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ABSTRACT Objective: Pain assessment is of great importance in both clinical research and patient care.
Facial expression analysis is becoming a key part of pain detection because it is convenient, automatic,
and real-time. The aim of this study is to present a cold pain intensity estimation experiment, investigate
the importance of the spatial-temporal information on facial expression based cold pain, and study the
performance of the personalized model as well as the generalized model. Methods: A cold pain experiment
was carried out and facial expressions from 29 subjects were extracted. Three different architectures
(Inception V3, VGG-LSTM, and Convolutional LSTM) were used to estimate three intensities of cold pain:
No pain, Moderate pain, and Severe Pain. Architectures with Sequential information were compared with
single-frame architecture, showing the importance of spatial-temporal information on pain estimation. The
performances of the personalized model and the generalized model were also compared. Results: A mean
F1 score of 79.48% was achieved using Convolutional LSTM based on the personalized model. Conclusion:
This study demonstrates the potential for the estimation of cold pain intensity from facial expression analysis
and shows that the personalized spatial-temporal framework has better performance in cold pain intensity
estimation. Significance: This cold pain intensity estimator could allow convenient, automatic, and real-time
use to provide continuous objective pain intensity estimations of subjects and patients.

INDEX TERMS Cold pain, facial expression, temporal information, personalized model.

I. INTRODUCTION
Pain is an unpleasant sensory and emotional experience due
to actual or potential tissue damage or injury [1]. Pain man-
agement and assessment are of importance in health and
patient care. Traditionally, pain is measured by patients’
self-reported information. The three most common measure-
ments of self-reported assessment are visual analog scales
(VAS), numerical rating scales (NRS), and verbal rating
scales (VRS) [2]. Although self-reported assessment is con-
sidered as a gold standard to provide important clinical infor-
mation and help physicians to determine proper treatment for
patients, it does have limitations in specific situations. For
example, individuals may have limited abilities to verbally

tell physicians their pain intensity, such as infants, children,
or patients with certain neurological impairments, dementia,
disorders of consciousness [3]. Furthermore, some patients
who are addicted to drugs may provide higher pain intensity
on purpose to obtain excess medication.More important, pain
intensity based on patients’ verbal response may be inade-
quate or delayedwhichmay lead tomisdiagnosis and increase
medical risks [4], [5]. So there is an increasing demand for
automatic, and real-time pain intensity assessment.

Cold pain, also known as cold pressor test (CPT), was first
introduced by Hines Jr [6]. It is a cardiovascular test that
requires the subjects to put one hand into coldwater. Themain
advantage of the cold pain test could be the convenience [7].
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Nowadays, it has become a common pain test used in the
clinical settings as well as lab settings.

Over the past few years, researchers have taken advantage
of neuroimaging technology for pain intensity assessment
which includes functional magnetic tomography imaging
(fMRI) [8], positron emission tomography (PET) [9], pupil-
lary diameter [10], and single-photon emission tomogra-
phy (SPET) [11].Meanwhile, electroencephalography (EEG)
becomes another good indicator of pain intensity, which has
shown promising results for evaluating pain intensity by
M. Yu et al. [12]. The main limitation of EEG is that setting
up EEG equipment is time-consuming. Patients may feel
uncomfortable and reject the EEG equipment since the EEG
cap with gel will be placed on their heads. Lin et al. [13],
Wang et al. [14] also investigated other physiological signals
on pain measurement and showed the feasibility of fusing
with EEG signals to assess pain. Although significant results
were achieved, the drawbacks of these methods are their
expensive cost and inconvenient application.

To meet the goal of convenient, automatic, and real-time
pain intensity assessment, research in computer vision has
become an important part of pain detection, since it goes
directly toward an automatic detector of spontaneous facial
expressions [15], [16] [17], [18]. Visual painful facial expres-
sion can provide the intensity of pain in the face assessed
by the Facial Action Coding System (FACS) [19], by which
movements of facial muscles with different intensity are
coded. Currently, there are two public visual databases
focusing on pain. UNBC-Macmaster database [20] consists
of 31571 frames from 25 subjects who are suffering shoulder
pain, with pain intensity from 0-16 PSPI [21] and 0-10 VAS.
BioVid database [22] consists of 17300 frames from 90 sub-
jects who are suffering from stimulated heat pain, with pain
intensity from 1-4. These datasets have been used to train
models for pain intensity estimation based on facial expres-
sion, but they are very challenging to distinguish whether a
subject is in pain or not in some cases.

Various algorithms were reported to be useful for
facial expression feature extraction. Previous work showed
that Active Appearance Models (AAMs) [23] satisfied
performance in analyzing spontaneous pain expression.
Ashraf et al. [17] used landmark features extracted by AAMs
and Support Vector Machines (SVMs) as classifiers to pre-
dict painful action units for the presence of pain. Hammal
and Cohn [24] used the canonical normalized appearance
of the face extracted by AAM and 4 separately trained
SVMs to classify four levels of pain intensity. Recently, using
deep learning frameworks such as Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN) has
become a trend to deal with emotion estimation as well as
pain intensity estimation. There are two kinds of information
when employing a deep learning framework for pain intensity
estimation: 1. Spatial information, 2. Temporal information.
Spatial information, which contains pain-related information,
is extracted from every single frame. Although it can exhibit
static features, the information between pain expressions, also

a key to pain intensity estimation, will be lost. Temporal
information, on the other hand, can describe relevant dynamic
information among consecutive frames. Jiang et al. [25] pro-
posed a novel deep neural network framework to assess
major depressive disorder. Zhou et al. [26] proposed an
end-to-end pain intensity regression framework based on
AAM-warped facial images and recurrent convolutional neu-
ral networks to predict pain intensity. Rodriguez et al. [15]
proposed a combined CNN with Long Short-Term Memory
networks (LSTM) framework. The LSTM was linked to the
top of a VGG-16 [27], in which raw images were used
instead of facial landmarks as the input of the CNNs and
features from the fc6 layer were used to feed the LSTM.
The top layer of LSTM was found to improve the results
significantly. Convolutional LSTM (C-LSTM) was intro-
duced by Shi et al. [28], in which fully connected LSTMwas
extended by convolutions. C-LSTM is suitable for spatial-
temporal data due to the advantage of its inherent convolu-
tional structure.

In this paper, we investigate the plausibility of using three
deep learning architectures, Inception V3, VGG-LSTM, and
C-LSTM to automatically estimate cold pain intensity in
videos based on facial expressions. To the best of our knowl-
edge, this is the first work using facial expressions to estimate
cold pain intensity. The architecture will learn an end-to-end
pattern without the help of intermediate representations such
as the FACS. Twomodels, personalized and generalizedmod-
els, are also developed to investigate the performance on the
cold pain intensity estimation task. The rest of the paper is
organized as follows. Section II describes the process of cold
pain intensity based on facial expression experimental design
and dataset establishment. Section III contains the proposed
architecture and models. Section IV and section V provide
the obtained results and discussions. Section VI contains
limitations and future work. Section VII is the conclusion.

II. EXPERIMENT
A. PARTICIPANTS
Twenty-nine subjects, aged 19-22 and from Northeastern
University, were recruited to take part in this experiment.
We included 18 females and 11 males since gender differ-
ences might have effects on the tolerance of the pain. All
subjects were right-handed and healthy. Prior to the experi-
ment, the detailed experimental procedure, participants’ role,
and other related information were provided to the subject
in a written consent form and by oral explanation from the
experimenters.

B. TASK
The experiment was to investigate facial expressions and
some physiological signals (e.g., EEG signals, eye move-
ment, etc.) in different pain levels. In this paper, we only
focused on the facial expressions. Cold pain was selected as
the stimuli of the pain in this experiment. Subjects were asked
to put their right hands into the iced water so that the pain was
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FIGURE 1. Example facial expression data from the cold pain dataset.

induced. Every subject was asked to participate 3 times on
3 different days during the week. The whole task was com-
pleted within 7 days. When participating in the experiment,
subjects were asked to show their natural facial expressions
when they felt pain. The image data were captured and stored
by a GoPro 5. Fig. 1 shows examples of facial expressions
captured during the cold pain experiment.

C. PROCEDURE
The detailed procedure of the experiment is presented as
follows. Each subject with eyes open was asked to sit in a
chair at a distance of 1m from a computer screen. The diagram
of the experimental procedure is shown in Fig.2. The ‘‘. . .’’
symbolmeans that the subject was asked to report his/her pain
intensity multiple times (every 20 seconds).

FIGURE 2. Illustration of the cold pain experiment procedure.

FIGURE 3. Cold pain experiment where the subject’s right hand was in
the iced water.

Firstly, each subject was given a 5-minute relaxation time.
Then the subject was instructed by the computer screen to
put his/her right hand into a barrel with iced water. Fig.3
shows the scenario when a subject was doing the cold pain
experiment.

FIGURE 4. The process of the instruction video shown to the subjects
during the cold pain experiment. The first picture shows up when the
video recording starts. The subjects are asked to put their right hands into
the iced water when ‘‘GO’’ shows up. The subjects are asked to report
pain intensities when the ‘‘P’’ shows up.

During the experiments, the subjects were required to
remain as still as possible and face the camera directly.
The camera was placed on the top of the screen. When the
experiment started, an instruction video was shown to the
subjects. In the first 5 minutes, the video showed ‘Baseline
data’ which meant no-pain data was recorded. Then the video
showed ‘Go!’ which meant the subject should put his or her
right hand into the iced water. After that, subjects were asked
to report their pain intensity from 0-10 based on numerical
rating scales (NRS, 0: no pain, 1: barely noticeable pain, 5:
mild pain, and 10: worst pain) every 20 seconds. At the end
every 20 seconds, the video showed ‘P’ which meant the
subject needed to report his or her pain level. Fig. 4 shows
the process of the instruction video shown to the subjects
during the cold pain experiment.

Fig. 5 shows the true pain intensities from one randomly
selected subject among the total 29 subjects based on his
self-reporting. The red, green, and blue lines demonstrate his
pain intensities on day 1, day 2, and day 3, respectively. The
X-axis corresponds to the pain reported time and the Y-axis
corresponds to the pain intensity from 0 to 10. From the
figure we can see that the pain intensity is increasing as time
goes on.

FIGURE 5. The trend of pain intensity of a randomly selected subject.

To simplify the estimation task, we only use three
pain intensities: no pain (0), mild pain (1-5), and severe
pain (6-10). Image data were recorded when the experi-
ment started. The obtained data were divided into training,
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validating, and testing sets for proposed architecture. The
whole experimental procedure would stop once the sub-
ject was not able to bear the pain. All subjects were from
Northeastern University and the procedure was approved by
the Northeastern University Institutional Review Board (IRB
#17-01-25).

FIGURE 6. Preprocessing on the raw video frames.

D. PREPROCESSING
The original video frames contain a large portion of the sub-
ject’s body. Since we just want to focus on the facial expres-
sions, face detection is applied to obtain the cropped face
which is further used as the input of the model. Fig. 6 shows
the preprocessing pipeline. Since we only investigate three
pain intensities, the facial expression data under different pain
intensities were collected according to the timeline.

III. METHODS
A. ARCHITECTURES
We investigated three main deep learning architectures: deep
CNN InceptionV3 [29] where single-frame was taken as
input, the CNN+LSTM architecture [15] where VGG-16was
the CNN that extracted spatial information and LSTM was
linked to exploiting the temporal information, and the fully
recurrent C-LSTM. The main advantage of C-LSTM is that
spatial and temporal information can be extracted at the same
time.

1) INCEPTION V3
Inception V3 is a convolutional neural network. It is made
up of symmetric and asymmetric building blocks, which
contain convolutions, average pooling, max pooling, concats,
dropouts, and fully connected layer. In this paper, this archi-
tecture is trained with RMSProp as the optimizer.

2) VGG-LSTM
We investigated the performance of the hybrid VGG-LSTM
on our cold pain facial expression dataset. VGG-Faces [30]
was used to learn the spatial information of facial features.
Then the LSTM was linked to exploit the temporal infor-
mation between the frames. We fine-tuned VGG-Faces and
the last layer was replaced by a fully connected layer with
three pain intensities for estimation. The fully connected layer
was randomly initialized. After fine-tuning, the features of
the output of the VGG were extracted and set as the input
of the LSTM. The initial learning rate was set to 0.001,

dropout with probability was set to 0.2, and ADAM was
chosen as the optimizer to overcome the hyper-parameter
tuning problem. Ten frames were extracted when training
the LSTM. Data augmentation including horizontal flipping,
random cropping, and shading by adding Gaussian noise was
implemented.

3) CONVOLUTIONAL LSTM (C-LSTM)
C-LSTM was introduced by Shi et al. [28]. Fully connected
LSTM (FC-LSTM) was extended by convolutions in both
the input-to-state and state-to-state transitions. This enables
C-LSTM to preserve both parameter sharing and location
invariance from convolutional layers and maintain the recur-
rent settings at the same time. The fully connected LSTM
structure contains too many redundant connections and can
hardly extract the local consistencies. For example, the input
to the LSTM must be flattened to a 1-D vector which will
lead to the loss of spatial grid patterns of images. In addition,
although LSTM is able to extract both spatial and tempo-
ral information, the two kinds of information are captured
separately, which may result in loss of important spatial-
temporal information. C-LSTM is able to overcome these
drawbacks by extracting both spatial and temporal features
simultaneously. The key equation of a C-LSTM unit can be
interpreted as follows:

i(t) = σ (Wxi ∗ x(t)+Whi ∗ h(t−1)+Whi ◦ c(t − 1)+ bi)

(1)

f (t) = σ (Wxf ∗ x(t)+Whf ∗ h(t−1)+Whf ◦ c(t − 1)+ bf )

(2)

z(t) = tanh(Wxc ∗ x(t) +Whc ∗ h(t − 1)+ bc) (3)

c(t) = f (t) ◦ c(t − 1)+ i(t) ◦ z(t) (4)

o(t) = σ (Wxo ∗ x(t)+Who ∗ h(t−1)+Wco ◦ c(t)+ bo) (5)

c(t) = o(t) ◦ tanh(c(t)) (6)

where ∗ and ◦ denote the convolution and Hadamard prod-
uct, respectively. The sequences consisting of 10 frames are
trained and extracted without overlap. The labels are also
predicted sequence-wise so that the information we get will
contain the past frames. The learning rate and dropout proba-
bility are set to 0.001 and 0.2, respectively. Early stopping
of 20 epochs is also applied to overcome the overfitting
problem. A max pooling and a batch normalization layers are
between each stacked layer.

B. MODELS
1) PERSONALIZED MODELS
The ground truth for the proposed deep learning architecture
is the self-reported pain intensity. Due to the individual differ-
ences in pain tolerance, we firstly investigatemodels based on
personalized pain intensity estimation system. These models
are to build three architectures (described in Section 3A)
based on each individual’s facial expression. As a result, these
models will only deal with individual information and neglect
the effect of individual differences. There is 80% of collected
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facial expression data from each subject that is used to train
the personalized Inception V3, VGG-LSTM, and C-LSTM
architecture. The rest data are separated into validation set
and testing set equally. The validation set is used to prevent
the models from overfitting and the testing set is used to
measure the accuracy of themodels. To find the optimal archi-
tecture of models for the pain intensity estimation, we inves-
tigate the variability for the VGG-LSTM and C-LSTM. In
the VGG-LSTM model, two candidates are proposed. The
first candidate is VGG-LSTM-1, in which the input features
for the LSTM are extracted from fc6 layer of the VGG.
The second candidate is VGG-LSTM-2, in which the input
features for the LSTM are extracted from the fc7 layer of the
VGG. The architectures are shown in Fig. 7.

FIGURE 7. The two proposed VGG-LSTM structures.

In the C-LSTM architecture, two types of candidates are
proposed. The first candidate, called C-LSTM-1, contains
three stacked layers and the second candidate, C-LSTM-2,
contains four stacked layers. The architectures of the two
C-LSTM are shown in Fig. 8.

2) GENERALIZED MODELS
To further investigate the possibility of the generalized mod-
els, we use two strategies for training and testing. The first
strategy is to use 80% of all the subjects’ facial expression
data for training and 10% of all data for testing. The remain-
ing 10% is used as validation set to overcome the overfitting
problem. The second strategy is the 5-fold cross validation
strategy. Since the dataset consists of 29 subjects, we divide
them into 5 disjoint sets and run 5-fold cross validation.
Four sets contain 24 subjects for training and 5 subjects for
testing. The remaining one contains 25 subjects for training
and 4 subjects for testing.

IV. EXPERIMENTAL RESULTS
This section provides the experimental results obtained from
the proposed architectures in two models using the dataset of
facial expression-based cold pain intensity estimation.

Section IV A introduces the strategy. Section IV B gives
the results of performance on the proposed models with all
the subjects during three days’ experimental data.

A. EVALUATION METHOD
As mentioned in Section II, our cold pain intensity eval-
uation is a three-class task of no pain (NP), mild pain
(MP), and severe pain (SP). The performance is evaluated
by using an error matrix, which is a table where each row
and each column represent an actual class and a predicted
class, respectively. Based on the statistical information of
the confusion matrix, the average testing accuracy, precision,
specificity, sensitivity, and F1 score are calculated as the
performance evaluation metrics in our paper. The reason why
the F1 score is used is that it is a more cautious measure in a
situation when classes are imbalanced [31]. The confusion
matrix with three classes is shown in Table 1, where NP,
MP, and SP represent no pain, mild pain, and severe pain,
respectively.

TABLE 1. Confusion matrix for three-class classification.

Firstly, three one-vs-all confusion matrices for each class
Ci(i = 1, 2, 3) are calculated. Secondly, four factors TPi,
TNi, FPi, FNi are defined. Then the Precisioni, Specificityi,
Sensitivityi and F1iScore for Ci and accuracy can be calcu-
lated as follows:

Precisioni =
TPi

TPi + FPi
(7)

Specificityi =
TNi

TNi + FPi
(8)

Sensitivityi =
TPi

TPi + FNi
(9)

F1i =
2

Sensitivity−1i + Precision
−1
i

(10)

Accuracy =

∑3
i=1 TPi
N

(11)

where TPi = xii denotes the total number of true-positive
cases for Ci, TNi =

∑3
j=1,j6=i

∑3
k=1,k 6=i xjk denotes the total

number of true-negative cases for Ci, FPi =
∑3

j=1,j6=i xji
denotes the total number of false-positive cases for Ci, and
FNi =

∑3
j=1,j6=i xij denotes the total number of false-negative

cases for Ci, N is the total number of samples for each
test.
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FIGURE 8. The two proposed C-LSTM structures, one is with three stacked layers and the other is with four stacked layers.

B. RESULTS
In our study, two models, the personalized model and the
generalized model, are investigated. In each model, three
proposed architectures are tested using the dataset of facial
expression-based cold pain intensity estimation. The details
of the proposed architectures are shown in Table 2.

TABLE 2. Overview of details for the three evaluated models.

First, performances of the three architectures under per-
sonalized model are compared. Table 3 shows the results
on three architectures of the personalized model in three
pain intensities. The mean F1 Scores for Inception V3,
VGG-LSTM-1, VGG-LSTM-2, C-LSTM-1 and C-LSTM-2
are 65.17%, 72.03%, 79.46%, 76.69% and 79.48%. The
F1 Score of Inception V3 is obviously lower than the VGG-
LSTM and C-LSTM, which means that the temporal infor-
mation is important for continuous pain intensity estimation.
The F1 score of VGG-LSTM-1 is lower than VGG-LSTM-2,
which shows that selecting the features from fc7 layer as
the input of LSTM performs better than that from fc6 layer.
The F1 score of C-LSTM-2 is higher than the F1 score of
C-LSTM-1, which shows that the C-LSTM with 4 stacks is
better than that with 3 stacks in our pain intensity estimation
task.We also notice that most of the NP F1 Score achieves the
highest among the three pain intensities. The reason is that
the data of NP is much more than the other two intensities,
demonstrating that the deep learning architecture needs more
data to train. And the MP F1 Score achieves the lowest.
Besides the amount of the data, another reason may be that
the difference between the MP and SP is not that obvious.
It is even hard for people to judge some images between MP
and SP. Fig.9 shows exemplary success and failure cases for
the three proposed architectures. Fig.9.(a) are samples that
are successfully classified by the three architectures. They
belong to the pain sequences. Fig.9.(b) are samples that are
successfully classified by the VGG-LSTM and C-LSTM but

FIGURE 9. Success and failure samples for the proposed models.
(a): Samples successfully classified by the three architectures. They
belong to the pain sequences. (b): Samples successfully classified by the
VGG-LSTM and C-LSTM, misclassified by the Inception V3. These samples
are captured when the subject is reporting his pain intensity. (c): Samples
misclassified by the three architectures. These samples are captured
during the baseline time.

misclassified by the Inception V3. They are captured when
the subject was reporting the pain intensity. Due to the lost
of temporal information, Inception V3 model misclassified
them as the pain sequence. Fig.9.(c) are samples that are
misclassified by all three architectures. These are captured
during the baseline time when the subject hasn’t put his hand
into the iced water. He was relaxing himself and was not
feeling pain. All three architectures misclassified them as the
pain sequence. Fig.10 shows samples that are not detected by
the face detector. These samples will not be used to train the
models. Before the experiment, we asked the subjects to keep
face straightforward and try not to move their heads.

We use two strategies for the generalized model. In strat-
egy 1, 80% of all the subjects’ facial expression data is for
training and 10% of all data for testing. The remaining 10% is
used as the validation set to overcome the overfitting problem.
In strategy 2, 5-fold cross validation strategy is used to esti-
mate the performance of the proposed architecture. Table 4
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TABLE 3. Overview of details for the evaluated personalized models.

TABLE 4. Overview of details for the evaluated generalized models.

FIGURE 10. Samples that are not detected by the face detector will not be
used to train models.

shows the results of the proposed architecture on the gener-
alized model. The performance of Inception V3 achieves the
worst among all the architecture, which continues to show
that satisfactory results cannot be obtained if temporal infor-
mation is not taken into account. The C-LSTM-2 achieves the
best, followed by the VGG-LSTM-2. However, if compared
with the personalized model, all architectures of the general-
ized model are worse than those of the personalized model.

V. DISCUSSION
In this study, a cold pain experiment was designed to collect
facial expression video data when subjects put their hands
in iced water which acted as the pain inducer. After the data
acquisition and preprocessing, we implemented deep learning
frameworks to estimate the pain intensities based on the
facial expression data. The study discovered three findings
that greatly contribute to cold pain research. First, the pain
intensities kept going up as time goes when the subjects put
their hand in the iced water. From Fig. 5 we can see that the
pain intensities begin at pain intensity 0 and end at a very

high level. Second, the personalized model achieved better
performance than the generalized model. Unlike the general
emotion recognition task, pain related facial expressions are
hard to distinguish and aremore dependent on the individuals.
In our study, the subjects were asked to show their natural
expression when they feel pain. However, expressions varied
between different subjects, even under the same pain intensi-
ties. Moreover, even for the same subject, expressions varied
between the different days. Based on these factors, a more
personalized model should be more useful than a generalized
model. Third, the temporal information was important for
our continuous cold pain intensity estimation task. In both
personalized and generalized models, we investigated the
performance of three deep learning architectures, Inception
V3, VGG-LSTM, and C-LSTM. Moreover, we also devel-
oped two structures for both VGG-LSTM and C-LSTM. The
results showed that both VGG-LSTM and C-LSTM have
more promising results than Inception V3, demonstrating
a positive effect of temporal information on the final pain
intensity estimation. In addition, the two structures with more
layers and stacks of VGG-LSTM and C-LSTM performed
better than those with simpler structures, which showed that
they could extract more information from the image data.

VI. LIMITATIONS AND FUTURE WORK
This study discovered several features that can serve as build-
ing blocks for future cold pain research. Several limitations
are as follows. First, we only used facial expressions as the
indicator to estimate the pain intensities. Sincewe believe that
the fusion of the physiological signals with facial expression
analysis will boost the final pain intensity estimation perfor-
mance, future research will investigate the fusion strategy.
Second, the ground truth in our study was based on subjects’
self-reported pain intensities. Some research [20] used pro-
fessional pain observers to measure the pain intensities based
on the facial movements. In future research, pain observers
will be trained in our study to give a more reliable ground
truth. Third, participants in our experiment were all health
subjects in the university. Considering more data needed for
training the deep learning model, we will recruit real patients
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in the future and collect more data to enhance the robustness
of our system.

VII. CONCLUSION
Pain assessment plays a key role in health care. Facial
expression-based pain intensity estimation is becoming more
important due to its advantages of convenience. This paper
presented a facial expression database for cold pain inten-
sity estimation. The database contained facial express and
subjective report data from 29 subjects under three levels of
cold pain.We investigated three deep learning architectures to
assess cold pain intensity. We next investigated two models,
the personalized model and the generalized model, using
our database. We demonstrated that facial expression data
can be used as an objective indicator of cold pain. We fur-
ther demonstrated that the architectures with spatial-temporal
information performed better than the architecture with only
spatial information. Finally, our models also showed that the
personalized model may serve better than the generalized
model as the cold pain intensity estimator.
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