# SCIENTIFIC REPORTS

### **OPEN**

SUBJECT AREAS: BREAST CANCER PROGNOSTIC MARKERS

> Received 18 February 2014

> > Accepted 4 August 2014

Published 1 September 2014

Correspondence and requests for materials should be addressed to G.-J.L. (liuguijian. gam@gmail.com)

## Prognostic role of *PIK3CA* mutations and their association with hormone receptor expression in breast cancer: a meta-analysis

Bo Pang, Shi Cheng, Shi-Peng Sun, Cheng An, Zhi-Yuan Liu, Xue Feng & Gui-Jian Liu

Clinical laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixian Ge 5#, XiCheng District, Beijing 100053, China.

The phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (*PIK3CA*) gene is frequently mutated in breast cancer (BCa). Sex hormone receptors (HRs), including estrogen receptor (ER) and progesterone receptor (PR) play pivotal roles in BCa. In this study, we evaluated the association between *PIK3CA* mutations and ER/PR expression and the prognostic role of *PIK3CA* mutations in BCa patients, and in particular, HR-positive BCa. Thirty-two studies involving 5719 cases of BCa obtained from database searches were examined. *PIK3CA* gene mutations correlated significantly with ER/PR expression (p < 0.00001) and relapse-free survival (RFS) (hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.59–0.98, p = 0.03) but not overall survival (OS) (HR 1.14, 95%CI 0.72–1.82, p = 0.57) in unsorted BCa patients. *PIK3CA* mutations were not associated with OS (HR 1.06, 95%CI 0.67–1.67, p = 0.81) or RFS (HR 0.86, 95%CI 0.53–1.40, p = 0.55) in HR-positive BCa patients. In conclusion, *PIK3CA* mutations were significantly related to ER/PR expression and RFS in unsorted BCa patients. However, the clinical implications of *PIK3CA* mutations may vary according to different mutant exons. And *PIK3CA* mutations alone may have limited prognostic value for HR-positive BCa patients.

**B** reast cancer (BCa) is one of the most common cancers among women, with more than 1,300,000 new cases and about 450,000 deaths reported each year worldwide<sup>1</sup>. This highly heterogeneous disease is divided into subgroups on the basis of molecular signatures, clinicopathologic features, and responses to therapy. Hormone receptors (HRs), including estrogen receptors (ERs) and progesterone receptors (PRs) are the most important markers of BCa. Most BCa cases are HR-positive (HR+), and ER-positive (ER+) BCa accounts for up to 80% of BCa cases among women 45 years and older<sup>2,3</sup>. Endocrine therapy is regarded as the cornerstone of ER+ BCa treatment. However, because of de novo or acquired resistance to endocrine therapy, prognosis is still poor for many ER+ BCa patients. Therefore, finding new effective treatment methods for ER+ BCa patients resistant to endocrine therapy is imperative.

After the *TP53* gene, the phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (*PIK3CA*) gene is the most frequently mutated gene in BCa. Phosphatidylinositol 3-kinase (PI3K) is composed of an 85-kD (p85) and a 110-kD (p110) subunit. When coupled to activated tyrosine kinases via p85 (the adaptor subunit), p110 (the catalytic subunit) phosphorylates the 3-hydroxy group of inositol phospholipids. Gain-of-function mutations in *PIK3CA* have been found in different types of cancers including BCa. The mutations result in PI3K activation independent of upstream signaling and constitutive activation of the downstream AKT pathway and may contribute to oncogenesis<sup>4</sup>. The frequency of *PIK3CA* mutations in BCa cases ranges from 16.4 to 45%<sup>5</sup>. There are 3 mutation "hotspots" in the *PIK3CA* gene: E542K, E545K at exon 9 (helix domain) and H1047R at exon 20 (kinase domain). The 3 hotspots represent almost 80% of *PIK3CA* mutations and lead to constitutive PI3K activity by different mechanisms<sup>6</sup>.

Aberrant activation of the PI3K pathway is thought to contribute significantly to endocrine therapy resistance in patients with ER+ BCa<sup>7</sup>. There is evidence showing that endocrine therapy combined with p110 inhibitors is an effective treatment for ER+ BCa cases, including those with *PIK3CA* mutations<sup>8</sup>. The synthetic lethal interaction is a promising approach that needs further studies. Testing of several p110 inhibitors is underway in phase II clinical trials. Therefore, evaluation of the relationship between HRs and *PIK3CA* mutations in BCa is neces-

sary. It is also of great clinical interest to determine whether *PIK3CA* mutations are prognostic factors in HR+ BCa patients.

#### Results

**Search results and description of eligible studies.** A total of 1903 potentially relevant citations were retrieved. After exclusion of non-human studies, reviews, and duplicates, two authors independently perused the titles and abstracts of the articles. After screenings, 68 articles were chosen for further full-text review. Ultimately, 32 eligible studies were included in our meta-analysis<sup>5,9-39</sup> (Figure 1).

The 32 eligible studies were published from 2004 to 2014 and involved 5719 cases. Data from the studies were grouped as follows: group A evaluated the relationship between *PIK3CA* mutations and ER (26 studies) or PR (20 studies) expression in BCa patients, group B (12 studies) and group C (8 studies) evaluated the relationship between *PIK3CA* mutations and the outcomes of all BCa patients and HR+ BCa patients, respectively. In the 32 selected studies, the percentage of patients with *PIK3CA* mutations ranged from 7.1% to 44.6%, and the percentage of ER+ patients ranged from 48.1% to 84.0%. For PR, the percentage ranged from 41.4% to 64.8%. In the B and C groups, the median follow-up time ranged from 50 to 153.6 months.

**ER and PR expression and** *PIK3CA* gene mutations in BCa patients. The relationship between *PIK3CA* gene mutations and ER expression was investigated in 4754 patients from 26 selected studies (Group A, the ER arm) using a fixed-effect model (Table 1). There was a significant association between *PIK3CA* gene mutations and ER expression in the patients in this group (odds ratio [OR] 1.92, 95%CI 1.65–2.23; *P* < 0.00001; Figure 2). Then we performed a separate analysis for PR expression in 3507 patients from 20 studies (Group A, the PR arm) using a fixed-effect model (Table 1), and found that PR expression was also significantly associated with *PIK3CA* mutations (OR 1.88, 95% CI 1.61–2.20; *P* < 0.00001) (Figure 3). Direct sequencing was the most frequently used method for detecting mutations in the selected studies. We introduced subgroups and found that direct sequencing and the other mutation detection methods produced similar results (*p* = 0.13).

**PIK3CA** gene mutations and prognosis in all BCa patients. Analyses were conducted to evaluate the relationship between *PIK3CA* gene mutations and prognosis as defined by overall survival (OS) and relapse-free survival (RFS) in all BCa patients (group B) (Table 2). Because of significant heterogeneity among the group B studies for OS (P = 0.008;  $I^2 = 66\%$ ), a random-effect model was used to assess OS correlations. However, because there



Figure 1 | Summary flowchart of the literature search.

| First author         Year of publication         Country         Design         Mean age/years         No.of FR positive         No.of PR positive <th>a.of ER positive         No.of PR positive         No.of PIK3CA           patients (%)         patients (%)         mutant patients (%)           28 (68.3)         23(57.5)         9 (22.0)           95 (76.0)         79(64.8)         28(16.0)           81 (55.9)         81(56.3)         45 (31.3)           335 (74.1)         258(57.1)         151 (33.4)</th> <th></th> <th>analvsis</th> | a.of ER positive         No.of PR positive         No.of PIK3CA           patients (%)         patients (%)         mutant patients (%)           28 (68.3)         23(57.5)         9 (22.0)           95 (76.0)         79(64.8)         28(16.0)           81 (55.9)         81(56.3)         45 (31.3)           335 (74.1)         258(57.1)         151 (33.4) |                                         | analvsis        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|
| Bachman KE         2004         USA         HB         NR         28         (6.3)         23(57.5)         9 (22.0)           Berwenit'S         2010         Bulgaria         HB         NR         28         (5.6)         79(6.4)         20(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(13)         23(15)         31(23)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)         23(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 (68.3)         23(57.5)         9 (22.0)           95 (76.0)         79(64.8)         28(16.0)           81 (55.9)         81(56.3)         45 (31.3)           335 (74.1)         258(57.1)         151 (33.4)                                                                                                                                                   | %) Sequenced PIK3CA                     | methods         |
| Benvenuti S         2008         Italy         HB         NR         95 [76.0]         79[64.8]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[16.5]         28[26.7]         10[66.6]         23[26.1]         10[66.6]         23[26.1]         10[66.6]         23[26.1]         11[31 [70.2]         29[58.9]         12[14.8]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[16.3]         23[26.1]         23[26.1]         23[26.3]         23[26.3]         23[26.3]         23[26.3]         23[26.3]         23[26.3]         23[26.3]         23[26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95 (76.0) 79(64.8) 28(16.0)<br>81 (55.9) 81(56.3) 45 (31.3)<br>335 (74.1) 258(57.1) 151 (33.4)                                                                                                                                                                                                                                                                       | exon 1,9 and 20 D                       | S               |
| Bozhanov SS         2010         Bulgaria         HB         NR         B1 [55.9]         B1 [55.3]         45 [31.3]           Dunlop J         Dunlop J         Dunlop J         Dunlop J         S1 [33.40]         15 [31.91]         335 [24.1]         238 [57.1]         15 [33.4]           Dunlop J         UH         2010         USA         HB         51 [33.40]         137 [83.1]         14 [53.2]         131 [38.1]           Dunlop J         2000         USA         HB         NR         37 [48.1]         41 [53.2]         31 [38.1]           Lin CH         2001         China HB         NR (less than 35 y)         18 [65.8]         51 [43.2]         23 [64.1]           Mangone FR         2011         China HB         NR (less than 35 y)         18 [65.8]         51 [67.3]         32 [30.4]           Mangone FR         2012         Australia         HB         NR (less than 35 y)         13 [65.3]         52 [30.6]         43 [27.1]           Mangone FR         2011         USA         HB         NR (less than 35 y)         13 [64.2]         27 [64.3]         22 [30.6]           Mangone FR         2007         HB         NR         NR (less than 35 y)         11 [61.0]         57 [27.1]         27 [27.1] <t< td=""><td>81 (55.9) 81 (56.3) 45 (31.3)<br/>335 (74.1) 258 (57.1) 151 (33.4)</td><td>exon 9 and 20 D</td><td>S</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81 (55.9) 81 (56.3) 45 (31.3)<br>335 (74.1) 258 (57.1) 151 (33.4)                                                                                                                                                                                                                                                                                                    | exon 9 and 20 D                         | S               |
| Cizkova M         2012         France         HB         61.6 (31-91)         335 (74.1)         258 (57.1)         151 (33.4)           Dinlop J         UN         NR         0.6 (81.5)         1.258 (57.1)         121 (43)         121 (43)           Dinlop J         Cirkova M         2010         USA         HB         51 (32-80)         137 (43.1)         121 (43)         121 (43)           Ling X         2000         Singapore         HB         51 (28-73)         8 (55.7)         58 (41.4)         23 (64)           Linche C         2011         Chinal         HB         51 (28-73)         78 (55.7)         58 (41.4)         23 (64)           Linche L         2012         Austrolia         HB         51 (28-73)         58 (55.7)         58 (41.4)         23 (64)           Maryama N         2007         HB         51 (28-73)         53 (64)         31 (36.8)         22 (190)           Maryama N         2007         HB         51 (28-48)         53 (64)         113 (70.2)         53 (64)         23 (64)           Maryama N         2007         HB         53 (24-89)         102 (56)         12 (46)         12 (46)         12 (74)           Maryama N         2003         UN         HB<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 335 (74.1) 258(57.1) 151 (33.4)                                                                                                                                                                                                                                                                                                                                      | exon 9 and 20 D                         | S               |
| Dunlap J         2010         USA         HB         51         33-801         37         33.10         17.11         2016         1.11         2016         1.11         2016         1.11         2016         1.11         2016         1.11         2016         1.11         2016         1.13         2011         1.11         2016         1.11         21         1.12         1.13         2021         1.11         21         1.12         1.13         2.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         2.21         1.21         2.21         2.21 <th2.21< th=""> <th2.21< td=""><td></td><td>exon 9 and 20 D</td><td>S</td></th2.21<></th2.21<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      | exon 9 and 20 D                         | S               |
| LH         2010         China         HB         51 (33-80)         137 (83.0)         100(60.6)         43 (26.1)           Liang X         2006         Singepore         HB         Si (33-80)         137 (83.0)         100(60.6)         43 (26.1)           Liang X         2008         Singepore         HB         Klacge I-III)         51 (35.7)         58 (41.4)         23 (16.1)           Lin CH         2011         China(Taiwan)         HB         Si (25.7)         58 (41.4)         23 (16.1)         73 (55.7)         58 (41.4)         23 (16.1)         27 (17.1)           Mongone FR         2012         Bazzil         HB         5 (26-85)         53 (61.6)         37 (46.3)         22 (70.1)         23 (57.7)         58 (41.6)         23 (16.0)         73 (57.8)         23 (21.6)         37 (46.3)         22 (30.6)         12 (28.7)         23 (61.6)         37 (46.3)         22 (70.1)         24 (28.7)         23 (61.6)         54 (28.7)         23 (61.6)         37 (46.3)         22 (30.6)         37 (46.3)         22 (30.6)         12 (28.7)         23 (61.6)         37 (46.3)         22 (70.1)         24 (28.7)         23 (61.6)         37 (46.3)         22 (70.1)         23 (61.6)         23 (61.6)         37 (46.8)         22 (28.7)         23 (61.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (8.41) ZI (6.10) 75 (C.18) 00                                                                                                                                                                                                                                                                                                                                        | exon 7,9 and 20 D                       | S               |
| Liang X         2006         Singapore         HB         NR         37 (48.1)         41(53.2)         31 (38.8)           Line/HeC         2010         USA         HB         NR         37 (48.1)         41(5.3.2)         31 (38.9)           Line/HeC         2010         USA         HB         NR (ess thon 35 y)         78 (55.7)         56 (16)         37 (46.3)         27 (31)           Mongone FR         2010         Australia         HB         55 (26-85)         53 (61.6)         37 (46.3)         27 (31)         27 (30.6)           Maruyama N         2007         Japan         HB         55 (26-85)         53 (61.6)         37 (46.3)         12 (71)         23 (35.8)           Maruyama N         2007         Japan         HB         53 (24-89)         162 (56.0)         114 (61.0)         54 (28.7)           Maruyama N         2009         traly         HB         53 (24-89)         162 (55.5)         122 (50.6)         53 (30.6)           Michelucci A         2003         USA         HB         43.5 (25.5)         114 (61.0)         54 (28.7)         53 (62.7)         53 (62.1)         53 (62.1)         53 (62.1)         53 (62.1)         53 (62.1)         53 (62.1)         53 (62.1)         53 (62.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 137 (83.0) 100(60.6) 43 (26.1)                                                                                                                                                                                                                                                                                                                                       | exon 9 and 20 D                         | S               |
| Liedlke C         2008         USÅ         HB (stage ILIII)         51 (28-73)         78 (55.7)         58 (41.4)         23 (16.4)           Lin CH         2011         Chinelfoiwan)         HB         NR         65 (5.3)         67 (57.8)         22 (19)           Lin E         2012         Australia         HB         55 (26-85)         53 (16,4)         37 (46.3)         22 (19)           Margome FR         2012         Brazil         HB         55 (26-85)         37 (46.3)         22 (190)         22 (190)           Margome FR         2007         Japan         HB         53 (26-85)         37 (46.3)         22 (190)         22 (190)           Margome FR         2007         Japan         HB         53 (22-81)         98 (61.5)         54 (28.7)         57 (28.4)           Margome FR         2005         UsA         HB         53 (22-91)         98 (61.5)         54 (28.7)         77 (26.4)           Sacl LH         2005         UsA         HB         53 (22-91)         162 (51.4)         77 (26.4)         77 (26.4)           Sacl HH         2005         UsA         HB         53 (22-91)         163 (50.0)         163 (31.4)         77 (26.4)           Sacl HA         2005 <t< td=""><td>37 (48.1) 41 (53.2) 31 (38.8)</td><td>exon 9 and 20 D</td><td>S</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 (48.1) 41 (53.2) 31 (38.8)                                                                                                                                                                                                                                                                                                                                        | exon 9 and 20 D                         | S               |
| Lin CH         2011         China(Taiwan)         HB         NR (less than 35 y)         B1 (69.8)         67(57.8)         57(19.0)         22(19.0)           Lippez-Knowles E         2010         Australia         HB         55 (26-85)         53 (61.6)         37(46.3)         22 (30.6)           Mangone FR         2007         Brazil         HB         55 (26-85)         53 (61.6)         37(46.3)         22 (30.6)           Maryama N         2007         Japan         HB         55 (26-85)         53 (61.6)         37(46.3)         22 (30.6)           Maryama N         2007         July         HB         55 (26-85)         53 (61.6)         57 (32.8)         22 (30.6)           Michelucci A         2009         ttaly         HB         53 (22-61)         98 (61.5)         53 (33.6)         27 (36.4)           Sauchez CG         2011         USA         HB         53 (22-7)         NR         16 (31.4)         77 (26.4)           Sauchez CG         2007         Hub         53 (32-80)         137 (84.9)         107 (58.9)         77 (26.4)           Sauchez CG         2011         USA         HB         53 (22-7)         NR         16 (31.4)         77 (26.4)           Bubareschi M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78 (55.7) 58(41.4) 23 (16.4)                                                                                                                                                                                                                                                                                                                                         | exon 1,9 and 20 D                       | S               |
| López-Knowles E         2010         Australia         HB         54*         113         70.2         96/58.9         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th="">         12         12</th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81 (69.8) 67(57.8) 22 (19.0)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 D                         | S               |
| Mangone FR         2012         Brazil         HB         55 (26–85)         53 (61.6)         37(46.3)         22 (30.6)           Marvyama N         2007         Japan         HB         53 (26–85)         53 (61.6)         37(46.3)         22 (30.6)           Marvyama N         2007         Japan         HB         53 (22–81)         98 (76.0)         88(61.5)         54(28.7)           Michelucci A         2009         Iraly         HB         55 (24–89)         162 (55.5)         142(51.4)         77 (26.4)           Saal H         2007         HB         57 (24–89)         162 (55.5)         142(51.4)         77 (26.4)           Sanchez CG         2011         USA         HB         57 (22–80)         32 (62.7)         NR         162 (55.5)         142(51.4)         77 (26.4)           Barbareschi M         2006         Iraly         HB         57 (32–80)         32 (62.7)         NR         16 (31.4)         77 (26.4)         75 (25.4)         77 (26.4)         75 (25.4)         77 (26.4)         75 (56.4)         16 (31.4)         77 (26.4)         76 (52.5)         14 (5 (7.0)         88 (61.5)         66 (52.5)         64 (25.6)         16 (31.4)         77 (26.4)         78 (27.5)         16 (27.5)         16 (27.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113 (70.2) 96(58.9) 12 (7.1)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 D                         | S               |
| Marvyama N         2007         Japan         HB         NR         124 (66.0)         114(61.0)         54(28.7)           Michelucci A         2009         Italy         HB         43.5 (32–61)         98 (76.0)         88(61.5)         63 (35.8)           Saal LH         2005         USA         HB         59 (24–89)         162 (55.5)         142(51.4)         77 (26.4)           Saal LH         2007         Italy         HB         53.4 (32–80)         32 (62.7)         NR         16 (31.4)           Saachez CG         2011         USA         HB         53.4 (32–80)         32 (62.7)         NR         16 (31.4)           Barbareschi M         2006         Italy         HB         57.2*         124 (68.9)         106(58.9)         46 (25.6)           Buttitta F         2004         Austrolia         HB         57.2*         124 (68.9)         106(58.9)         46 (25.7)           Upont Jensen JD         2013         France         HB         NR         113 (79.0)         88(61.5)         46 (25.7)           Upont Jensen JD         2013         NR         137 (84.0)         98 (60.1)         45 (44.6)           Usta P         2013         MR         NR         137 (84.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53 (61.6) 37(46.3) 22 (30.6)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 D                         | S               |
| Michelucci A         2009         Italy         HB         43.5 (32-61)         98 (76.0)         88 (61.5)         63 (35.8)           Saal LH         2005         USA         HB         59 (24-89)         162 (55.5)         142 (51.4)         77 (26.4)           Saal LH         2005         USA         HB         53 (32-80)         32 (62.7)         NR         16 (31.4)           Sanchez CG         2011         USA         HB         53.4 (32-80)         32 (62.7)         NR         16 (31.4)           Barbareschi M         2007         Italy         HB         62 (17-89)         137 (84.0)         98 (60.1)         45 (25.6)           Butitta F         2006         Italy         HB         57.2*         124 (68.9)         106 (58.9)         46 (25.5)           Duport Jensen J         2013         France         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2013         France         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2012         Denmark         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2013         NR         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124 (66.0) 114(61.0) 54(28.7)                                                                                                                                                                                                                                                                                                                                        | exon 1, 2, 4, 7, 9, D<br>13, 18, and 20 | S               |
| Saal LH         2005         USÅ         HB         59 (24–89)         162 (55.5)         142 (51.4)         77 (26.4)           Sanchez CG         2011         USA         HB         53.4 (32–80)         32 (62.7)         NR         16 (31.4)           Barbareschi M         2007         Italy         HB         53.4 (32–80)         32 (62.7)         NR         16 (31.4)           Butitta F         2006         Italy         HB         57.2*         12.4 (68.9)         106(58.9)         46 (25.6)           Butitta F         2004         Australia         HB         57 (32–87)         12.4 (68.9)         106(58.9)         46 (25.6)           Duport Jensen J         2011         Denmark         HB         57 (32–87)         78 (77.2)         NR         22 (43.1)           Duport Jensen J         2013         France         HB         57 (32–87)         78 (77.2)         NR         45 (44.6)           Lensen JD         2012         Denmark         HB         57 (32–87)         78 (77.2)         NR         45 (25.7)           Kalinsky K         2003         USA         HB         57 (32–87)         78 (77–2)         NR         45 (43.6)         45 (55.7)           Kalinsky K         2003 </td <td>98 (76.0) 88(61.5) 63 (35.8)</td> <td>exon 9 and 20 D</td> <td>S</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98 (76.0) 88(61.5) 63 (35.8)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 D                         | S               |
| Sanchez CG         2011         USA         HB         53.4 (32-80)         32 (62.7)         NR         16 (31.4)           Burtitar F         2007         Italy         HB         6.2 (17-89)         137 (84.0)         98(60.1)         45 (25.6)           Burtitar F         2006         Italy         HB         6.2 (17-89)         137 (84.0)         98(60.1)         45 (25.6)           Buttitar F         2004         Australia         HB         57.2*         12.4 (68.9)         106(58.9)         46 (25.6)           Compbell IG         20011         Demark         HB         57 (32-87)         78 (77.2)         NR         22 (43.1)           Dupont Jensen J         20113         France         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Harlé A         2012         Denmark         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2012         Denmark         HB         NR         113 (79.0)         88(61.5)         26 (18.2)           Jensen JD         2012         Denmark         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Jensen JD         2006         Australia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162 (55.5) 142(51.4) 77 (26.4)                                                                                                                                                                                                                                                                                                                                       | exon 1, 2, 4, 5, 7, D                   | S               |
| Sanchez CG         2011         USA         HB         53.4 (32-80)         32 (62.7)         NK         16 (31.4)           Burtitha F         2007         haly         HB         57.2*         12.4 (68.9)         106(58.9)         45 (25.6)           Burtitha F         2004         Australia         HB         57.2*         12.4 (68.9)         106(58.9)         46 (25.6)           Compbell IG         2004         Australia         HB         57.2*         12.4 (68.9)         106(58.9)         46 (25.6)           Dupont Jensen J         2011         Denmark         HB         57 (32-87)         78 (77-2)         NR         22 (43.1)           Harlé A         2013         France         HB         57 (32-87)         78 (77-2)         NR         45 (18.4)           Jensen JD         2012         Denmark         HB         NR         113 (79.0)         88 (61.5)         26 (118.2)           Jensen JD         2012         Denmark         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Jensen JD         2009         USA         HB         NR         118 (49.4)         NR         61 (25.7)           Jensen JD         20009         USA         HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      | 7,12,13,10, 20                          | G               |
| Burtifia         Z00/         fragy         HB         6/2 (1/-87)         13/ [84.0]         9/8 (60.1)         45 (25.6)           Burtifia         2006         haly         HB         57.2*         124 (68.9)         106 (58.9)         46 (25.6)           Campbell IG         2001         Australia         HB         57.2*         124 (68.9)         106 (58.9)         46 (25.6)           Dupont Jensen J         2011         Demark         HB         57 (32-87)         78 (77.2)         NR         22 (43.1)           Horlé A         2013         France         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2012         Demark         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2012         Demark         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Jensen JD         2009         USA         HB         NR         118 (49.4)         NR         61 (25.7)           Kalinsky K         2006         Australia         HB         59 (18-93)         168 (62.0)         314 (57.8)         192 (32.5)           Ii SY         2006         Australia <td< td=""><td>32 (62./) NR 16 (31.4)</td><td>exon 9 and 20 (HS) D</td><td>)S<br/>See . P.C</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 (62./) NR 16 (31.4)                                                                                                                                                                                                                                                                                                                                               | exon 9 and 20 (HS) D                    | )S<br>See . P.C |
| Buttifta F         2006         Italy         HB         57.2*         124 (68.9)         106(58.9)         46 (25.6)           Campbell IG         2004         Australia         HB         57 (23.6)         NR         32 (62.7)         NR         22 (43.1)           Dupont Jensen J         2011         Denmark         HB         57 (32-87)         78 (77.2)         NR         22 (43.1)           Harlé A         2013         France         HB         57 (32-87)         78 (77.2)         NR         45 (44.6)           Harlé A         2013         France         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Jensen JD         2009         USA         HB         NR         118 (49.4)         NR         61 (25.7)           Kalinsky K         2009         USA         HB         59 (18-93)         166 (62.0)         314 (57.8)         192 (32.5)           Li SY         2006         Australia         HB         59 (18-93)         168 (68.9)         156 (63.9)         174 (55.3)           Li SY         2013         Finnish         HB         NR         475 (69.1)         NR         177 (25.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13/ (84.0) 98(60.1) 45 (27.6)                                                                                                                                                                                                                                                                                                                                        | exon 9 and 20 S                         | SCP + DS        |
| Campbell IG         2004         Australia         HB         NR         32 (62.7)         NR         22 (43.1)           Dupont Jensen J         2011         Denmark         HB         57 (32–87)         78 (77.2)         NR         25 (44.6)           Harlé A         2013         France         HB         57 (32–87)         78 (77.2)         NR         45 (44.6)           Jensen JD         2013         France         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Jensen JD         2012         Denmark         HB         NR         113 (79.0)         88 (61.5)         26 (18.2)           Kalinsky K         2009         USA         HB         NR         366 (62.0)         314 (57.8)         192 (32.5)           Kalinsky K         2006         Australia         HB         59 (18–93)         168 (68.9)         156 (63.9)         88 (35.2)           Li SY         2013         Finnish         HB         NR         376 (62.0)         314 (57.8)         192 (32.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124 (68.9) 106(58.9) 46 (25.6)                                                                                                                                                                                                                                                                                                                                       | exon 1–20 S                             | SCP + DS        |
| Dupont Jensen J         2011         Denmark         HB         57 (32–87)         78 (77.2)         NR         45 (44.6)           Harlé A         2013         France         HB         NR         113 (79.0)         88(61.5)         26(18.2)         26(18.2)           Jensen JD         2012         Denmark         HB         HER2+1         NR         113 (79.0)         88(61.5)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         26(18.2)         214.5         26(18.2)         214.5         26(13.2)         26(13.2)         214.5         217.2         214.5         217.2         214.5         217.2         217.2         217.2         217.2         217.2         217.2         211.2         211.2         214.5         217.2         214.5         217.2         214.5         217.2         214.5         214.5         217.2         214.5         217.2         212.5         211.2         212.5         212.5         212.5         212.5         212.5         212.5         212.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 (62.7) NR 22(43.1)                                                                                                                                                                                                                                                                                                                                                | exon 1–20 S                             | SCP + DHPLC     |
| Harlé A     2013     France     HB     NR     113 (79.0)     88(61.5)     26(18.2       Jensen JD     2012     Denmark     HB (HER2+)     NR     118 (49.4)     NR     61 (25.7       Jensen JD     2012     Denmark     HB     NR     118 (49.4)     NR     61 (25.7       Kalinsky K     2009     USA     HB     59 (18-93)     168 (62.0)     314(57.8)     192 (32.5       Li SY     2006     Australia     HB     59 (18-93)     168 (68.9)     156(63.9)     88 (35.2       Loi S     2013     Finnish     HB     NR     475 (69.1)     NR     174 (25.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78 (77.2) NR 45 (44.6)                                                                                                                                                                                                                                                                                                                                               | exon 9 and 20 (HS) S                    | NaPshot/DxS     |
| Jensen JD 2012 Denmark HB (HER2+) NR 118 (49.4) NR 61 (25.7<br>Kalinsky K 2009 USA HB NR 366 (62.0) 314(57.8) 192 (32.5<br>Li SY 2006 Australia HB 59 (18–93) 168 (68.9) 156(63.9) 88 (35.2<br>Loi S 2013 Finnish HB NR 475 (69.1) NR 174 (25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113 (79.0) 88(61.5) 26(18.2)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 (HS) P                    | CR-ARMS         |
| Kalinsky K 2009 USA HB NR 366 (62.0) 314(57.8) 192 (32.5<br>Li SY 2006 Australia HB 59 (18–93) 168 (68.9) 156(63.9) 88 (35.2<br>Loi S 2013 Finnish HB NR 475 (69.1) NR 174 (25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 (49.4) NR 61 (25.7)                                                                                                                                                                                                                                                                                                                                              | exon 9 and 20 P.                        | Ā               |
| Li SY 2006 Australia HB 59 (18–93) 168 (68.9) 156 (63.9) 88 (35.2<br>Loi S 2013 Finnish HB NR 475 (69.1) NR 174 (25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366 (62.0) 314(57.8) 192 (32.5)                                                                                                                                                                                                                                                                                                                                      | exon 1–20 S                             | M + SS          |
| Loi S 2013 Finnish HB NR 475 (69.1) NR 174 (25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 168 (68.9) 156(63.9) 88 (35.2)                                                                                                                                                                                                                                                                                                                                       | exon 7,9 and 20 F-                      | -SSCP           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 475 (69.1) NR 174 (25.3)                                                                                                                                                                                                                                                                                                                                             | exons 1, 2, 4, 9, S                     | W               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                         |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                         |                 |
| Santarpia M 2008 Italy/Spain HB 58 (32–85) 44 (74.6) 33(55.9) 17 (27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44 (74.6) 33(55.9) 17 (27.9)                                                                                                                                                                                                                                                                                                                                         | exon 9 and 20 (HS) A                    |                 |



| يلكن | 4   |
|------|-----|
| ₹    | L   |
| 2    | Ju. |

|                                        | ER pos      | itive    | ER neg                   | ative |           | Odds Ratio           | Odds Ratio                            |
|----------------------------------------|-------------|----------|--------------------------|-------|-----------|----------------------|---------------------------------------|
| Study or Subgroup                      | Events      | Total    | Events                   | Total | Weight    | M-H. Fixed, 95% C    | M-H. Fixed, 95% Cl                    |
| 1.1.1 DS Subgroup                      |             |          |                          |       |           |                      |                                       |
| Bachman KE 2004                        | 6           | 28       | 3                        | 12    | 1.3%      | 0 82 [0 17 4 00]     |                                       |
| Benvenuti S 2008                       | 19          | 95       | 2                        | 27    | 1.0%      | 3 13 10 68 14 371    |                                       |
| Bozhanov SS 2010                       | 24          | 80       | 21                       | 64    | 6.3%      | 0.88 [0.43 1.78]     | <del></del>                           |
| Cizkova M 2012                         | 131         | 335      | 20                       | 117   | 6.9%      | 3 11 [1 84 5 29]     |                                       |
| Dunlan J 2010                          | 12          | 66       | 0                        | 15    | 0.3%      | 7 11 [0 40 126 97]   |                                       |
| Li H. 2010                             | 41          | 137      | 2                        | 28    | 0.9%      | 5.55 [1.26, 24.49]   |                                       |
| Liang X. 2006                          | 17          | 37       | 13                       | 40    | 2.6%      | 1.77 [0.70, 4.45]    | +                                     |
| Liedtke C. 2008                        | 15          | 78       | 8                        | 62    | 2.8%      | 1.61 [0.63, 4.08]    |                                       |
| Lin CH. 2011                           | 16          | 81       | 6                        | 35    | 2.6%      | 1.19 [0.42, 3.35]    |                                       |
| López-Knowles E. 2010                  | 7           | 113      | 5                        | 48    | 2.5%      | 0.57 [0.17, 1.89]    |                                       |
| Mangone FR. 2012                       | 18          | 53       | 5                        | 27    | 1.7%      | 2.26 [0.73, 6.97]    | +                                     |
| Maruvama N. 2007                       | 42          | 124      | 12                       | 64    | 4.0%      | 2.22 [1.07, 4.60]    |                                       |
| Michelucci A, 2009                     | 40          | 98       | 7                        | 31    | 2.4%      | 2.36 [0.93, 6.01]    | <u> </u>                              |
| Saal LH. 2005                          | 33          | 77       | 11                       | 79    | 2.4%      | 4.64 [2.12, 10, 12]  |                                       |
| Sanchez CG, 2011                       | 14          | 32       | 1                        | 17    | 0.3%      | 12.44 [1.47, 105.52] | · · · · · · · · · · · · · · · · · · · |
| Subtotal (95% CI)                      |             | 1434     |                          | 666   | 37.9%     | 2.23 [1.76, 2.83]    | ♦                                     |
| Total events                           | 435         |          | 116                      |       |           |                      |                                       |
| Heterogeneity: Chi <sup>2</sup> = 24.9 | 9, df = 14  | (P = 0.0 | $(03);  ^2 = 44$         | 1%    |           |                      |                                       |
| Test for overall effect: Z =           | 6.60 (P <   | 0.0000   | 1)                       |       |           |                      |                                       |
| 1.1.2 Other sequencing r               | nethods     |          |                          |       |           |                      |                                       |
| Barbareschi M, 2007                    | 38          | 137      | 7                        | 26    | 3.3%      | 1.04 [0.41, 2.68]    | _ <del></del>                         |
| Buttitta F, 2006                       | 35          | 124      | 11                       | 56    | 4.2%      | 1.61 [0.75, 3.46]    | +                                     |
| Campbell IG, 2004                      | 15          | 32       | 7                        | 19    | 1.8%      | 1.51 [0.47, 4.84]    |                                       |
| Dupont Jensen J, 2011                  | 37          | 78       | 6                        | 19    | 1.9%      | 1.96 [0.67, 5.67]    |                                       |
| Harlé A, 2013                          | 20          | 93       | 6                        | 24    | 2.9%      | 0.82 [0.29, 2.34]    |                                       |
| Jensen JD, 2012                        | 32          | 117      | 29                       | 120   | 8.0%      | 1.18 [0.66, 2.12]    |                                       |
| Kalinsky K, 2009                       | 141         | 366      | 44                       | 186   | 13.8%     | 2.02 [1.36, 3.01]    |                                       |
| LI SY, 2006                            | 69          | 168      | 18                       | 76    | 5.6%      | 2.25 [1.22, 4.14]    |                                       |
| Loi S, 2013                            | 140         | 475      | 36                       | 212   | 13.5%     | 2.04 [1.36, 3.08]    | -                                     |
| Pérez-Tenorio G, 2007                  | 52          | 188      | 13                       | 79    | 5.1%      | 1.94 [0.99, 3.81]    |                                       |
| Santarpia M, 2008                      | 12          | 44       | 5                        | 15    | 2.1%      | 0.75 [0.21, 2.65]    |                                       |
| Subtotal (95% CI)                      |             | 1822     |                          | 832   | 62.1%     | 1.74 [1.43, 2.11]    | •                                     |
| Total events                           | 591         |          | 182                      |       |           |                      |                                       |
| Heterogeneity: Chi <sup>2</sup> = 8.55 | , df = 10 ( | P = 0.5  | 7); l <sup>2</sup> = 0%  |       |           |                      |                                       |
| Test for overall effect: Z =           | 5.56 (P <   | 0.00001  | 1)                       |       |           |                      |                                       |
| Total (95% CI)                         |             | 3256     |                          | 1498  | 100.0%    | 1.92 [1.66, 2.24]    | •                                     |
| Total events                           | 1026        |          | 298                      |       |           |                      |                                       |
| Heterogeneity: Chi <sup>2</sup> = 35.1 | 0, df = 25  | (P = 0.0 | 09); l <sup>2</sup> = 29 | 9%    |           |                      |                                       |
| Test for overall effect: Z =           | 8.52 (P <   | 0.0000   | 1)                       |       |           |                      | 0.01 0.1 1 10 100                     |
| Test for subgroup differen             | cos Chi2    | - 2 53   | Hf = 1 /D =              | 0 11) | 2 - 60 5% |                      |                                       |

Figure 2 | Forest plot with OR evaluating the relationship between PIK3CA mutation and ER expression status.

|                                        | PR pos       | itive     | PR neg                  | ative  |            | Odds Ratio         | Odds Ratio         |
|----------------------------------------|--------------|-----------|-------------------------|--------|------------|--------------------|--------------------|
| Study or Subgroup                      | Events       | Total     | Events                  | Total  | Weight     | M-H, Fixed, 95% C  | M-H, Fixed, 95% Cl |
| 1.2.1 DS Subgroup                      |              |           |                         |        |            |                    |                    |
| Bachman KE, 2004                       | 6            | 23        | 3                       | 17     | 1.1%       | 1.65 [0.35, 7.81]  | _ <del></del>      |
| Benvenuti S, 2008                      | 18           | 79        | 3                       | 43     | 1.3%       | 3.93 [1.09, 14.23] |                    |
| Bozhanov SS, 2010                      | 31           | 81        | 14                      | 63     | 4.2%       | 2.17 [1.03, 4.57]  | <u> </u>           |
| Cizkova M, 2012                        | 107          | 258       | 44                      | 194    | 12.8%      | 2.42 [1.59, 3.67]  | -                  |
| Dunlap J, 2010                         | 8            | 42        | 4                       | 39     | 1.5%       | 2.06 [0.57, 7.48]  |                    |
| Li H, 2010                             | 34           | 100       | 9                       | 65     | 3.1%       | 3.21 [1.42, 7.25]  | <del></del>        |
| Liang X, 2006                          | 16           | 41        | 14                      | 36     | 3.9%       | 1.01 [0.40, 2.52]  |                    |
| Liedtke C, 2008                        | 12           | 58        | 11                      | 82     | 3.1%       | 1.68 [0.69, 4.13]  | +                  |
| Lin CH, 2011                           | 13           | 67        | 9                       | 49     | 3.6%       | 1.07 [0.42, 2.75]  |                    |
| López-Knowles E, 2010                  | 8            | 96        | 4                       | 67     | 1.9%       | 1.43 [0.41, 4.96]  | _ <del></del>      |
| Mangone FR, 2012                       | 12           | 37        | 10                      | 43     | 2.7%       | 1.58 [0.59, 4.25]  |                    |
| Maruyama N, 2007                       | 38           | 114       | 16                      | 73     | 5.7%       | 1.78 [0.90, 3.51]  | <u>+</u>           |
| Michelucci A, 2009                     | 28           | 61        | 21                      | 71     | 4.6%       | 2.02 [0.99, 4.14]  |                    |
| Saal LH, 2005                          | 47           | 142       | 25                      | 134    | 7.5%       | 2.16 [1.23, 3.77]  | <del></del>        |
| Subtotal (95% CI)                      |              | 1199      |                         | 976    | 57.0%      | 2.03 [1.65, 2.49]  | ◆                  |
| Total events                           | 378          |           | 187                     |        |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = 7.91 | l, df = 13 ( | P = 0.8   | 5); l² = 0%             | ,      |            |                    |                    |
| Test for overall effect: Z =           | 6.73 (P <    | 0.0000    | 1)                      |        |            |                    |                    |
|                                        |              |           |                         |        |            |                    |                    |
| 1.2.2 Other sequencing I               | netnoas      | 00        | 40                      | 05     | 0.00/      | 0.00 10 40 0.001   |                    |
| Barbareschi M, 2007                    | 27           | 98        | 18                      | 65     | 6.8%       | 0.99 [0.49, 2.00]  | 1                  |
| Buttitta F, 2006                       | 30           | 106       | 16                      | 74     | 5.9%       | 1.43 [0.71, 2.87]  |                    |
| Harle A, 2013                          | 17           | 88        | 9                       | 55     | 3.9%       | 1.22 [0.50, 2.98]  | -                  |
| Kalinsky K, 2009                       | 125          | 314       | 56                      | 229    | 16.9%      | 2.04 [1.40, 2.98]  | <u> </u>           |
| LISY, 2006                             | 63           | 156       | 24                      | 88     | 7.9%       | 1.81 [1.02, 3.19]  |                    |
| Santarpia M, 2008                      | 12           | 33        | 5                       | 20     | 1.5%       | 2.40 [0.72, 8.02]  |                    |
| Sublotal (95% CI)                      | 074          | 795       | 400                     | 557    | 43.0%      | 1.09 [1.32, 2.10]  | •                  |
|                                        | 2/4          |           | 128                     |        |            |                    |                    |
| Test for everall effects 7 =           | 9, at = 5 (F | r = 0.51  | ); 1~ = 0%              |        |            |                    |                    |
| rest for overall effect. Z =           | 4.15 (P <    | 0.0001)   |                         |        |            |                    |                    |
| Total (95% CI)                         |              | 1994      |                         | 1513   | 100.0%     | 1.88 [1.61, 2.20]  | ♦                  |
| Total events                           | 652          |           | 315                     |        |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = 13.3 | 33, df = 19  | (P = 0.8) | 82); l <sup>2</sup> = 0 | %      |            |                    |                    |
| Test for overall effect: Z =           | 7.83 (P <    | 0.0000    | 1)                      |        |            |                    | 0.01 0.1 1 10 100  |
| Test for subaroup differen             | ces: Chi2    | = 1.24. c | if = 1 (P =             | 0.27). | l² = 19.3% |                    |                    |

Figure 3 | Forest plot with OR evaluating the relationship between PIK3CA mutation and PR expression status.

| e group B studies for RF   |
|----------------------------|
| l was used to assess RF    |
| 05 patients were analyze   |
| K3CA mutations and O       |
| = 0.57) (Figure 4). We als |
| For exon 9 mutations,      |
| 95% CI 1 02_1 99 P =       |

was no inter-study heterogeneity among th S  $(P = 0.93; I^2 = 0\%)$ , a fixed-effect mode FS correlations. For OS, 7 studies involving 21 Ь and no significant association between PL )S was found (HR 1.14, 95% CI 0.72–1.82; P = 50 performed analysis for different exons. а significant worse OS was found (HR 1.42, 95% CI 1.02–1.99; P =0.04). In addition, for exon 20, the results of OS did not reach a significant level (HR 1.63, 95% CI 0.93–2.85; P = 0.09) (Figure 4). For RFS, 5 studies involving 1913 patients were analyzed, and a significant relationship between PIK3CA gene mutations and prolonged RFS was observed (hazard ratio 0.76, 95% CI 0.59-0.98; P = 0.03) (Fig. 5).

PIK3CA gene mutations and prognosis in HR+ BCa patients. The relationship between PIK3CA mutations and prognosis in HR+ BCa was evaluated in 8 studies involving 1021 patients, 5 studies (644 patients) for OS and 4 studies (534 patients) for RFS (group C) (Table 3). On the basis of the available data, kinase domain mutation is the priority for inclusion and analysis. No inter-study heterogeneity was found for OS (P = 0.38;  $I^2 = 4\%$ ) or RFS (P = 0.73;  $I^2 = 0\%$ ). *PIK3CA* gene mutations were not significantly associated with OS (hazard ratio 1.06, 95% CI 0.67–1.67; P = 0.81) (Fig. 6a) or RFS (hazard ratio 0.86, 95% CI 0.53–1.40; P = 0.55) (Fig. 6b) in HR+ BCa patients.

Publication bias. Publication bias was not investigated when the number of studies was less than 10 because of the low sensitivity of qualitative and quantitative tests<sup>40</sup>. When the number of studies was more than 10, bias was assessed by Begg's funnel plots. No evidence of obvious asymmetry was found in this analysis by visual evaluation (data not shown).

#### Discussion

Recently, several studies evaluating the prognosis of BCa patients suggest that PIK3CA mutations are "good mutations". Our metaanalysis shows that PIK3CA gene mutations are significantly associated with both ER and PR expression, which are believed to be favorable clinicopathologic features of BCa. Furthermore, in unsorted BCa patients with PIK3CA mutations, RFS was significantly improved.

There are some possible explanations for the puzzling favorable effects of PIK3CA mutations. First, signaling pathways downstream of PI3K may not be active in some BCa patients with PIK3CA mutations. Loi et al. found that PIK3CA mutations were associated with relatively low mTORC1 signaling and that some AKT-regulated genes were repressed in BCa patients with PIK3CA mutations<sup>31</sup>. Second, dysregulated gene expression resulting from PIK3CA mutations may be advantageous. Cizkova showed that the Wnt pathway was dysregulated and WNT5A was overexpressed in ER+ BCa patients with PIK3CA mutations<sup>41</sup>. Interestingly, WNT5A expression has been associated with favorable outcomes in patients with invasive breast tumors<sup>42</sup>. Third, PIK3CA, like many other oncogenes, may induce senescence, resulting in a less aggressive phenotype after cell transformation43,44.

Despite of this, there was only an insignificant connection between PIK3CA mutations and OS. The improvement in RFS but not OS may suggest a BCa specific effect of PIK3CA mutations. However, considering specific exons, the effects seemed weak or even contradictory. In the future, more studies focusing on specific exons mutations, including the non-hotspot mutations of PIK3CA, are warranted.

Whether PIK3CA mutations contribute to endocrine therapy resistance remains unclear and intriguing. Another important finding of this study was that PIK3CA mutations did not affect either OS or RFS in HR+ BCa patients. In most of the studies selected for our

| Table 2   Main charc                                           | icteristics of                      | studies that evalua                                          | ted the relation | Iships of PIK3C | A mutations and  | d the OS/RFS in breast cancer p | atients           |                       |          |
|----------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|------------------|-----------------|------------------|---------------------------------|-------------------|-----------------------|----------|
|                                                                | Year of                             |                                                              |                  | Z               | o.of PIK3CA muta | nt                              | Mutation analysis | Median follow-up time |          |
| First author                                                   | publication                         | Country                                                      | Design           | Treatment       | patients (%)     | Sequenced PIK3CA                | methods           | (months, range)       | Outcomes |
| Bozhanov SS                                                    | 2010                                | Bulgaria                                                     | HB               | H, C, RT        | 45 (31.3)        | exon 9 and 20                   | DS                | 69 (11–96)            | SO       |
| Jensen JD                                                      | 2012                                | Denmark                                                      | HB(Her2+)        | Н, С, Т         | 61 (25.7)        | exon 9 and 20                   | PA                | 67*                   | OS       |
| Kalinsky K                                                     | 2009                                | NSA                                                          | ΗB               | R               | 192 (32.5)       | exon 1-20                       | SM + SS           | 153.6*                | OS, RFS  |
| Lai YL                                                         | 2008                                | China (Taiwan)                                               | HB               | H, C, RT        | 39 (25.7)        | exon 4, 7, 9 and 20             | DS                | 78 (1.3–113.2)        | SO       |
| Li SY                                                          | 2006                                | Australia                                                    | HB               | H, C            | 88 (35.2)        | exon 7,9 and 20                 | F-SSCP            | 50 (2–78)             | SO       |
| Loi S                                                          | 2013                                | Finnish                                                      | HB               | H, C, T         | 174 (25.3)       | exons 1, 2, 4, 9, 13, 18, 20    | SM                | . 62*                 | OS, RFS  |
| Sanchez CG                                                     | 2011                                | NSA                                                          | HB               | R               | 16 (31.4)        | exon 9 and 20 (HS)              | DS                | 51.7 (0.9–256.7)      | SO       |
| Lin CH                                                         | 2011                                | China (Taiwan)                                               | HB               | H, C            | 22 (19.0)        | exon 9 and 20                   | DS                | 62.7*                 | OS       |
| Mangone FR                                                     | 2012                                | Brazil                                                       | HB               | R               | 22 (30.6)        | exon 9 and 20                   | DS                | 63.3 (25–78)          | SO       |
| Gonzalez-Angulo AM                                             | 2009                                | NSA                                                          | HB               | H, C            | 78 (22.5)        | exon 9 and 20                   | SM                | 50.4 (9.6–110.4)      | OS, RFS  |
| Maruyama N                                                     | 2007                                | Japan                                                        | HB               | H, C            | 54 (28.7)        | exon 1, 2, 4, 7, 9, 13, 18, 20  | DS                | 64 (38–88)            | RFS      |
| Pérez-Tenorio G                                                | 2007                                | Sweden                                                       | HB               | H, C, RT        | 65 (24.1)        | exon 9 and 20                   | SSCP + DS         | 132*                  | RFS      |
| *means that the ranges of age<br>C, Chemotherapy; T: Trastuzun | or months were r<br>1ab; H, Hormond | not reported in the studies.<br>al therapy; RT, Radiothrapy. |                  |                 |                  |                                 |                   |                       |          |

|                                                          |                                    |        |                          | Hazard Ratio       | Hazard Ratio                        |
|----------------------------------------------------------|------------------------------------|--------|--------------------------|--------------------|-------------------------------------|
| Study or Subgroup                                        | log[Hazard Ratio]                  | SE     | Weight                   | IV, Random, 95% C  | IV, Random, 95% Cl                  |
| 1.1.1 PIK3CA mutations                                   |                                    |        |                          |                    |                                     |
| Bozhanov SS, 2010                                        | -0.85                              | 0.69   | 8.0%                     | 0.43 [0.11, 1.65]  |                                     |
| Jensen JD, 2012                                          | 0.87                               | 0.38   | 15.2%                    | 2.39 [1.13, 5.03]  |                                     |
| Kalinsky K, 2009                                         | -0.14                              | 0.14   | 23.0%                    | 0.87 [0.66, 1.14]  |                                     |
| Lai YL, 2008                                             | 0.75                               | 0.38   | 15.2%                    | 2.12 [1.01, 4.46]  |                                     |
| Li SY, 2006                                              | 0.71                               | 0.41   | 14.3%                    | 2.03 [0.91, 4.54]  |                                     |
| Loi S, 2013                                              | -0.51                              | 0.32   | 17.2%                    | 0.60 [0.32, 1.12]  |                                     |
| Sanchez CG, 2011                                         | -0.37                              | 0.75   | 7.1%                     | 0.69 [0.16, 3.00]  |                                     |
| Subtotal (95% CI)                                        |                                    |        | 100.0%                   | 1.14 [0.72, 1.82]  | -                                   |
| Heterogeneity: Tau <sup>2</sup> = 0.22; Chi <sup>2</sup> | ² = 17.43, df = 6 (P =             | 0.008  | 8); I <sup>2</sup> = 66% | )                  |                                     |
| Test for overall effect: Z = 0.56 (                      | (P = 0.57)                         |        |                          |                    |                                     |
|                                                          |                                    |        |                          |                    |                                     |
| 1.1.2 exon 9                                             |                                    |        |                          |                    |                                     |
| Jensen JD, 2012 (exon 9)                                 | 1.12                               | 0.51   | 11.2%                    | 3.06 [1.13, 8.33]  |                                     |
| Kalinsky K, 2009 (exon9)                                 | 0.28                               | 0.19   | 80.4%                    | 1.32 [0.91, 1.92]  | +■-                                 |
| Lin CH, 2011 (exon 9)                                    | -0.15                              | 1.28   | 1.8%                     | 0.86 [0.07, 10.58] |                                     |
| Mangone FR, 2012 (exon 9)                                | 0.08                               | 0.66   | 6.7%                     | 1.08 [0.30, 3.95]  |                                     |
| Subtotal (95% CI)                                        |                                    |        | 100.0%                   | 1.42 [1.02, 1.99]  | •                                   |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> | <sup>2</sup> = 2.73, df = 3 (P = 0 | 0.43); | l² = 0%                  |                    |                                     |
| Test for overall effect: Z = 2.07 (                      | (P = 0.04)                         |        |                          |                    |                                     |
|                                                          |                                    |        |                          |                    |                                     |
| 1.1.3 exon 20                                            |                                    |        |                          |                    |                                     |
| Gonzalez-Angulo AM, 2009                                 | 0.02                               | 0.28   | 19.8%                    | 1.02 [0.59, 1.77]  |                                     |
| Jensen JD, 2012 (exon20)                                 | 0.72                               | 0.45   | 15.2%                    | 2.05 [0.85, 4.96]  |                                     |
| Kalinsky K, 2009 (exon20)                                | -0.26                              | 0.27   | 20.1%                    | 0.77 [0.45, 1.31]  |                                     |
| Lai YL, 2008                                             | 1.3                                | 0.4    | 16.5%                    | 3.67 [1.68, 8.04]  |                                     |
| Lin CH, 2011 (exon 20)                                   | 0.15                               | 0.56   | 12.6%                    | 1.16 [0.39, 3.48]  |                                     |
| Mangone FR, 2012(exon 20)                                | 1.23                               | 0.43   | 15.7%                    | 3.42 [1.47, 7.95]  |                                     |
| Subtotal (95% CI)                                        |                                    |        | 100.0%                   | 1.63 [0.93, 2.85]  |                                     |
| Heterogeneity: Tau <sup>2</sup> = 0.33; Chi <sup>2</sup> | ² = 17.12, df = 5 (P =             | 0.004  | l); l² = 71%             | )                  |                                     |
| Test for overall effect: Z = 1.71 (                      | (P = 0.09)                         |        |                          |                    |                                     |
|                                                          |                                    |        |                          |                    |                                     |
|                                                          |                                    |        |                          |                    |                                     |
|                                                          |                                    |        |                          | F                  | avours experimental Favours control |

Figure 4 | Forest plots of the analysis on the HR of OS in BCa patients. Subgroups are introduced for evaluating exon 9 or 20 mutations.

analysis, hormone treatment was the standard therapy method. However, *PIK3CA* mutations may have only limited prognostic value with respect to hormone therapy responsiveness. Ellis et al. showed that the *PIK3CA* kinase domain mutations were inversely correlated with the clinical response to neoadjuvant endocrine treatment in BCa patients and was not associated with proliferation, as determined by immunostaining for Ki-67<sup>20</sup>. In patients who did not receive tamoxifen, as Beelen et al. showed, PIK3CA mutation was not a prognostic marker, either.

It also should be noted that there is some dissociation between *PIK3CA* mutations and activation of signaling pathways downstream of PI3K. In some phase I clinical trials, *PIK3CA* mutations were not strongly related to responses produced by PI3K inhibitors<sup>17</sup>. In our study, *PIK3CA* mutations were associated with favorable pro-



Figure 5 | Forest plot of the analysis on the HR of RFS in BCa patients.

| e 3   Main charc                                  | acteristics of stud                 | lies that evaluated the re        | lationship:      | s of PIK3CA m | utations and the (<br>No.of <i>PIK3CA</i> muta | OS/RFS in HR+ breast canc             | er patients<br>Mutation | Median follow-up     |              |
|---------------------------------------------------|-------------------------------------|-----------------------------------|------------------|---------------|------------------------------------------------|---------------------------------------|-------------------------|----------------------|--------------|
| author Ye                                         | ar of publication                   | Country                           | Design           | Treatment     | patients (%)                                   | Sequenced PIK3CA                      | analysis methods        | time (months, range) | Outcome type |
| anov SS                                           | 2010                                | Bulgaria                          | 臾                | H, C, RT      | 24(30.0)                                       | exon 9 and 20                         | DS                      | 69 (11–96)           | OS           |
| vo LV                                             | 2014                                | Italy                             | HB               | H, C, T       | 50(20.3)                                       | exon 9 and 20                         | HRM + PA                | 97 (8–140)           | OS*          |
|                                                   | 2006                                | Australia                         | HB               | H, C          | 69(41.1)                                       | exon 7, 9 and 20                      | F-SSCP                  | 50 (2–78)            | OS           |
| hez CG                                            | 2011                                | USA                               | 留                | NR            | 13(48.1)                                       | exon 9 and 20 (HS)                    | DS                      | 51.7 (0.9–256.7)     | OS           |
| ke-Hale K                                         | 2008                                | Spain, Netherlands<br>and USA     | 兕                | т             | 80(34.5)                                       | 23 known mutations                    | MS                      | NR                   | OS, RFS      |
| in K                                              | 2014                                | Netherlands                       | ΕB               | Control arm   | 28(25.2)                                       | exon 9 and 20 (HS)                    | SM                      | 93.6                 | RFS          |
| Ā                                                 | 2010                                | Multicentre                       | ΗB               | н             | 45(29.4)                                       | exon 9 and 20                         | DS                      | NR                   | RFS*         |
| Jyama N                                           | 2007                                | Japanese                          | Ħ                | H, C          | 54(28.7)                                       | exon 1, 2, 4, 7, 9, 13, 18,<br>and 20 | DS                      | 64 (38–88)           | RFS          |
| emotherapy; T: Trastuzu<br>∋xon 20 mutations were | mab; H, Hormonal ther<br>analyzed.  | apy; RT, Radiothrapy; HRM, high n | ssolution meltin | ıg analysis.  |                                                |                                       |                         |                      |              |
| emotherapy; T: Trastuzu<br>exon 20 mutations were | mab; H, Hormonal there<br>analyzed. | apy; RT, Radiothrapy; HRM, high n | esolution meltin | ıg analysis.  |                                                |                                       |                         |                      |              |

gnostic factors such as ER and PR expression, but are unlikely to be the single pivotal determinant of favorable responses to endocrine treatment. The gene signature associated with *PIK3CA* mutations was indicative of better clinical outcomes in ER+/HER2- BCa patients<sup>45</sup>. Perhaps its gene signature is more important than the *PIK3CA* mutation itself in respect to prognosis. Studies determining whether *PIK3CA* mutations are beneficial to tamoxifen-treated HR+ BCa patients with other molecular features such as PTEN loss or *AKT1* mutations are warranted.

There were some limitations to our study. First, we only analyzed available data in the literature. Second, because of significant heterogeneity, we used the random effect model, which is not as reliable as the fixed-effects model, in some analyses. Third, we only included articles that were published in English, and language bias might exist. Fourth, data extracted from the literature may not be as reliable as data generated directly. Fifth, several related studies of high quality were not included in our analysis because ideal unified prognosis parameters were lacking. Finally, the inclusion criteria and treatment procedures were not strictly unified in the studies used for our analysis. These differences are also a potential source of heterogeneity. Therefore, a cautious interpretation of our findings is warranted given possible bias in our meta-analysis.

In summary, our results show that *PIK3CA* mutations are significantly related to the ER and PR expression status of BCa patients. They also correlated with improved RFS in unsorted BCa patients, but not with OS or RFS in HR+ BCa patients. As a potential biomarker, *PIK3CA* mutations were not prognostic for HR+ BCa patients or, most notably, ER+ BCa patients. Future studies are needed that collectively explore the possible roles of *PIK3CA* mutations, the activation of signaling pathways downstream of PI3K, and other important biomarkers such as the genes encoding the components of the PI3K/AKT/mTOR pathway.

#### Methods

Literature search and eligibility criteria. We searched PubMed and Embase databases up to April 2014 for English-language titles or abstracts that included the words "phosphoinositide-3-kinase", "*PIK3CA*", "mutation", "breast cancer", or "breast neoplasms". We also screened the references of the retrieved articles and relevant reviews for additional articles. A published article was included if it (1) evaluated the association between *PIK3CA* mutations and ER or PR expression in BCa patients or the association between *PIK3CA* mutations and BCa prognosis; (2) had sufficient data for estimating an OR with a 95% CI or a HR with a 95% CI; and (3) evaluated OS, RFS, or other survival index. The exclusion criteria were as follows: (1) letters, reviews, conference abstracts, and case reports; and (2) articles that did not provide sufficient information such as a HR for OS or had data that could not be extracted.

**Data extraction and quality assessment.** Two authors independently screened all publications by title or abstract for inclusion in our study. Discrepancies were resolved by group discussion, and data were extracted from eligible publications. The following information was collected: name of the first author, year of publication, source of patients, study design, mean age of the patients, percentage of ER+ and PR+ patients, percentage of patients with *PIK3CA* mutations, the region of the sequenced *PIK3CA* mutations, mutation analysis methods, outcome of BCa patients, and median follow-up time (months, range). The studies were assessed for quality according to the Newcastle-Ottawa quality assessment scale, and articles with 5 stars or more qualified for our study<sup>46</sup>.

Statistical analysis. An OR with a 95% CI was used to assess the strength of the association between PIK3CA mutations and ER or PR expression status. The primary end points were RFS and OS. A HR and a 95% CI were used to estimate the impact of PIK3CA mutations on RFS and OS. When a HR and a 95% CI were not given in the article, estimated values were derived indirectly from Kaplan-Meier curves using the methods described by Tierney et al.47. Kaplan-Meier curves were read by an Engauge Digitizer, version 4.1 (http://digitizer.sourceforge.net/), and the data from the curves were entered in the spreadsheet appended to Tierney's report<sup>47</sup>. A combined HR > 1 implied a worse survival for groups of patients with PIK3CA mutations. Cochran Q and I2 statistic values were used to assess heterogeneity among the studies. For the Q statistic, a P value < 0.10 was considered statistically significant for heterogeneity48, and the random effects model was calculated according to the DerSimonian-Laird method<sup>49</sup>.Otherwise, the fixed-effects model (Mantel-Haenszel method) was used.  $I^2 < 50\%$  was considered acceptable. If significant heterogeneity was found, a random-effects model was used for meta-analysis. Statistical analyses were performed using



Figure 6 | Forest plots of the analysis on the hazard ratio of OS (a) and RFS (b) in HR+ BCa patients.

Review Manager 5.0 software (http://www.cochrane.org). A significant two-way P value for comparison was defined as P < 0.05.

Ethical Standards. We declare that the experiments comply with the current laws of China.

- Network, C. G. A. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
- Boswell, K. A., Wang, X., Shah, M. V. & Aapro, M. S. Disease burden and treatment outcomes in second-line therapy of patients with estrogen receptorpositive (ER+) advanced breast cancer: a review of the literature. *Breast* 21, 701–706 (2012).
- Glass, A. G., Lacey, J. V., Jr., Carreon, J. D. & Hoover, R. N. Breast cancer incidence, 1980-2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. *J Natl Cancer Inst* 99, 1152–1161 (2007).
- O'Brien, C. *et al.* Predictive biomarkers of sensitivity to the phosphatidylinositol 3' kinase inhibitor GDC-0941 in breast cancer preclinical models. *Clin Cancer Res* 16, 3670–3683 (2010).
- Mangone, F. R., Bobrovnitchaia, I. G., Salaorni, S., Manuli, E. & Nagai, M. A. PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. *Clinics (Sao Paulo)* 67, 1285–1290 (2012).
- Drury, S. C. et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. *Endocr Relat Cancer* 18, 565–577 (2011).
- Boulay, A. *et al.* Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. *Clin Cancer Res* 11, 5319–5328 (2005).
- Crowder, R. J. et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 69, 3955–3962 (2009).
- 9. Bachman, K. E. *et al.* The PIK3CA gene is mutated with high frequency in human breast cancers. *Cancer Biol Ther* **3**, 772–775 (2004).
- Barbareschi, M. *et al.* Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. *Clin Cancer Res* 13, 6064–6069 (2007).
- 11. Beelen, K. *et al.* PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2 and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. *Breast Cancer Res* **16**, R13 (2014).
- Benvenuti, S. et al. PIK3CA cancer mutations display gender and tissue specificity patterns. Hum Mutat 29, 284–288 (2008).
- Bozhanov, S. S. *et al.* Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. *J Cancer Res Clin Oncol* 136, 1657–1669 (2010).

- Buttitta, F. et al. PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208, 350–355 (2006).
- Campbell, I. G. *et al.* Mutation of the PIK3CA gene in ovarian and breast cancer. *Cancer Res* 64, 7678–7681 (2004).
- Cizkova, M. *et al.* PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. *Breast Cancer Res* 14, R28 (2012).
- Cuorvo, L. V. et al. PI3KCA mutation status is of limited prognostic relevance in ER-positive breast cancer patients treated with hormone therapy. Virchows Archiv: an international journal of pathology 464, 85–93 (2014).
- Dunlap, J. et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 120, 409–418 (2010).
- Dupont Jensen, J. *et al.* PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. *Clin Cancer Res* 17, 667–677 (2011).
- Ellis, M. J. et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 119, 379–390 (2010).
- 21. Gonzalez-Angulo, A. M. *et al.* Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. *Clin Cancer Res* **15**, 2472–2478 (2009).
- Harle, A. *et al.* Analysis of PIK3CA exon 9 and 20 mutations in breast cancers using PCR-HRM and PCR-ARMS: correlation with clinicopathological criteria. *Oncology reports* 29, 1043–1052 (2013).
- 23. Jensen, J. D. *et al.* PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. *Ann Oncol* 23, 2034–2042 (2012).
- Kalinsky, K. et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15, 5049–5059 (2009).
- Lai, Y. L. et al. PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15, 1064–1069 (2008).
- Li, H. *et al.* PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. *Exp Mol Pathol* 88, 150–155 (2010).
- Li, S. Y., Rong, M., Grieu, F. & Iacopetta, B. PIK3CA mutations in breast cancer are associated with poor outcome. *Breast Cancer Res Treat* 96, 91–95 (2006).
- Liang, X. *et al.* Mutational hotspot in exon 20 of PIK3CA in breast cancer among Singapore Chinese. *Cancer Biol Ther* 5, 544–548 (2006).
- 29. Liedtke, C. *et al.* PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. *Breast Cancer Res* **10**, R27 (2008).
- Lin, C. H. *et al.* Prognostic molecular markers in women aged 35 years or younger with breast cancer: is there a difference from the older patients? *J Clin Pathol* 64, 781–787 (2011).
- Loi, S. et al. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst 105, 960–967 (2013).
- 32. Lopez-Knowles, E. *et al.* PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. *Int J Cancer* **126**, 1121–1131 (2010).



- Maruyama, N. *et al.* Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. *Clin Cancer Res* 13, 408–414 (2007).
- 34. Michelucci, A. *et al.* PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. *Diagn Mol Pathol* **18**, 200–205 (2009).
- Perez-Tenorio, G. *et al*. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. *Clin Cancer Res* 13, 3577–3584 (2007).
- 36. Saal, L. H. *et al.* PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. *Cancer Res* 65, 2554–2559 (2005).
- 37. Sanchez, C. G. *et al.* Preclinical modeling of combined phosphatidylinositol-3kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. *Breast Cancer Res* **13**, R21 (2011).
- Santarpia, M. et al. PIK3CA mutations and BRCA1 expression in breast cancer: potential biomarkers for chemoresistance. Cancer Invest 26, 1044–1051 (2008).
- 39. Stemke-Hale, K. *et al.* An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. *Cancer Res* 68, 6084–6091 (2008).
- Ioannidis, J. P. & Trikalinos, T. A. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176, 1091–1096 (2007).
- 41. Cizkova, M. *et al.* Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway. *PLoS One* **5**, e15647 (2010).
- Ford, C. E., Ekstrom, E. J., Howlin, J. & Andersson, T. The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERalpha negative breast cancer. *Cell Cycle* 8, 1838–1842 (2009).
- 43. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. *Nat Rev Mol Cell Biol* **8**, 729–740 (2007).
- 44. Dumont, A. G., Dumont, S. N. & Trent, J. C. The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer. *Chin J Cancer* 31, 327–334 (2012).
- 45. Loi, S. et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A 107, 10208–10213 (2010).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 25, 603–605 (2010).

- Tierney, J. F., Stewart, L. A., Ghersi, D., Burdett, S. & Sydes, M. R. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 8, 16 (2007).
- Lau, J., Ioannidis, J. P. & Schmid, C. H. Quantitative synthesis in systematic reviews. Ann Intern Med 127, 820–826 (1997).
- DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin Trials 7, 177–188 (1986).

#### Acknowledgments

This work was supported by Funding of Guang'an men Hospital (Grant No. 2011S244).

#### **Author contributions**

B.P. carried out the search of the Embase and Pubmed database, performed the statistical analysis by Revman, participated in the design of the study and drafted the manuscript. S.C. carried out the search of the Embase and Pubmed database and performed the statistical analysis by Revman. S.P.S. performed the data collection and extraction and helped to draft the manuscript. C.A. participated in the design of the study and made the language polishing. Z.Y.L. performed the data collection, extraction and arrangement. X.F. performed the data collection and arrangement. G.J.L. conceived of the study, and participated in its design and coordination and helped to draft the manuscript.

#### **Additional information**

Competing financial interests: The authors declare no competing financial interests. How to cite this article: Pang, B. *et al.* Prognostic role of *PIK3CA* mutations and their association with hormone receptor expression in breast cancer: a meta-analysis. *Sci. Rep.* **4**, 6255; DOI:10.1038/srep06255 (2014).

