (𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

𝑝𝐾𝑑 (𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

𝑏𝛽
1

−𝑑

𝑝𝑏𝛽
1
𝐾(𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

𝑝𝑏𝛽
1
𝐾(𝛽
1
− 1)

(𝑑 + 𝑏𝛽
1
)

0 0 𝐽
33

0

0 0

𝛽
1
𝑏𝛽
3
𝐾(1 − 𝛽

1
)

(𝑑 + 𝑏𝛽
1
)

−𝑑
2
+ 𝐾𝑒𝑝 − 𝑒𝑝𝛽

1
𝐾

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (A.2)

where 𝐽
33

= −(𝑑𝑑
1
+ 𝑑
1
𝑏𝛽
1
− 𝑒𝑝𝐾𝑑 + 𝑒𝑝𝐾𝑑𝛽

1
− 𝑒𝑝𝑏𝛽

1
𝐾 +

𝑒𝑝𝑏𝛽
2

1
𝐾 + 𝛽

3
𝑏𝛽
1
𝐾 − 𝛽

3
𝑏𝛽
2

1
𝐾)/(𝑑 + 𝑏𝛽

1
).

The eigenvalues of 𝐽
1
are

𝜆
1
= − (𝑑𝑑

1
+ 𝑑
1
𝑏𝛽
1
− 𝑒𝑝𝐾𝑑 + 𝑒𝑝𝐾𝑑𝛽

1
− 𝑒𝑝𝑏𝛽

1
𝐾

+ 𝑒𝑝𝑏𝛽
2

1
𝐾 + 𝛽

3
𝑏𝛽
1
𝐾 − 𝛽

3
𝑏𝛽
2

1
𝐾)

⋅ (𝑑 + 𝑏𝛽
1
)
−1

𝜆
2
= −𝑑
2
+ 𝐾𝑒𝑝 − 𝑒𝑝𝛽

1
𝐾

𝜆
3
= (−𝑏𝑑 − 𝑑

2
+ (𝑏
2
𝑑
2
− 2𝑏𝑑

3
+ 𝑑
4

+ 4𝑏𝑑
3
𝛽
1
+ 8𝑏
2
𝛽
2

1
𝑑
2

−8𝑏
2
𝛽
1
𝑑
2
+ 4𝑏
3
𝛽
3

1
𝑑 − 4𝑏

3
𝛽
2

1
𝑑)

1/2

) ,

⋅ (2 (𝑑 + 𝑏𝛽
1
))
−1
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𝜆
4
= (−𝑏𝑑 − 𝑑

2
− (𝑏
2
𝑑
2
− 2𝑏𝑑

3
+ 𝑑
4
+ 4𝑏𝑑

3
𝛽
1

+ 8𝑏
2
𝛽
2

1
𝑑
2
− 8𝑏
2
𝛽
1
𝑑
2

+ 4𝑏
3
𝛽
3

1
𝑑 − 4𝑏

3
𝛽
2

1
𝑑)

1/2

)

⋅ (2 (𝑑 + 𝑏𝛽
1
))
−1

.

(A.3)

According to 𝑅1
0
< 1, 𝑅2

0
< 1, we get 𝜆

1
< 0, 𝜆

2
< 0, and

(𝑏𝑑 + 𝑑
2
)

2

− (𝑏
2
𝑑
2
− 2𝑏𝑑

3
+ 𝑑
4
+ 4𝑏𝑑

3
𝛽
1
+ 8𝑏
2
𝛽
2

1
𝑑
2

− 8𝑏
2
𝛽
1
𝑑
2
+ 4𝑏
3
𝛽
3

1
𝑑 − 4𝑏

3
𝛽
2

1
𝑑)

= 4𝑏𝑑 (1 − 𝛽
1
) (𝑑 + 𝑏𝛽

1
)
2

> 0.

(A.4)

The real parts of 𝜆
3
, 𝜆
4
are both negative. Using the Routh-

Hurwitz criteria, the equilibrium point 𝐸
1
(𝐾𝑑(1 − 𝛽

1
)/(𝑑 +

𝑏𝛽
1
), 𝐾𝑏𝛽

1
(1 − 𝛽

1
)/(𝑑 + 𝑏𝛽

1
), 0, 0) is locally asymptotically

stable.

B. Proof of Theorem 3

Proof. For the equilibrium point 𝐸
2
(𝑥
1
, 𝑥
2
, 0, 𝑦
2
), where

𝑥
1
=

𝑑
2
(𝐾𝑒𝑝𝑑 + 𝐾𝑒𝑝𝑏 − 𝑑

2
𝑏 − 𝐾𝑒𝑝𝑏𝛽

1
)

(𝑒𝑝 (𝐾𝑒𝑝𝑑 + 𝐾𝑒𝑝𝑏 − 𝑑
2
𝑏))

,

𝑥
2
=

𝐾𝛽
1
𝑑
2
𝑏

(𝐾𝑒𝑝𝑑 + 𝐾𝑒𝑝𝑏 − 𝑑
2
𝑏)

,

𝑦
2
=

𝑏 (𝐾𝑒𝑝 − 𝐾𝑒𝑝𝛽
1
− 𝑑
2
)

(𝑒𝑝
2
𝐾)

.

(B.1)

For the convenient expression, let

𝐴 = 𝐾𝑒𝑝𝑑 + 𝐾𝑒𝑝𝑏 − 𝑑
2
𝑏,

𝐵 = 𝐾𝑒𝑝𝑑 + 𝐾𝑒𝑝𝑏 − 𝑑
2
𝑏 − 𝐾𝑒𝑝𝑏𝛽

1
,

𝐶 = 𝑏 (𝐾𝑒𝑝 − 𝐾𝑒𝑝𝛽
1
− 𝑑
2
) ,

𝑀 = 𝐴 (𝐾𝑒𝑝𝐶 + 𝐵𝑏) > 0,

𝑀
1
= 𝐴𝐶𝛽

2
+ 𝛽
3
𝐾
2
𝛽
1
𝑑
2
𝑏𝑒𝑝
2
− (𝑑
2
− 𝑑
1
) 𝐴𝑒𝑝
2
𝐾.

(B.2)

So the equilibrium point and reproduction number can be
expressed by

𝑥
1
=

𝑑
2
𝐵

(𝐴𝑒𝑝)

, 𝑥
2
=

𝐾𝛽
1
𝑑
2
𝑏

𝐴

,

𝑦
2
=

𝐶

(𝑒𝑝
2
𝐾)

,

𝑅
3

0
=

𝑑
2
𝐴𝑒𝑝
2
𝐾

(𝐴𝐶𝛽
2
+ 𝛽
3
𝐾
2
𝛽
1
𝑑
2
𝑏𝑒𝑝
2
+ 𝑑
1
𝐴𝑒𝑝
2
𝐾)

.

(B.3)

Because of 𝑅3
0
< 1, it is easy to get𝑀

1
> 0.

The Jacobi matrix is

𝐽
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−

𝑏𝑑
2
𝐵

𝐴𝑒𝑝𝐾

−

𝑏𝑑
2
𝐵

𝐴𝑒𝑝𝐾

−

𝑑
2
𝐵

𝐴𝑒

−

𝑑
2
𝐵

𝐴𝑒

𝑏𝛽
1

−

(𝐶 + 𝐾𝑒𝑝𝑑)

𝐾𝑒𝑝

−

𝑝𝐾𝛽
1
𝑑
2
𝑏

𝐴

−

𝑝𝐾𝛽
1
𝑑
2
𝑏

𝐴

0 0 −

(𝐴𝐶𝛽
2
+ 𝛽
3
𝐾
2
𝛽
1
𝑑
2
𝑏𝑒𝑝
2
)

(𝑒𝑝
2
𝐾𝐴)

+ 𝑑
2
− 𝑑
1

0

𝐶

𝑝𝐾

𝐶

𝑝𝐾

(𝐴𝐶𝛽
2
+ 𝛽
3
𝐾
2
𝛽
1
𝑑
2
𝑏𝑒𝑝
2
)

(𝑒𝑝
2
𝐾𝐴)

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (B.4)

The characteristic equation is

𝜆
4
+ 𝐴
1
𝜆
3
+ 𝐴
2
𝜆
2
+ 𝐴
3
𝜆 + 𝐴

4
= 0, (B.5)

where

𝐴
1
=

(𝑀
1
+ 𝐾𝑒𝑝

2
𝐵 (𝑏 + 𝑑))

(𝐴𝑒𝑝
2
𝐾)

> 0,

𝐴
2
=

(𝑀
1
𝐵𝐾𝑒𝑝 (𝑏 + 𝑑) + 𝑝𝑑

2
𝑀𝐴)

(𝐾
2
𝑒
2
𝑝
3
𝐴
2
)

> 0,

𝐴
3
=

𝑑
2
(𝑀
1
𝑀+𝐴

2
𝐵𝐶𝑒𝑝
2
𝐾)

(𝐾
3
𝑒
3
𝑝
4
𝐴
2
)

> 0,

𝐴
4
=

𝑀
1
𝐴𝐵𝐶𝑑

2

(𝐾
3
𝑒
3
𝑝
4
𝐴
2
)

> 0,

𝐴
1
𝐴
2
− 𝐴
3

= ((𝑏 + 𝑑)

⋅ (𝑀
1
𝐾𝑒𝑝
2
𝐵𝑏 +𝑀

1

2
+ 𝑝
2
𝑑
2
𝑀𝐴 +𝑀

1
𝐾𝑒𝑝
2
𝐵𝑑)

+ 𝐴
2
𝑝
2
𝑑
2
(𝑏𝑑
2
𝐶 + (𝑏 + 𝑑) 𝐵𝑏))
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⋅ (𝐾
2
𝑒
2
𝑝
4
𝐴
3
)

−1

> 0,

𝐴
1
𝐴
2
𝐴
3
− 𝐴
2

3
− 𝐴
2

1
𝐴
4

= 𝑑
2
𝐵𝐴 (𝑏𝑑

2
𝐶 + (𝑏 + 𝑑) 𝐵𝑏)

⋅ (𝑑
2
𝐵𝑒𝑝
4
𝐾𝐶𝐴
3
+𝑀
1
𝑑
2
𝑀𝑝
2
𝐴 +𝑀

1

3

+ 𝑀
1

2
𝐵𝐾𝑒𝑝

2
𝑑 +𝑀

1

2
𝐵𝐾𝑒𝑏𝑝

2
)

⋅ (𝐾
5
𝑒
5
𝑝
8
𝐴
5
)

−1

> 0.

(B.6)

Using the Routh-Hurwitz criteria, the equilibrium point
𝐸
2
(𝑥
1
, 𝑥
2
, 0, 𝑦
2
) is locally asymptotically stable.

C. Proof of Theorem 4

Proof. If a periodic orbit of model (1) in Ω exists, its projec-
tion onto some two-dimensional subspace of 𝑅4 should also
be periodic. Therefore, we have to investigate if any periodic
solution exists or not an all two-dimensional subspace.There
are six different two-dimensional subsystems of (1).

For the subsystem,

�̇�
1
= 𝑏𝑥
1
(1 −

𝑥
1
+ 𝑥
2

𝐾

) − 𝑏𝛽
1
𝑥
1
− 𝑝𝑥
1
𝑦
1
− 𝑝𝑥
1
𝑦
2
,

�̇�
2
= 𝑏𝛽
1
𝑥
1
− 𝑝𝑥
2
𝑦
1
− 𝑝𝑥
2
𝑦
2
− 𝑑𝑥
2
.

(C.1)

We choose the Dulac function 𝐵
1
= 1/𝑥

1
𝑥
2
, to evaluate the

following expression:

𝜕 (𝐵
1
�̇�
1
)

𝜕𝑥
1

+

𝜕 (𝐵
1
�̇�
2
)

𝜕𝑥
2

= −

𝑏

𝐾𝑥
2

−

𝑏𝛽
1

𝑥
2

2

< 0. (C.2)

For the other five subsystems, we choose the Dulac functions

𝐵
2
=

1

𝑥
2
𝑦
1

, 𝐵
3
=

1

𝑦
1
𝑦
2

, 𝐵
4
=

1

𝑥
1
𝑦
1

,

𝐵
5
=

1

𝑥
1
𝑦
2

, 𝐵
6
=

1

𝑥
2
𝑦
2

;

(C.3)

similarly

𝜕 (𝐵
2
�̇�
2
)

𝜕𝑥
2

+

𝜕 (𝐵
2
̇𝑦
1
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𝜕𝑦
1
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𝑥
1

𝑥
2

2
𝑦
1

< 0,
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3
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1
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𝜕𝑦
1

+
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3
̇𝑦
2
)

𝜕𝑦
2
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𝛽
3
𝑥
2

𝑦
2

2

< 0,

𝜕 (𝐵
4
�̇�
1
)

𝜕𝑥
1

+

𝜕 (𝐵
4
̇𝑦
1
)

𝜕𝑦
1

= −

𝑏

𝐾𝑦
1

< 0,

𝜕 (𝐵
5
�̇�
1
)

𝜕𝑥
1

+

𝜕 (𝐵
5
̇𝑦
2
)

𝜕𝑦
2

= −

𝑏

𝐾𝑦
2

−

𝛽
3
𝑥
2
𝑦
1

𝑥
1
𝑦
2

2

< 0,

𝜕 (𝐵
6
�̇�
2
)

𝜕𝑥
2

+

𝜕 (𝐵
6
̇𝑦
2
)

𝜕𝑦
2

= −

𝑏𝛽
1
𝑥
1

𝑥
2

2
𝑦
2

−

𝛽
3
𝑦
1

𝑥
2

2

< 0.

(C.4)

Now, using the Bendixson-Dulac negative criterion, no peri-
odic solution in these two dimensions can exist. Therefore,
the solution of (1) in 𝑅4 also cannot oscillate persistently.
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