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Identification of novel candidate indicators
for assessing zinc status during pregnancy
in mice from microarray data
Wan Xu1,2, Hongyan Wu2 and Lixin Shang2*

Abstract

Background: This study aimed to identify potential zinc status indicators and to clarify the mechanisms underlying
zinc deficiency-induced organ damage and mortality in mice.

Methods: The dataset GSE97112, including placental tissues of mice fed diets containing normal and low concentrations
of zinc, was downloaded and preprocessed. Differentially expressed genes (DEGs) were calculated and identified for zinc
deficiency-related gene clusters by using the weighed gene co-expression network analysis (WGCNA) algorithm. The
Gene Ontology (GO)-Biological Process (BP) and KEGG pathway of genes in the zinc deficiency-related WGCNA modules
were analyzed, and the protein-protein interaction (PPI) network was constructed. In addition, modules of the PPI network
were identified, and transcription factors (TFs) and miRNAs regulating DEGs were predicted. Finally, drug-gene interactions
were selected.

Results: A total of 1055 DEGs containing 586 up- and 469 down-regulated genes were obtained. Three modules based
on WGCNA had high correlation with degree of zinc deficiency. Annexin A1 (ANXA1), C-C motif chemokine receptor 3
(CCR3), C-X-C motif chemokine receptor 2 (CXCR2), and interleukin 2 (IL-2) were hub nodes in the PPI network. Three
modules in the PPI network were identified, including module 1 associated with olfactory conduction and module 2
associated with inflammatory response. ANXA1, CCR3, and IL-2 were regulated by TFs. In addition, CXCR2, ANXA, and
IL-2 were drug targets.

Conclusion: CXCR2, ANXA1, and CCR3 as well as olfactory receptor-related genes (proteins) may be used as biomarkers to
assess zinc status in mice.
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Background
Zinc as an important metal is involved in numerous
metabolic processes. Inadequate zinc intake is highly
prevalent worldwide. Wessells and Brown have esti-
mated that at least 17% of the world’s population suffers
from inadequate zinc intake [1]. Zinc is also an indis-
pensable trace element during pregnancy, and zinc defi-
ciency because of maternal nutritional deficiency can
result in severe fetal growth restriction [2]. Severe zinc
deficiency in pregnancy can result in increased fetal loss
and high rates of congenital malformations in several

organs of surviving fetuses [3, 4]. Furthermore, inad-
equate zinc intake is thought to be a leading cause of in-
fant mortality [5].
Plasma zinc is widely used as a biomarker of zinc status

[6, 7]. However, decrease of serum zinc concentration is
only detectable after long-term or severe depletion, mak-
ing serum zinc an unreliable biomarker of zinc status [6].
Novel zinc biomarkers, such as the erythrocyte linoleic
acid:dihomo-γ-linolenic acid ratio, negatively correlate
with plasma Zn status [8–10]. However, there is no valid,
sensitive, and reliable biomarker for zinc deficiency, par-
ticularly for marginal zinc deficiency. Previous studies
have shown that changes in expression of several zinc
transporters (ZnTs) influence zinc homeostasis and me-
tabolism and subsequently change zinc status [11–14].
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Moreover, dysregulation of other molecules, such as cyto-
kines [15], ProSAP/Shank family members [16], antioxi-
dant enzymes, and heat shock proteins [17] are associated
with zinc status. Therefore, abnormal expression of genes
could be a potential biomarker for zinc deficiency during
pregnancy in the placenta.
In this study, microarray technology and bioinformatics

methods were used to identify genes whose expression
was influenced by zinc deficiency using the microarray
data GSE97112 [18], which has been used to illustrate the
relationship between abnormal gene expression and mean
arterial pressure changes during gestation in mice. A
systematic bioinformatics analysis of GSE97112 was
conducted in the study. The results may help to identify
potential zinc status indicators and to clarify the mecha-
nisms underlying zinc deficiency-induced organ damage
and mortality.

Materials and methods
Data downloading and pre-processing
The original CEL file of the dataset GSE97112 [18] was
downloaded from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/). The samples were placental
tissues of seven-week-old C57Bl/6J female mice fed a diet
containing different concentrations of zinc from 6weeks
prior to gestation to the conclusion of experiments. The an-
imals were divided into the following groups: control (40
mg/kg zinc, 20 cases) and zinc deficient (10mg/kg zinc, 12
cases). The chip platform was Affymetrix Mouse Gene 2.1
STArray, and the data were downloaded in June 2018.
The raw data were read using the R 3.4.0 extension pack-

age oligo [19] (Version 1.44.0, http://www.bioconductor.-
org/packages/release/bioc/html/oligo.html), preprocessed
using the robust multi-array average (RMA) method [20,
21] for data normalization, and were annotated using R
package mogene21sttranscriptcluster.db (version 8.7.0,
http://bioconductor.org/packages/release/data/annotation
/html/mogene21sttranscriptcluster.db.html) to remove
probes that did not match the transcript (Gene symbol).
For different probes mapped to the same gene, the mean
value of the different probes was taken as the final expres-
sion value of the gene.

Differential expression analysis of genes
Differentially expressed genes (DEGs) were calculated using
the empirical Bayes linear model in the R package limma
[22] (Version 3.32.5, http://bioconductor.org/packages/re-
lease/bioc/html/limma.html) for the P value of all genes.
The significance threshold for DEGs was a P value < 0.05.

Disease related modules and genes by weighed gene
co-expression network analysis (WGCNA)
The WGCNA algorithm was used to discover gene clus-
ters (or modules) in high-throughput data that were

highly correlated with the sample phenotype. Modular
characteristic genes in these modules were summarized,
and the modules that were significantly associated with
the phenotype were further evaluated.
The R package WGCNA [23] (Version 1.61, https://

cran.r-project.org/web/packages/WGCNA/) was used to
identify gene sets that were significantly associated with
zinc deficiency from DEGs. By setting a series of
soft-thresholding power values, the correlation coeffi-
cient and the average connection degree of the connec-
tion degrees k and p(k) under each power value were
calculated. The threshold was a correlation coefficient >
0.85. Based on clustering and dynamic pruning, the
highly correlated genes were aggregated into modules.
Finally, the WGCNA modules associated with the
disease (zinc deficiency) were identified.

Functional enrichment analysis
The commonly used enrichment analysis tool Database
for Annotation Visualization and Integrated Discovery
(DAVID) [24] (version 6.8, https://david-d.ncifcrf.gov/)
that was based on hypergeometric distribution was used
to analyze the Gene Ontology (GO)-Biological Process
(BP) [25] and KEGG pathway [26] of genes in the zinc
deficiency-related WGCNA modules. Results with a P
value < 0.05 were considered to be significantly enriched.

Protein-protein interaction (PPI) network construction
PPI network is available for identification of cellular
functions of proteins in various organisms [27], facilitat-
ing to identification of key proteins associated with zinc
deficiency. The interactions between gene-encoded pro-
teins in the disease-related WGCNA modules were pre-
dicted based on the STRING [28] (version: 10.0, http://
www.string-db.org/) database. The input gene set was
the genes in WGCNA modules which were significantly
associated with zinc deficiency. The species was Mus
musculus, and the parameter of PPI score was set to 0.7
(high confidence). Protein nodes were all included in the
disease-related WGCNA modules.
After obtaining the PPI relationship, a network diagram

was constructed using Cytoscape software [29]. Then the
CytoNCA [30] plugin (version 2.1.6, http://apps.cytosca-
pe.org/apps/cytonca) was used to analyze the topological
properties of the network without weighting. The Degree
Centrality (DC), Betweenness Centrality (BC), and Closeness
Centrality (CC) were obtained and nodes were ranked based
on topological properties of the network. The most import-
ant node of the PPI network involved in protein interaction
was identified and designated as the hub protein.

Modules of the PPI network
Using the MCODE plugin [31] of Cytoscape software,
the function module was identified, and the relationship
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between network topology and network components
was obtained using default parameters (Degree Cutoff =
2, Node Score Cutoff = 0.2, K-core = 2, Max.Depth =
100). DAVID was also used to perform GO-BP and
KEGG pathway enrichment analysis for genes in mod-
ules with threshold scores > 4.

Predicting transcription factors (TFs) and miRNAs regulating
DEGs
TFs and miRNAs can play important regulatory roles in
gene expression. To better understand the regulatory
mechanism affected by zinc deficiency, TFs and miRNAs
that could regulate key genes/proteins associated with zinc
deficiency were predicted. In this study, the WebGestalt
GAST [32] (http://www.webgestalt.org/option.php) tool
was used for prediction of miRNA and TFs in the PPI
network. The Overrepresentation Enrichment Analysis
(ORA) enrichment method was used to predict miRNA-
target and TF-target with the minimum enriched gene
number of 5.

Therapeutic drug prediction
The Drug-Gene Interaction database (DGIdb) database
[33] (http://www.dgidb.org/) was used to predict genes
targeted by the therapeutic drug, which will provide a new
perspective for designing effective targeted drugs for pre-
vention of zinc deficiency. Literature-supported drug-gene
interactions were selected to construct network maps.

Results
Differential expression analysis
After data preprocessing, a gene expression matrix
containing 32 samples and 23,992 genes was obtained.
The distribution of gene expression levels before and
after standardization showed that the gene expression
levels between samples were nearly a straight line after
normalization, which was suitable for further analysis.
Based on the determined thresholds, 1055 DEGs con-

taining 586 up- and 469 down-regulated genes were ob-
tained. The bidirectional clustering heat map of DEGs was
shown in Fig. 1. The results showed that DEGs could

Fig. 1 Heatmap of differentially expressed genes (DEGs) in 12 zinc deficient samples and 20 control samples from placenta tissues of mice. Red
and green represent high and low expression, respectively, and white refers to missing expression values
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clearly distinguish the samples according to the zinc
concentration, indicating that these genes showed sig-
nificant changes following treatment with different
concentrations of zinc, which suggested that these
were genes potentially associated with degree of zinc
deficiency.

Modules and genes screened by WGCNA
To further screen genes associated with zinc deficiency,
we performed a WGCNA analysis of the differential
gene expression matrices obtained in the previous step.
According to the method, the power value when the cor-
relation coefficient squared value of connection degree k
and p(k) for the first time to reach 0.85 (green line) were
selected, that was, power = 7; under this power param-
eter, the average connectivity of the constructed
co-expressing network nodes was 0.875, as shown in
Fig. 2 (right). In addition, k was negatively correlated
with p(k), indicating that the selected power value could
be used for establishing a gene-scale network.
Based on clustering and dynamic pruning, 1055 highly

correlated genes were clustered into 5 modules, where
the grey module was a collection of genes that could not
be aggregated to other modules. The 5 modules were
clustered when the correlation coefficient was greater
than 0.8, that was, the module with the dissimilarity
coefficient less than 0.2 was merged. As a result, 4
WGCNA modules were constructed.
Two methods were used to mine modules related to

degree of zinc deficiency: the correlation between each
module’s feature vector gene and the degree of zinc defi-
ciency was calculated; the correlation between the traits
and the expression of each gene in each module as the
significance of the trait in the module, with greater

significance signifying greater relevance between the
module and the trait (Fig. 2, left). As a result, three mod-
ules (except for the gray) had high correlation with de-
gree of zinc deficiency (Fig. 2, right). The yellow module
contained 160 genes including 81 up-regulated and 79
down-regulated genes. The blue module contained 469
differential genes, of which 292 were up-regulated and
177 were down-regulated. The brown module contained
185 genes, of which 104 were up-regulated and 81 were
down-regulated.

Functional terms and pathways enriched by DEGs in
WGCNA modules
GO-BP enrichment analysis and KEGG pathway enrich-
ment analysis results showed that the genes in the blue
module were mainly associated with chloroplast trans-
membrane transport and cell meiosis. The genes in the
brown module were mainly enriched in GO-BP terms of
transcriptional regulation, and multicellular organism
development, as well as pathways related to glyceropho-
spholipid metabolism, and the transcription factor
regulatory of the FOXO family. The yellow module gene
in GO-BP terms was related to negative regulation of
myoblast differentiation, multicellular organism develop-
ment, and cell differentiation, as well as pathways of
cytokines, and transport and catabolic of peroxidases.

PPI network constructed by DEGs in WGCNA modules
PPI analysis of DEGs in three WGCNA modules was
performed. Two hundred forty-six PPI relationship pairs
for 150 DEGs were obtained. Among these, 75 genes
were up-regulated and 75 genes were down-regulated.
The topological properties of the PPI network were
analyzed, and the DC, BC, and CC scores of the top 30

Fig. 2 Results of the weighed gene co-expression network analysis (WGCNA) module and trait correlation analysis. Left panel: Trait-related
modules were mined based on the correlation between traits and module eigenvector genes and p values. Right panel: the mean of correlation
coefficients between traits and gene expression levels in each module as the significant of the trait in the module
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nodes were shown in Table 1. DEGs of Annexin A1
(ANXA1), C-C motif chemokine receptor 3 (CCR3),
C-X-C motif chemokine receptor 2 (CXCR2), dynein
light chain, LC8-type 2 (DYNLL2), interleukin 2 (IL-2),
SEC13 homolog, nuclear pore and COPII coat complex
component (SEC13), and transforming growth factor
beta 1 (TGFB1) were in three ranks, which might repre-
sent hub nodes in the network.
In addition, 7 modules were identified from the PPI net-

work. As shown in Fig. 3, there were 3 modules with
score > 4, where module 1 contained 8 up-regulated genes
and 6 down-regulated genes, all of which were olfactory
receptor-related genes. Module 2 included 4 up-regulated
genes and 4 down-regulated genes, including ANXA1,
CCR3 and CXCR2. Module 3 contained 4 up-regulated
genes and 2 down-regulated genes.
The GO-BP and KEGG pathway analyses were per-

formed on the genes grouped in the three modules. The
results in Table 2 showed that module 1 was mainly in-
volved in olfactory conduction and protein-coupled recep-
tor signaling pathways. Module 2 was mainly enriched in
BP terms related to signal transduction, inflammatory re-
sponse, and angiogenesis. Module 3 was mainly involved
in translation, rRNA, and ribosome related pathways.

DEGs were regulated by miRNAs and TFs
Based on Webgestalt prediction, 303 TF-Target relation-
ship pairs were obtained, including 35 TFs and 85 target
genes. Forty-one miRNA-target relationship pairs were
obtained, including 5 miRNAs and 23 target genes. As
shown in Fig. 4, The TFs with the highest number of tar-
get genes were summarized. Calcium voltage-gated
channel subunit alpha1 a (CACNA1a), CACNA1d, and
mitogen-activated protein kinase kinase 6 (MAP2K6)
were simultaneously regulated by multiple TFs and

Table 1 Top 30 nodes ranked by Degree Centrality (DC),
Betweenness Centrality (BC), and Closeness Centrality (CC) in
the protein-protein interaction network
Genes Degree Genes Betweenness Genes Closeness

Olfr316 13 IL-2 1952.8 Cd247 1.11E-02

Olfr1392 13 Sec13 1905.2 H2-M10.1 1.11E-02

Olfr555 13 H2-M10.1 1491.2 Sec13 1.11E-02

Olfr308 13 Tmed2 1216.2 Cd8b1 1.11E-02

Olfr384 13 Cd247 1116.2 IL-2 1.11E-02

Olfr323 13 Ccr3 1109 Tmed2 1.11E-02

Olfr790 13 Seh1l 1020 Shc3 1.11E-02

Olfr1090 13 Casc3 936 Seh1l 1.11E-02

Olfr804 13 Dynll2 888 Ccr3 1.11E-02

Olfr365 13 Cd8b1 624.6 Sec22b 1.11E-02

Olfr646 13 Shc3 591.8 Mios 1.10E-02

Olfr872 13 Tgfb1 538 Tgfb1 1.10E-02

Olfr734 13 Notch1 470 Ntrk2 1.10E-02

Olfr171 13 Exosc3 462 Dvl3 1.10E-02

Anxa1 10 Dvl3 418.8 Notch1 1.10E-02

IL-2 9 Prkag2 354 Serpinb6b 1.10E-02

Ccr3 9 Anxa1 348 Serpinb5 1.10E-02

Cxcr2 8 Ntrk2 324.8 Serpinb9c 1.10E-02

Insl5 7 Egf 266.6 Hand2 1.10E-02

Npw 7 Utp18 236 Il18 1.10E-02

Gal 7 Rpl28 215.3 Dynll2 1.10E-02

S1pr4 7 Rpl18a 215.3 Pdgfra 1.10E-02

P2ry13 7 Rpl35a 215.3 Casc3 1.10E-02

Dynll2 6 Pdgfra 187.2 Egf 1.10E-02

Abcg3 5 Tfrc 120 Hgf 1.10E-02

Exosc3 5 Wnt3a 120 Gfra1 1.10E-02

Tgfb1 5 Hgf 30.6 Anxa1 1.10E-02

Sec13 5 Abcg3 20 Cxcr2 1.10E-02

Rpl28 5 Atm 12 Insl5 1.10E-02

Rpl18a 5 Cxcr2 9 Npw 1.10E-02

Fig. 3 Three modules with score > 4 identified from the protein-protein interaction (PPI) network. Red circles indicate up-regulated genes, and
green circles represent down-regulated genes. The edges refer to the interactions between two nodes
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miRNAs. According to the results of functional and
pathway analysis, these genes were involved in solute
transmembrane transport, positive regulation of apoptosis,
multicellular organism development, and biological
process of MAPK activity activation. The hub proteins
ANXA1, CCR3, DYNLL2, IL-2, SEC13, and TGFB1 in the
above PPI network were regulated by the TFs of P53/
TATA, CCAAT/enhancer binding protein (CEBP), Paired
Box 3 (PAX3), Nuclear Factor Kappa B (NFKB)/E74 like
ETS transcription factor 2 (ELF2)/heat-shock transcription
factor 2 (HSF2), GA-binding protein (GABP), and ELF1/
myeloid zinc finger gene 1 (MZF1), respectively.

Therapeutic drug prediction
Based on the DGIdb database, the interaction network
diagram of drug-gene interactions was constructed
(Fig. 5). Eighty-three drug-target relationship pairs, in-
cluding 4 DEGs and 80 interaction drugs were identified.
The 4 DEGs were CXCR2, ANXA, TGFB1, and IL-2.

Discussion
Zinc is reported to exert antioxidant activity through
guarding sulfhydryl groups and stabilization of cell

membranes, and it may play a key role in modulating cell
cycle and apoptosis [34, 35]. Two zinc transporter
families, ZnTs and Zrt-, Irt-related proteins (ZIPs) are
shown to function in zinc mobilization across biological
membranes [14]. For instance, ZnT 1 is shown to play a
key role in zinc homeostasis in adult mice via modulating
the transport of maternal zinc into the embryonic
environment, and deletion of the Zinc Transporter 1 gene
in mice may result in embryonic lethal [36]. ZIP8 can
function indispensable effects on both multiple-organ or-
ganogenesis and hematopoiesis during early embryogen-
esis in mice [37]. Moreover, Zinc deficiency during
pregnancy is harmful for both the mother and the fetus
[38], which is considered as a risk factor for adverse
pregnancy outcomes and preterm delivery [39]. As such,
effective monitoring for zinc deficiency is very important.
In this study, some potential biomarkers for zinc defi-
ciency during pregnancy in the placentas of mice were
identified.
Zinc is essential for immunity, oxidative stress, and

chronic inflammatory response [40]. Zinc deficiency is
involved in immune dysfunction and systemic inflamma-
tion [41] and was found to exert a significant influence

Fig. 4 The transcription factor (TF)-miRNA-target regulatory network. Red circles indicate up-regulated genes, green circles indicate down-
regulated genes, yellow triangles represent predicted miRNAs, purple diamonds indicate predicted TFs (only TOP5 with higher number of target
genes than others), red arrows indicate miRNA-regulated target genes, and gray arrows indicate target genes regulated by TFs
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on the outcome of inflammatory diseases, such as in-
flammatory bowel disease [42]. Moreover, maternal zinc
supplementation is found to impact beneficial effects on
neonatal immune status and infant morbidity from in-
fectious diseases [43]. This study revealed that CXCR2,
CCR3, ANXA1, and IL-2 were hub nodes in the PPI net-
work and were regulated by TFs. The chemokine recep-
tor CXCR2, involving in the innate immune system, is a
receptor for interleukin 8 (IL-8). It mediates neutrophil
migration to sites of inflammation and angiogenic effects
[44]. CCR3 encodes a receptor for C-C type chemokines
which contributes to accumulation and activation of
eosinophils and inflammatory cells [45]. IL-2 regulates
proliferation of T and B lymphocytes and plays an essen-
tial role in the immune response [46]. ANXA1 has
anti-inflammatory activity and is important for innate
immune response [47]. The functional enrichment re-
sults confirmed the relationship between three genes
and immune response. Prasad et al. suggested that IL-2
and IL-2 receptors were down-regulated during zinc
deficiency [48]. However, there is no evidence of rela-
tionship of abnormal expression of the three genes
(CXCR2, CCR3 and ANXA1) and zinc deficiency. There-
fore, CXCR2, ANXA1, and CCR3 would be potential bio-
markers for zinc deficiency in mice. In addition,
therapeutic drug prediction indicated that CXCR2 and
ANXA1 may be targets of drugs, suggesting these two
genes may be implicated as therapeutic targets to reduce
risk of zinc deficiency. Notably, there is no currently
available information that supports the routine use of
zinc supplementation on improving pregnancy outcome

[43]. Moreover, it is challenging to the implementation
of targeted interventions for reducing the adverse effects
of zinc deficiency through therapeutic and preventive
supplementation, fortification, and biofortification [39].
Given the side effects of many drugs, especially to the
fetus, the best option is to consume dietary zinc (abun-
dant in meat and beans) for improving mild zinc defi-
ciency, rather than using medicines.
In addition, it is noted that the PPI network module 1

was composed entirely olfactory receptor-related genes.
Zinc is highly concentrated in the olfactory bulb of the
brain and is important for embryonic neural develop-
ment of the olfactory system [49, 50]. In recent years,
zinc research has mainly focused on zinc metal nanopar-
ticles, which could enhance odorant responses of olfac-
tory receptor neurons [51]. These results suggested that
zinc deficiency may affect development of the central ol-
factory system. Therefore, these genes may be used as
gene biomarkers for zinc deficiency in pregnant mice.
However, the nutrients in mouse diet were largely un-

known because the microarray data were downloaded
from a public database, and the presence of other metals
such as cadmium in the diet that could compete with
Zn absorption was unknown. Moreover, we did not per-
form experiments or analyze another appropriate dataset
to validate the differential expression of key genes asso-
ciated with zinc deficiency. Furthermore, it is hard to ex-
trapolate mouse data to human biochemistry, as the
genetic origin of the placenta differs between mice and
humans. Further experiments using human samples will
provide stronger evidence for clinical guidance.

Fig. 5 The drug-target gene interaction network. Blue circles represent the key genes, and the white hexagon represents the predicted drug interactions
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Conclusion
Embryonic olfactory system development, immune dys-
function, and systemic inflammation may be disturbed
by zinc deficiency. Expression levels of CXCR2, ANXA1,
and CCR3, as well as olfactory receptor-related genes
(proteins) may be used as biomarker to assess zinc status
in mice.
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