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Abstract: Plants adapt to environmental changes by regulating their development and growth. As
an important interface between plants and their environment, leaf morphogenesis varies between
species, populations, or even shows plasticity within individuals. Leaf growth is dependent on
many environmental factors, such as light, temperature, and submergence. Phytohormones play
key functions in leaf development and can act as molecular regulatory elements in response to
environmental signals. In this review, we discuss the current knowledge on the effects of different
environmental factors and phytohormone pathways on morphological plasticity and intend to
summarize the advances in leaf development. In addition, we detail the molecular mechanisms of
heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and
the environmental adaptation in plants.
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1. Introduction

Leaves are key interfaces between plants and their surrounding environment, function-
ing to capture sunlight, synthesize photosynthate, exchange gasses, sense ambient changes,
and regulate their growth under heterogeneous conditions [1–3]. In part because of their
sessile lifestyle, plants possess efficient systems of morphological plasticity and acclimation
to environmental changes. The diversity of leaf shape, vein pattern, stomata, and other
parameters not only vary among plants that belong to different species (Figure 1A) but also
within a single plant [4–6] (Figure 1B). It is well known that the same genotype is capable
of developing different phenotypes, which is regarded as the coordination of phenotype,
development, and environment [7,8]. For example, heteroblasty was described as the
changes in leaf shape during growth development [9], while anisophylly is coupled with
asymmetry and leaf phyllotaxis [10]. Some species have even evolved the ability to develop
significantly different leaf types under heterogeneous conditions, a phenomenon called
heterophylly [11–13]. Furthermore, heteroblasty indicates the juvenile-to-adult transition
marked by morphological changes, and it emphasizes the developmental stage-related
plasticity [14]. However, heterophylly is an extreme morphological plasticity, which is
induced by environmental conditions [12,13]. This morphological plasticity provides good
models for studying leaf development. However, the mechanisms related to how plants
sense environmental changes and develop final leaf forms is still not elucidated.

Given the rapid developments of plant functional genomics, many genes control-
ling leaf development have been studied, and the regulatory networks underlying these
morphological processes have been well characterized [15]. Despite the fact that leaf devel-
opment is related to genotype, the final shape is adjusted by environmental conditions, such
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as light, temperature, atmospheric carbon dioxide (CO2) concentrations, and submergence,
to adapt to environmental variables [1,16]. The modulation of phytohormone signaling
and distributions is a very effective strategy for quick environmental responses. Phytohor-
mones are long-range molecular signals and have key functions in regulating plant growth
and leaf development [11,17–26]. Thus, environmentally induced changes in hormone
concentration, distribution, and/or sensitivity can promote coordinated developmental
responses [27–31].
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Figure 1. The phylogeny and typical leaf shape among plant species. (A) The phylogeny and typical leaf shape among 
species from different orders. Red text indicates the order name. (B) Leaves from a heterophyllous plant (Hygrophila dif-
formis) shifted from terrestrial to submerged conditions. Successive leaves are in phyllotactic order. Bar = 1 cm. All photos 
were taken by the camera (Canon EOS80D, Japan) and plant materials were collected from the Key Laboratory of Aquatic 
Biodiversity and Conservation of Chinese Academy of Sciences (Institute of Hydrobiology, Chinese Academy of Sciences). 
The phylogenetic tree was based on the online software “Phylomatic” (http://phylodiversity.net/phylomatic/). 
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Figure 1. The phylogeny and typical leaf shape among plant species. (A) The phylogeny and typical leaf shape among
species from different orders. Red text indicates the order name. (B) Leaves from a heterophyllous plant (Hygrophila difformis)
shifted from terrestrial to submerged conditions. Successive leaves are in phyllotactic order. Bar = 1 cm. All photos were
taken by the camera (Canon EOS80D, Japan) and plant materials were collected from the Key Laboratory of Aquatic
Biodiversity and Conservation of Chinese Academy of Sciences (Institute of Hydrobiology, Chinese Academy of Sciences).
The phylogenetic tree was based on the online software “Phylomatic” (http://phylodiversity.net/phylomatic/).

Here, we detailed the current knowledge on the molecular mechanisms underlying
morphological plasticity regarding the environment, including environmental sensing,
phytohormone signals, and leaf development in plants. Learning how plants use adaptive
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strategies in nature will help us to gain novel insights into plant science and further improve
crops associated with a changing climate.

2. Environmental Sensing and Adaptation to Light and Temperature

Photosynthesis efficiency depends on the light capture of leaves. As a result, the
balance of maximizing light capture and minimizing the harmful impact of high light is a
coordinated developmental response. For example, plants prefer to develop broad leaves to
maximize light capture, but if the sunlight is too harsh it may lead to overheating and cause
harm to the plants [32,33]. In contrast, leaf development also responds to shade (a reduction
in the red (660 nm) to far-red (730 nm), R/FR), which is called shade avoidance syndrome
(SAS), showing petioles elongation, leaf upward bending, and leaf area decreasing [34,35]
(Figure 2A). The upward movement of the leaves allows the plant to elevate the position
of the foliage in order to maximize light capture [34,36]. Other aspects are also affected
by light, such as leaf complexity, stomata density, and leaf thickness, which increased in
the high light conditions [16,37–39]. In Rorippa aquatica (Brassicaceae), leaf complexity
is dramatically increased in high light conditions [40]. In some other species, such as
Nuphar lutea (Nymphaeaceae), Rumex palustris (Polygonaceae), and Hygrophila difformis
(Acanthaceae), light change even induced the rearrangement of chloroplasts and altered
the photosynthetic biochemistry to adapt the plant to aquatic conditions [41–43]. The
photoperiod also significantly regulates leaf form. For example, short daylength induced
submerged leaves, while long daylength induced terrestrial leaves of P. palustris and
Ranunculus aquatilis (Ranunculaceae) [44,45].

Increasing surrounding temperature affects numerous developmental traits among
plants, and the morphological changes that occur in plants in response to temperature
changes are called thermomorphogenesis [46–48]. In order to adapt to high temperatures,
plants developed elongated hypocotyls and petioles, as well as a decrease in leaf thickness
and an increasing stomatal density [47,49,50]. These morphological responses are believed
to cool plants and reduce the damage caused by sunlight through the upward bending of
leaves [46,51,52]. Leaf dissection has for a long-time been thought to correlate with ambient
temperature [5]. For example, plants growing in cold climates tend to develop serrated
or deep-lobed leaves, while plants growing in warm conditions display shallow-lobed
leaves [53–57]. To some degree, leaf dissection was used as an indicator for predicting
paleoclimate [5,58]. The change in temperature of a single leaf of R. aquatica affects the
epidermal cell size in developing leaves, and hence the morphology of the whole plant is
affected [1,59]. In Ludwigia arcuata (Onagraceae), low temperature induced the elongation
of epidermal cells and thus lead to the aquatic leaf form [60]. It was recently verified that
pectin and cortical microtubules drive morphogenesis in plant epidermal cells [61,62], but
how these epidermal changes are regulated by temperature is still unknown.

It was verified that auxin signal functions to connect temperature sensing with growth
responses in hypocotyls [63,64]. In Arabidopsis thaliana, temperature changes can be sensed
by the inactivation of photoreceptors such as phytochrome B (phyB), whose function in
thermoregulation operates via the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) for
high temperature-induced hypocotyl elongation [65,66]. High temperature-activated PIF4
directly upregulates the expression of auxin biosynthesis genes (e.g., YUCCA8, TAA1, and
CYB79B2), and as a result, the accumulated auxin induces hypocotyl elongation and leaf
hyponasty [67,68]. High temperature also induced PIF4 expression by inactivating EARLY
FLOWERING 3 (ELF3) that directly represses PIF4. In high temperature conditions, ELF3
binding to the PIF4 promoter is decreased, and thus PIF4 was activated for thermomor-
phogenesis [69,70]. Auxin could theoretically induce elongation growth; however, it was
recently reported that the phytohormone brassinosteroid (BR) activates elongation growth
downstream of auxin to act in themomorphogenesis [71,72].
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Figure 2. Example of plant developmental responses to environmental changes. (A) Both shaded light and an increase
in temperature induce the elongation of the petiole, a reduction of leaf area, and an upward movement of the leaves.
ELF3 directly represses PIF4, and this repression was released in shade/high temperature conditions. PIF4 activates auxin
synthesis by upregulating YUCCAs and activating ethylene synthesis by upregulating ACSs for thermomorphogenesis
and shade avoidance syndrome (SAS). Shade/high temperature also induces high levels of gibberellic acid (GA) and the
degradation of DELLAs, which therefore release PIF4 for binding to target promoters. (B) Deepwater rice activates stem
elongation growth depending on the water level. Submerged conditions accumulate high ethylene and activate SD1 for GA
synthesis. GA promotes stem elongation through the activation of ACE1 and repression of DEC1. Ethylene also induced
EIN2/EIN3 signaling and thus enhanced PGB1 to improve ERFVII stability for flooding survival.

Temperature and light signals are integrated into the PIF and the relevant genetic net-
work, which controls auxin biosynthesis [67,73]. Photomorphogenesis and shade avoidance
responses, including stem/hypocotyl elongation are mediated by PIF4 [74]. The stability of
the PIF4 protein is regulated by light, and it is dephosphorylated and stable in the dark,
while it is rapidly phosphorylated by phyB-mediated signaling and degradation upon
red light irradiation [74]. Interestingly, although phyB and PIF4 antagonistically regulate
photomorphogenesis and shade avoidance responses, they cooperatively promote stomatal
development in response to high light [39]. Shade also induces the expression of gibberellic
acid (GA) biosynthetic enzymes and leads to an accumulation of GA, which then promotes
the degradation of DELLAs. It was found that DELLA directly interacts with PIF4 and
prevents it from binding to target promoters [75,76]. Besides, the ethylene response also
shows short hypocotyls, short roots, and an exaggerated apical hook [77]. PIF4 also pro-
motes ethylene biosynthesis by activating the expression of ethylene biosynthesis genes
(e.g., ACS2, 6, 8, and 9) and enhances ethylene signaling by activating the transcription
factor ETHYLENE INSENSITIVE 3 (EIN3) [78,79].

Light and temperature are the most critical environmental factors for plant growth, and
even a slight change can lead to disasters of plants [80,81]. We mentioned above that PIF4
may be a key element that functions in the light/temperature-dependent morphological
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plasticity and the crosstalk of phytohormones such as auxin, ethylene, and GA. Future
studies based on these gene pathways and phytohormones will not only reveal novel
mechanisms on the light and temperature response but will also have implications on crop
improvement through use of these plastic strategies.

3. Environmental Sensing and Adaptation to Submergence

Under flooding or submerged conditions, plants find it difficult to obtain enough O2
for respiration. Terrestrial plants, such as A. thaliana and Solanum lycopersicum (tomato),
which are intolerant to flooding, find that submerged conditions induce their leaves to turn
pale and suppresses their plant growth [73,82]. Deepwater rice survive periodic flooding
and consequent oxygen deficiency by activating an internode growth of stems to keep
above the water [83] (Figure 2B). In other species such as R. palustris, elongated leaves and
decreased thickness helps the plant to obtain a relatively increased gas exchange under
submerged conditions [41]. In some aquatic, dimorphic types of plants, their submerged
leaves are always thin, narrow, or dissected and contain fewer stomata, while aerial leaves
are thick, broad, and entire, and have more stomata [12,40,84,85]. Although narrow or
dissected leaves are less efficient at absorbing sunlight than those with wider blades, they
can better withstand the destructive force of water flow and more efficiently incorporate
CO2 and mineral nutrients than entire leaves [86–88].

ABA and ethylene are key regulators of drought and submerge response, sepa-
rately. ABA was regarded as a stress hormone, which accumulates rapidly in response to
drought/dehydration stress and plays a crucial role in stomatal closure, root growth, and
the production of protective metabolites [20,89]. ABA levels in unstressed plants are low,
but accumulated highly under reduced water potentials by the activation of key synthesis
genes 9-cis-epoxycarotenoid dioxygenases (NCEDs) [90]. Upon perception of ABA, the ABA
receptor pyrabactin resistance 1 (PYR1)-like protein PYL, regulatory components of the
ABA receptor (RCAR) proteins, inhibit the activity of clade A protein phosphatase type 2C
(PP2C) phosphatases, thus releasing the subclass III sucrose nonfermenting 1-related ki-
nase 2 (SnRK2s, including SnRK2.2, SnRK2.3, and SnRK2.6) to phosphorylate downstream
proteins [91,92]. The arabidopsis protein kinases SnRK2s function as central and positive
regulators of the ABA signaling pathway and are involved in stomatal closure, osmotic
stress responses, and have an evolutionarily conserved function on plant adaptation to the
terrestrial environment [93–95].

Aquatic plants, such as rice, have evolved adaptive mechanisms to survive under
submergence. When subjected to flooding, rice or deepwater rice accumulates high ethy-
lene, which activates gibberellin biosynthesis gene SEMIDWARF 1 (SD1), promotes GA-
dependent elongation, and results in an “escape” strategy to reestablish contact with the
air [83]. Recent studies have found that the submergence-induced GA accumulation acti-
vates ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1), which confers cells of the
intercalary meristematic region with the competence for cell division, leading to internode
elongation in the presence of GA. In contrast, high GA repressed DECELERATOR OF
INTERNODE ELONGATION 1 (DEC1) suppresses internode elongation, whereas downreg-
ulation of DEC1 allows internode elongation [96]. Under submerged conditions, ethylene
also induces the expression of two ethylene response factors (ERFs), SNORKEL1 (SK1)
and SK2, to trigger remarkable internode elongation via GA [97]. However, the response
may vary between species, as GA levels in Rumex acetosa remain unchanged, although
ethylene increased during submergence [98]. For the submergence of terrestrial plants,
such as A. thaliana, the limited gas diffusion causes passive ethylene accumulation, leading
to ETHYLENE INSENSITIVE 2 (EIN2) and EIN3/EIN3-like 1 (EIL1)-dependent signaling
and enhanced production of the nitric oxide (NO) scavenger PHYTOGLOBIN 1 (PGB1).
The enhanced PGB1 levels lead to NO depletion, enhancing group VII ethylene response
factor (ERFVII) stability [99]. The constitutively synthesized ERVIIs (e.g., RELATED TO
APETALA 2.12 (RAP2.12), RAP2.2, and RAP2.3) redundantly act as the principal activators
of many hypoxia adaptive genes and lead to flooding survival [43].
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Phytohormone signals also play key roles in leaf development. For example, the
recruitment of leaf founder cells in the shoot apical meristem (SAM) is mediated by the
formation of a concentration maxima of auxin [100,101]. Altering the endogenous auxin
levels and localization results in leaf simplification in a tomato plant, while downregulating
auxin biosynthesis genes (e.g., YUCCA) was reported to inhibit organ initiation in many
species such as Arabidopsis, maize, and petunia [102–104]. Cytokinin (CK) also plays an im-
portant role in SAM maintenance [105–107]. Overexpression of the CK biosynthesis genes
in tomato leaves leads to the formation of highly compound leaves. However, exogenous
application of CK causes minor leaf phenotypes in the tomato [108]. Increasing GA levels
in tomatoes result in tall plants with larger and simpler leaves [109]. Interestingly, this
GA response is not common, and in some species, GA has the opposite effect of inducing
more compound leaves [110,111]. To better understand the relationship of phytohormones
and leaf development, in the next section we will discuss the molecular mechanisms of
leaf development.

4. Mechanisms of Leaf Development: The Gene Regulatory Networks (GRNs)

Despite the diversity of leaf shapes, the molecular mechanisms of leaf development in
most species are shared [50,107,112,113]. Recently, the complexity of the genetic networks
controlling leaf development was fully summarized [2,114]. Here, we briefly review a
classic view of the regulatory pathway which operates in leaf development, in order to
better understand the mechanism of leaf plasticity.

Leaves are initiated at the flank of the SAM, which contains a pool of undifferentiated
cells at the plant aerial apex [114,115] (Figure 3A). PIN-FORMED 1 (PIN1), the auxin efflux
carrier, dynamically repolarizes and creates directional auxin flows at specific positions in
the SAM. Auxin locally repressed the expression of class-I KNOTTED-LIKE HOMEOBOX
(KNOXI) genes, which are responsible for stem cell maintenance in the SAM, like SHOOT-
MERISTEMLESS (STM) and BREVIPEDICELLUS (BP) [101,115]. ARP genes (including
ASYMMETRIC LEAVES 1 (AS1), ROUGHSHEATH 2, and PHANTASTICA) like AS1 interact
with ASYMMETRIC LEAVES 2 (AS2), and their protein complexes bind directly to the
promoter of KNOXI genes and repress their expression [116–118]. The formation of an
auxin gradient within the SAM also contributes to the formation of boundary domains that
separate primordia from the rest of the meristem [114]. These domains are maintained by
the activity of several transcription factors, such as the NO APICAL MERISTEM/CUP-
SHAPED COTYLEDON (NAM/CUC) family [119]. KNOXI transcription factors maintain
the meristematic activity in the SAM through CK and GA, by activating the CK biosynthesis
gene ISOPENTENYLTRANSFERASE 7 (IPT7), which maintains cell proliferation while
preventing cell differentiation by repressing its biosynthesis gene GA 20-oxidase (GA20ox)
and activating the deactivation gene GA2ox [22,120].

Starting on the flank of the SAM, the newly initiated leaf primordia becomes asymmet-
ric in three axes: the adaxial-abaxial, medial-lateral, and proximal-distal [122] (Figure 3B).
Among these, the adaxial-abaxial polarity allows the further establishment of lateral polar-
ity [114]. To establish adaxial-abaxial polarity, HD-ZIPIII genes expressed in the adaxial
side of leaf primordia, function antagonistically to KANADI (KAN) genes, which are ex-
pressed in the abaxial side. YABBY (YAB) functions relatively later in leaf development and
acts downstream of KAN genes on the abaxial side [124–127] (Figure 3B). MicroRNAs, like
miR165/166, are also expressed towards the abaxial side, negatively regulating HD-ZIPIII
to restrict its expression to the adaxial side of leaf primordia [128–130]. In contrast, AS1
and AS2 promote the expression of HD-ZIPIII on the adaxial side and repress the expres-
sion of miR165/166, KAN, and YAB genes [131,132]. Trans-acting short interfering RNAs
(ta-siRNAs), whose targets are miR165/166 and Auxin response factors (ARFs) such as
ARF3 and ARF4 transcription factors, are generated in the adaxial side and restrict the
expression of ARF3/4 genes to the abaxial side [133–135].
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YLEDONS (CUCs) have positive feedbacks with KNOXI. Blade on PETIOLE 1 (BOP1) and BOP2 are expressed in the 
proximal region to repress KNOXI directly, or indirectly by AS2. ARF3/4 also repress KNOXI to promote organogenesis 
at the shoot apex. (D) The switch from cell proliferation to differentiation follows a process that is promoted by the miR319-
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Figure 3. Genetic and hormonal factors that control leaf development. (A) Genetic and hormonal factors are controlling
primordium development. Class-I KNOTTED-LIKE HOMEOBOX (KNOXI) proteins maintain high cytokinin (CK) levels
and low GA levels in the shoot apical meristem (SAM). ARP maintains high GA level through repression of KNOXI.
(B) Adaxial-abaxial polarity establishment in a developing leaf. HD-ZIPIII functions antagonistically to KANADI (KAN)
and YABBY (YAB) acts downstream of KAN on the abaxial side. miR165/166 represses HD-ZIPIII, but ASYMMETRIC
LEAVES 1 (AS1) and AS2 promote the expression of HD-ZIPIII on the adaxial side and repress miR165/166, KAN, and YAB.
ta-siRNAs target miR165/166 and Auxin response factor 3/4 (ARF3/4) to restrict them to the abaxial side. (C) Proximal-
distal polarity establishment in a developing leaf. KNOXI genes are expressed in the boundary region, and CUP-SHAPED
COTYLEDONS (CUCs) have positive feedbacks with KNOXI. Blade on PETIOLE 1 (BOP1) and BOP2 are expressed in the
proximal region to repress KNOXI directly, or indirectly by AS2. ARF3/4 also repress KNOXI to promote organogenesis at
the shoot apex. (D) The switch from cell proliferation to differentiation follows a process that is promoted by the miR319-
TCP module and repressed by the miR396-GRF module. PRESSED FLOWER (PRS) is also repressed by class II TCP and
NGATHA (NGA), promoting cell proliferation in the leaf margin. (E) Common molecular pathways underpin both simple
and compound leaf formation. PIN-FORMED 1 (PIN1) localization at the developing leaf is polar so that an auxin activity
maximum is formed at the tip of both serration and leaflet. KNOXI are expressed in the rachis of the compound leaf, where
they activate CUC expression at the distal boundary of the leaflet and promote polar localization of PIN1 in the leaflets.
In turn, CUC activity maintains KNOXI expression in the rachis while auxin downregulates KNOXI expression for leaflet
formation. CUC expression and auxin maxima promote the development of serrations. Yellow represents an auxin activity
maximum, red the domain of CUC expression, and the blue color denotes the expression domain of KNOXI. Panel A, C, and
D is based on [121] and B is based on [122]. Panel E is based on [123].
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The proximal-distal axis may be genetically established when a leaf primordium
emerges from the shoot apex (Figure 3C). During this process, KNOXI genes are expressed
in the boundary region and CUC genes, which are negatively regulated by miR164, have
positive feedback with KNOXI [136,137]. KNOXI and AS1 appear to be involved in
the proximal-distal polarity patterning, and BLADE ON PETIOLE (BOP) genes, such as
BOP1 and BOP2, are expressed in the proximal region, directly repressing KNOXI or
indirectly restricting the location of KNOXI by activating AS2 [118,138,139]. In addition,
ARF3/4 genes also repress KNOXI to promote organogenesis at the shoot apex [140].
The mechanism of medio-lateral polarity is still not clear, and only a few studies have
found several regulatory genes. KANs and HD-ZIPIII antagonize each other and inversely
regulate the genes involved in auxin transport and biosynthesis, resulting in a high
auxin level in the abaxial domain [125,141,142]. The high abaxial auxin and the adaxial
expression of MONOPTEROS (MP) results in higher auxin response, therefore, it induced
the activation of the WUSCHEL- related homeobox (WOX) genes, WOX1 and PRESSED-
FLOWER (PRS) [141,142]. The expression of WOX1 and PRS is restricted to the middle
domain but highly expressed in the marginal region, promoting the formation of serration
or leaflets [50,121,143–145].

After leaf blade initiation, leaves grow according to two main processes based on
cell division and expansion (Figure 3D). Two classes of miRNA/transcription factors play
antagonistic roles in cell proliferation and differentiation for subsequent leaf development
(Figure 3D). The class II TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL
FACTOR (TCP), which are downregulated by miR319, function to promote cell differen-
tiation and expansion in the distal part of leaves [146], while GROWTH REGULATING
FACTORS (GRFs), which are repressed by miR396, function with GRF interacting factors
(GIFs) to promote cell proliferation in the proximal ends of leaves [147–149]. Class II TCP,
like TCP4, can also directly activate miR396 to inhibit the expression of GRF targets or
repress the expression of GRF/GIF genes via unknown mechanisms [148,150,151]. CUC
genes play key roles for marginal morphogenesis and are repressed by Class II TCP and
miR164 [152–154]. In addition, PRS is also repressed by class II TCP and NGATHA (NGA),
promoting cell proliferation in the leaf margin [155]. Recent studies also found that WOX1
regulates Class II TCP at both the transcriptional and translational level and regulates leaf
size and vein pattern in Cucumis sativus [156].

There are significant differences in simple-leafed and compound-leafed species
(Figure 3E). Although in some leguminous lineages LEAFY (LFY) activity modulates leaf
complexity [157], KNOXI genes are the key factors regulating leaf morphological differences
among species [40,115]. In simple-leafed species like A. thaliana, KNOXI is only expressed
in the SAM, and marginal serrations are modified by the feedback regulation of auxin
maxima and CUC genes [158]. Correspondingly, in compound-leafed species like tomato
and Cardamine hirsute, KNOXI is re-activated in the leaf primordia, which results in the
formation of leaflets by the feedback regulation of auxin maxima, KNOXI, and CUC
genes [101,123,159].

5. Molecular Mechanisms of Heterophylly—A Representative of Leaf Plasticity

Environmental signals were integrated into GRNs and subsequently induced rapid
and acclimated changes. Morphological plasticity was found in many species, as shown
by changing leaf size, shape and thickness, and stomatal density, which has been seen in
several species under different conditions or development stages [50,112,113,160]. Among
those, heterophyllous plants show extreme plasticity in response to environmental factors,
and were regarded as an ideal system for studying environmentally induced leaf plastic-
ity [3,11,86]. To achieve various leaf patterns with different environments, heterophyllous
plants have evolved diverse mechanisms for leaf development (Figure 4). The first illus-
trated example is R. aquatica, which develops deeply dissected leaves under submerged or
low temperature conditions, while it has shallow serrated leaves under terrestrial or high
temperature conditions [10]. It was found that the expression levels of KNOXI, which is the
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key gene that decides the final leaf form in many plant species, upregulated in submergence
and low temperature but downregulated in terrestrial and high temperature conditions.
Thus, due to the conserved function of KNOXI in activating CK and repressing GA ac-
cumulation (see Sections 3 and 4), the phytohormone pattern changes in leaf primordia
therefore regulate the final leaf shape [40]. Interestingly, R. aquatica also develops deeply
dissected leaves in high illumination and shows high expression of KNOXI, indicating a
potential relationship of KNOXI and light response [40].

In another heterophyllous plant Ranunculus trichophyllus, ABA and ethylene mainly
control terrestrial and aquatic leaf development, respectively. In terrestrial conditions, high
ABA induced the ABSCISIC ACID INSENSITIVE 3 (ABI3)-mediated activation of adaxial
genes (e.g., HD-ZIPIII), which then increased the expression of STOMAGEN (STO) and
VASCULAR-RELATED NAC-DOMAIN 7 (VND7), resulting in increased stomata density
and vessel elements. In contrast, submerged conditions activated ethylene synthesis and
accumulation, which then induced the expression of EIN3-mediated activation of abaxial
genes (e.g., KAN) and repressed STO and VND7, resulting in a lack of stomata and reduced
vessel development in submerged leaves [12]. Recently, studies on Potamogeton wrightii
(heterophyllous) and its sister species P. perfoliatus (homophyllous) have shown that exoge-
nous ABA application induced stomata in both submerged species, P. perfoliatus as well
as in heterophyllous P. wrightii [85]. However, under salinity stress, which promotes ABA
biosynthesis by NCEDs, stomata were only induced in P. wrightii, but not in P. perfoliatus.
These results suggested that differences in the ABA-mediated stress responses were re-
sponsible for the variation in morphological plasticity between the two Potamogeton plants
under natural conditions [85].

Morphological plasticity in the genus Capsella, such as the increased leaf complexity
induced by low temperatures, is mediated by the activation of REDUCED COMPLEXITY
(RCO) [161]. Recent studies in A. thaliana and its relative C. hirsuta have shown that the dif-
ferent leaflet development also requires RCO, evolved in the Brassicaceae family through
gene duplication, and was lost in A. thaliana, contributing to leaf simplification in this
species [161,162]. RCO functions specifically in leaf development, where it represses the
cell growth at flanks [161,162]. Subsequently, researchers have found that differences in the
leaf originate from two distinct processes that act in the C. hirsuta, but not in the A. thaliana
leaves. Firstly, KNOXI gene (e.g., STM) delayed differentiation but increased the size and
number of leaf protrusions. Secondly, RCO leads to growth differences created by the
inhibition of marginal patterning [163]. RCO also coordinates the homeostasis of the phyto-
hormone CK through CK biosynthesis and catabolism and their coordinates are essential
for complex leaf development in C. hirsuta [164,165]. However, whether the morphological
plasticity in C. grandiflora is achieved by the RCO/CK module is still unknown.

Even though heterophylly has been seen for centuries, the molecular mechanisms of
these plants are still largely unknown. Recent advances in omics technologies and gene
transformation have allowed genetic analyses of many heterophyllous species, which make
it possible to investigate the mechanisms of plant development, morphological plasticity,
and environmental adaption [3,13]. For example, Potamogeton octandrus is an aquatic hetero-
phyllous plant that has ovate and flat floating leaves, but narrow and thin submerged leaves.
Transcriptome analyses have found that many of the different expression genes (DEGs)
were found in the “plant hormone signal transduction” category and endogenous levels
of hormones such as ABA, cytokinin, GA, and auxin changed between conditions [16].
Comparative transcriptomics also reveals genes related to physiological adaptions of two
accessions of R. aquatica, indicating that different genotypes might develop a novel strategy
for adaptation [166].

Based on the above, we have found that key genes and phytohormones function in
leaf development, and environmental responses play an important role in leaf plastic-
ity [167–169]. There are still questions: If key genes involved in heterophylly (e.g., KNOXI)
have conserved roles among species, why are some plants able to develop heterophylly
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for environmental adaption while others cannot? Do non-coding RNA and cis-acting
regulatory elements function to regulate the morphological plasticity?
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Figure 4. Molecular mechanisms of heterophylly. (A) The mechanism of heterophylly in R. aquatica. Complex leaves were
induced by the upregulated KNOXI and thus induced repression of Ga20ox1 and downregulated GA, while simple leaves
were induced by the downregulated KNOXI and thus induced upregulated Ga20ox1 and GA. KNOXI also induced the
accumulation of CK by the regulation of ISOPENTENYLTRANSFERASE 7 (IPT7). (B) The mechanism of heterophylly in
R. trichophyllus. Terrestrial conditions induced ABA accumulation and activates HD-ZIPIII-mediated STOMAGEN (STO)
and VASCULAR-RELATED NAC-DOMAIN 7 (VND7) upregulation via ABI3, while submerged conditions induced ethylene
accumulation and activate KAN-mediated STO and VND7 downregulation via EIN3. (C) The heterophylly of C. grandiflora
was induced by the temperature, dependent on REDUCED COMPLEXITY (RCO). Red in (A–C) represents upregulated
genes or accumulated phytohormones, and green in (A–C) represents downregulated genes or phytohormones.

6. Future Perspectives

In a rapidly changing climate, plants are facing great challenges from the environment.
Recent advances in omics technologies and gene transformation have allowed genetic
analyses to investigate the molecular mechanisms of plant development, ecology, and
evolution [3,170]. Recent works also have made great breakthroughs in the fields of
environmental signals sensing [171–173], phytohormone interactive networks [29], and
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plant stress combinations [174,175]. Until now, the molecular mechanisms underlying leaf
development have been extensively elucidated [114,176]. However, the large number of
mechanisms of environmentally induced leaf plasticity are still unknown, which limits the
application of morphological variety in plant improvement. Thus, the identification of key
genes from genomics, transcriptomics, and phenomics, or CRISPR-mediated gene editing,
is also a powerful and efficient approach to discover the novel mechanisms underlying
plant environmental adaptation. Identifying the developmental and genetic basis of leaf
plasticity induced by environmental changes will be important to engineer more adaptive
crops in the face of future global change.
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