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Abstract: Emerging evidence indicates that regulatory T cells (Treg) intervene in the inflammatory
processes that drive osteoarthritis (OA). However, whether polarized Tregs affect clinical features of
the disease in the short- or long-term, and if so, what their role in OA-related pain and functional
disability really is, remains elusive. Thus, the aim of the current study was to characterize the
infiltration profile of Tregs in systemic (peripheral blood) and joint-derived (synovial fluid and
synovial membrane) samples from patients with knee OA in relation to OA-induced symptoms.
To this end, Treg infiltration (CD4+CD25+/high CD127low/−) was analyzed in matched samples of
peripheral blood (PB), synovial fluid (SF) and synovial membrane (SM) from a total of 47 patients
undergoing elective knee arthroplasty using flow cytometry. At the same time, knee pain and
function were assessed and correlated with Treg proportions in different compartments (PB, SF, SM).
Interestingly, matched-pair analysis revealed significantly higher Treg proportions in joint-derived
samples than in PB, which was mainly attributed to the high Treg frequency in SF. Moreover, we found
significant associations between infiltrating Tregs and OA-related symptoms which indicate that
lower Treg proportions—especially in the SM—are related to increased pain and functional disability
in knee OA. In conclusion, this study highlights the importance of local cellular inflammatory
processes in OA pathology. Intra-articular Treg infiltration might play an important role not only in
OA pathogenesis but also in the development of OA-related symptoms.

Keywords: osteoarthritis; inflammation; knee pain; T cells; regulatory T cells; lymphocytes; synovial
membrane; synovial fluid; peripheral blood

1. Introduction

For decades, osteoarthritis (OA) has been considered a non-inflammatory degener-
ative disease in which simple “wear and tear” leads to loss of articular cartilage. Recent
evidence, however, demonstrates that OA development is a complex process that is driven
by a plethora of inflammatory mechanisms which disrupt normal cartilage homeostasis
and thus trigger joint degeneration [1–6]. Accordingly, a large proportion of OA patients
present clinical signs of joint inflammation such as swelling and effusion in addition to
the hallmark symptoms of OA: pain and functional disability [7,8]. Concurrently, joint
inflammation seems to play a pivotal role in the development of OA-associated pain indicat-
ing important cross-talk between joint innervating nociceptive neurons and inflammatory
mediators [7–11]. Indeed, recent studies have demonstrated that mononuclear cells (MNC)
including T cells and macrophages as well as inflammatory mediators, such as nerve
growth factor (NGF), interleukin 6 (IL-6) and tumor necrosis factor α (TNF α), are involved
in onset and persistence of pain in both humans with OA and experimental models of
arthritis [4,11–18].

In fact, a growing body of literature indicates that patients suffering from chronic
pain conditions present a different phenotypic profile of circulating T cells when compared
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to controls [19,20]. Moreover, T cells are involved in the onset but also the resolution of
pain which underpins their supposed role in the transition from acute to chronic pain.
In preclinical models, the different effects of T cells during pain development depend on
the type of pain model, gender and, most importantly, on the subset of T cells. T-helper
cells (Th), especially, are characterized by the expression of the surface marker cluster
of differentiation 4 (CD4), including functionally different Th subsets such as Th1, Th2,
Th17, and regulatory T cells (Tregs) have been reported to mediate pain development [19].
Whereas Th1 and Th17 are thought to increase pain sensitivity by the production of pro-
inflammatory cytokines, Th2 and Treg subsets potentially ameliorate pain by releasing anti-
inflammatory mediators (e.g., IL-10) and endogenous opioids. Thus, influencing Th-cell
responses in OA could be a promising therapeutic strategy to attenuate joint pain [19,20].

In recent years, Tregs have been increasingly studied since they are important regu-
lators of immune responses in inflammatory and autoimmune diseases [20]. Their main
function is to control and suppress the activity of innate and adaptive immune cells includ-
ing other T-cell subsets. Indeed, we and others have demonstrated that decreased Treg
responses may be involved in the pathogenesis of OA and RA as the subsequent reduction
of anti-inflammatory IL-10 release results in an exacerbation of inflammatory processes that
drive arthritis progression [20,21]. For example, it was shown that Treg proportions are
reduced at the site of synovial inflammation in RA patients [22] and that OA patients have
lower numbers of Tregs in the peripheral blood when compared to age-matched healthy
controls [23]. In addition, RA and OA patients share profound commonalities regarding
the infiltration profile of Tregs in peripheral blood (PB), synovial fluid (SF) and synovial
membrane (SM), with greater accumulation of Tregs in the affected joints (SF and SM) [21].

Interestingly, emerging evidence from preclinical studies support a vital role for Tregs
in pain processing. It was suggested that Treg infiltration promotes pain recovery in animal
models of peripheral and central neuropathic pain as well as experimental arthritis [24].
In fact, depletion of Tregs prolonged mechanical hypersensitivity after peripheral nerve
injury [25–28], whereas both Treg infiltration [28] and adoptive Treg cell transfer attenuated
neuropathic pain [29].

Nevertheless, the role of Tregs in OA-related pain—which is predominantly inflamma
tory—remains elusive. Thus, our study aimed to (i) map the infiltration pattern of Tregs in
PB, SF and SM samples from knee OA patients and to (ii) assess potential relations between
the compartmental Treg profile and clinical symptoms, including OA-induced pain and
functional disability.

2. Materials and Methods
2.1. Patient Enrollment

OA was defined according to the American College of Rheumatology criteria and
was classified as unicompartmental (UC) or bicompartmental (BC) OA based on plain
radiographs. UC OA patients were scheduled for unicompartmental (UKA) and those with
BC OA for total knee arthroplasty (TKA). None of the patients had a history of underlying
inflammatory pathology, intake of disease-modifying anti-rheumatic drugs (DMARD)
or intra-articular injection of corticosteroids or hyaluronic acid. Systemic inflammatory
parameters (CRP and WBC) were within the physiological range at the time of surgery.
The study was conducted in accordance with the local ethics committee of the Medical
Faculty at Heidelberg University and the declaration of Helsinki. It was approved by
the institutional review board of the Medical Faculty Heidelberg (S333/2007). Informed
consent of all patients was obtained prior to study enrollment.

2.2. Clinical Assessment

Radiographic OA severity was graded according to the Kellgren and Lawrence (K&L)
scoring system (0–IV) [30] using anteroposterior radiographs of the symptomatic knees.
Prior to surgery, knee pain and function were assessed using the 11-point (0–10) numerical
rating scale (NRS; 0 = no pain; 10 = worst pain), the 12-item self-administered Oxford
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Knee Score (OKS-12) [31], the American Knee Society Score (AKSS) [32] and the Hannover
Functional Questionnaire of Functional Disability Caused by OA (FFbH-OA).

2.3. Sample Collection

PB, SF and SM samples were collected at the time of surgery as previously de-
scribed [33]. Prior to arthrotomy, SF was removed by needle aspiration and stored in
sterile tubes until further processing. SM samples were harvested from the suprapatellar
pouch after arthrotomy. Concurrently, heparinized PB samples were collected. For overall
analyses, n = 43 PB, n = 17 SF and n = 38 SM samples were available. Dry taps (punctio
sicca) and excessive contamination of SF samples with blood during needle aspiration
account for the lower number of SF samples when compared to the number of SM samples.

2.4. Sample Processing

PB, SF and SM samples were prepared directly after harvesting for further flow
cytometry analysis as previously described [33]. In brief, SF samples were incubated with
bovine testicular hyaluronidase (10 mg/mL; Sigma-Aldrich, St. Louis, MO, USA) for
30 min at 37 ◦C and washed twice with phosphate-buffered saline (PBS). SM samples were
washed twice with PBS and minced finely with sterilized scissors before being digested with
collagenase B (1 mg/mL; Roche Diagnostics, Rotkreuz, Switzerland) and bovine testicular
hyaluronidase (2 mg/mL) in RPMI-1640 culture medium supplemented with penicillin–
streptomycin (10 µg/mL; Invitrogen, Carlsbad, CA, USA) and 5% fetal calf serum (FCS,
Biochrom AG, Berlin, Germany) at 37 ◦C for 2 h. After digestion the SM cell suspension was
consecutively filtered through 100 µm (BD Biosciences, San Jose, CA, USA) and 40 µm pore-
size cell strainer (EMD Millipore, Burlington, MA, USA) to remove any undigested tissue.
Then, the filtered SM cell suspension was washed twice with PBS. To isolate mononuclear
cells (MNC) from the filtered SM and SF cell suspensions as well as the heparinized
PB samples, Ficoll–Paque™ PLUS (GE Healthcare, Chicago, IL, USA) density gradient
centrifugation was used according to the manufacturer’s instructions. Subsequently, T
cells (CD3+) were isolated from PB-, SF- and SM-MNC using CD3 magnetic activated cell
sorting (MACS) bead separation (Miltenyi Biotec, Bergisch Gladbach, Germany).

2.5. Flow Cytometry Analyses of Cell Surface Markers

Multicolor flow cytometry was used to analyze Treg infiltration in PB, SF and SM
samples. Tregs are characterized by the expression of the following distinct surface mark-
ers: CD4+CD25+/high CD127low/−. Thus, to identify the Treg subset, isolated T cells were
stained for these Treg specific surface markers. To this end, CD3+ MACS isolated T cells
from PB, SF and SM were washed twice in staining buffer, blocked with FcR blocking
reagent (Miltenyi Biotec) and then stained for 30 min at 4 ◦C with fluorescein isothio-
cyanate (FITC)-labeled monoclonal antibody (mAb) against CD4 (clone RPA-T4; BD Bio-
sciences), phycoerythrin (PE)-labeled mAb against CD25 (clone M-A251; BD Biosciences)
and peridinin–chlorophyll–cyanin 5.5 (PerCPCy5.5)-labeled mAb against CD127 (clone
RDR5; eBioscience, San Diego, CA, USA). After staining, cells were washed again and
taken into a final volume of 200 µL MACS staining buffer. Before flow cytometric detection,
0·5 µg/mL 7-aminoactinomycin D (7 AAD) (eBioscience) was added to the cell suspensions
to exclude cell debris and dead cells. Flow analysis was performed using a MACSQuant
Analyzer (Miltenyi Biotec, Germany). Data analysis was carried out using FlowJo™ version
10.8.1 (Ashland, OR: Becton, Dickinson and Company, Franklin Lakes, NJ, USA). The
cut-off for all cell surface markers was defined based on fluorescence minus one (FMO)
controls, as described previously [21].

2.6. Gating Strategy and Definition of the Treg Population

Based on forward and side scatter profiles, cells were gated for lymphocytes and
further for CD4 expression. By labeling the cell surface markers CD25 and CD127, the
Treg population was identified as CD4+CD25+/high CD127low/− Tregs. The cutoff for all
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cell surface markers was established based on FMO controls. The CD4+ cells with the
highest level of CD25 staining were defined as CD4+CD25high cells. The CD4+CD25+/high

CD127low/− Treg population was distinct and clearly separable from other cells as previ-
ously described [34]. The gating strategy is illustrated in Figure 1.
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Figure 1. Gating strategy for regulatory T cells (Treg). Representative dot plots of the gating strategy
for Tregs are shown. Based on forward (FSC-A) and side scatter (SSC-A) profiles, cells were gated
for lymphocytes and further for CD4 expression, and 7-aminoactinomycin D (7-AAD) was used
to exclude cell debris and dead cells. By labeling the cell surface markers CD25 and CD127, the
Treg population was identified as CD4+CD25+/highCD127−/low. The CD4+ cells with the highest
level of CD25 staining were defined as CD4+CD25high cells. The CD4+ CD25+/highCD127−/low Treg
population was distinct and clearly separable from other cells. CD = cluster of differentiation.

2.7. Statistical Analyses

Descriptive statistics of demographic and clinical parameters are expressed as mean
± standard deviation (SD) and range. Descriptive data of the flow cytometry analyses
are presented as median and interquartile range (IQR) or as mean ± standard error of the
mean (SEM), including the 95% confidence interval (CI). To reveal differences in Treg cell
distribution between distinct samples (PB, SF, SM) analysis of variance was performed.
Due to the predominantly non-parametric distribution of Treg cells, Kruskal–Wallis test
followed by Dunn’s multiple comparison test were used to determine overall group dif-
ferences. For matched-paired analysis Wilcoxon matched-pairs signed rank test was used.
Spearman’s rank correlation coefficient was performed to examine correlations between
Treg proportions and clinical parameters (K&L score, NRS, OKS-12, AKSS, FFbH-OA).
p-Values < 0.05 were considered statistically significant. Prism version 9.0 (GraphPad
Software Inc., La Jolla, CA, USA) was used for statistical analysis.
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3. Results
3.1. Clinical Characteristics of the Study Population

Table 1 summarizes the clinical characteristics of the study population.

Table 1. Study population.

Total Study Population

Number of Patients (N=) 46

Gender
Female, n (%) 34 (73.9%)
Male, n (%) 12 (26.1%)

Age, years 67.7 ± 8.7 (47–83)

BMI, kg/m2 29.8 ± 6.3 (20.3–50.1)

Laboratory results
CRP, mg/L 3.8 ± 0.6

WBC, cells/nL 6.9 ± 0.24
ESR, mm/h 16.0 ± 1.7

Knee replacement
UKA, n (%) 16 (34.8%)
TKA, n (%) 30 (65.2%)

K&L score, n (%)
I 0 (0%)
II 8 (17.4%)
III 10 (21.7%)
IV 28 (60.9%)

Knee pain, NRS pt. 7.2 ± 2.1 (2.0–10.0)

OKS-12, pt. 33.9 ± 9.1 (9.0–52.0)

AKSS
Knee score, pt. 42.7 ± 15.4 (14.0–73.0)

Functional score, pt. 56.3 ± 21.6 (20.0–90.0)

FFbH-OA (%) 54.0 ± 23.1 (5.0–97.0)
Clinical characteristics and assessment scores are presented as mean ± SD (range). Laboratory results are
displayed as mean ± SEM. BMI = body mass index, CRP = C-reactive protein, WBC = white blood cells,
ESR = erythrocyte sedimentation rate, UKA = unicompartmental knee arthroplasty, TKA = total knee arthro-
plasty, K&L score = Kellgren and Lawrence score, NRS = numerical rating scale, OKS-12 = Oxford Knee Score,
AKSS = American Knee Society Score, FFbH-OA = Hannover Functional Questionnaire of Functional Disability
Caused by OA.

In brief, a total of 46 patients were included in this study. The majority of the patients
were female (73.9% vs. 26.1% male) and received total knee replacement (65.2% vs. UKA
34.8%). Age ranged from 47 to 83 years and was on average 67.7 ± 8.7 years. With a mean
body mass index (BMI, ± SD) of 29.8 ± 6.2 kg/m2, the study population can be considered
overweight. Almost two-thirds of the patients (60.9%) had K&L score IV, whereas 17.4%
and 21.7% were graded K&L II and III, respectively. Mean knee pain intensity (±SD)
on the NRS was rated 7.2 (±2.1). On average patients scored 33.9 (±9.1) points in the
OKS-12 questionnaire. Mean AKSS knee and functional scores were 42.7 (±15.4) and 56.3
(±21.6), respectively. Laboratory results indicating systemic inflammation were within the
physiological range.

3.2. Treg Profile in OA Joints (SF, SM) and PB

To characterize the infiltration pattern of Tregs in different compartments from knee
OA patients, flow cytometry data of matching PB, SF and SM samples were analyzed.
Table 2 summarizes the overall results from the multicolor flow cytometry.
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Table 2. T cell infiltration in peripheral blood, synovial fluid and synovial membrane.

PB SF SM

Sample volume/weight
(PB, SF: mL, SM: g) 8.3 (8.0–8.5) 6.0 (3.25–17.25) 2.89 (2.18–3.12)

CD3+ MACS isolated T lymphocytes
Cell count 113,122

(95,377–131,436)
1965

(269–16,983)
9477

(3425–32,652)

CD4+ T cells
Cell count 89,706

(72,045–111,883) 1294 (88–5129) 6972 (2536–25,707)
Cell concentration

(PB, SF: cells/mL, SM: cells/g)
10,764

(7007–13,510) 178.2 (8.01–740.5) 2471 (873.1–8952)
% of T lymphocytes 80.20 (74.20–86.70) 45.30 (32.10–52.40) 78.40 (69.68–81.70)

Tregs (CD4+CD25+/highCD127low/−)
Cell count 6200 (4006–8724) 170 (44–1191) 557 (242–1776)

Cell concentration
(PB, SF: cells/mL, SM: cells/g) 721.3 (448.6–1135) 46.32 (7.92–142.8) 169.1 (76.37–609.7)

% of CD4+ T cells 7.03 (5.40–9.06) 8.47 (6.52–17.40) 6.43 (4.80–9.60)
The distribution of T cells in matching peripheral blood (PB), synovial fluid (SF) and synovial membrane (SM)
samples of knee OA patients was assessed using flow cytometry. For CD3+ magnetic cell separation (MACS),
isolated T lymphocyte median cell counts and interquartile ranges (IQR) are presented. For both the CD4+ and
Treg subpopulation cell counts, concentration levels (cells/sample volume (mL) or weight (g)) and percentage
rates (%) are shown as medians (IQR). CD = cluster of differentiation.

In brief, CD4+ T cells (mean ± SEM) accounted for 77.35 ± 2.23% (CI: 72.84–81.85),
44.57 ± 3.35% (CI: 37.62–51.52) and 75.52 ± 1.29% (CI: 72.90–78.14) of MACS isolated T
lymphocytes in PB, SF and SM, respectively. The highest CD4+ cell concentrations (mean ±
SEM) were measured in PB (10,660 ± 817.1 cells/mL, CI: 9011–12,309) and the lowest in SF
(742.9 ± 288.2 cells/mL, CI: 145.3–1341).

Accordingly, Treg concentrations differed significantly between compartments (PB/SF/
SM). The lowest Treg concentrations (mean ± SEM) were measured in SF (135.8 ±
71.88 cells/mL, CI: 17.42–289). In PB and SM, Tregs were higher concentrated as indi-
cated by 773.5 ± 65.64 cells/mL (CI: 641.1–906) and 853.5 ± 444.8 cells/g (CI: 49.54–1757),
respectively (PB vs. SF: **** p <0.0001, PB vs. SM: *** p = 0.0005, SF vs. SM: * p = 0.03;
Kruskal–Wallis test followed by Dunn’s multiple comparisons test). In contrast, the highest
proportion of infiltrating Tregs (12.17 ± 2.05% of CD4+ T cells) was found in SF. Although
there were statistically no significant differences between sample localizations (PB, SF, SM)
when comparing the mean Treg proportions (% of CD4+ T cells) of all samples, matched-
pair analysis revealed significantly greater infiltration of Tregs in joint compartments (SF
and SM) than in PB, which is most likely driven by high Treg infiltration rates in SF (see
Figure 2). Thus, the percentage rates of Tregs in SF were significantly higher than in
PB (Wilcoxon matched-pairs signed rank test, p = 0.0250, n = 16), whereas there was no
difference between Treg proportions in PB and SM.

3.3. Obesity Is Associated with Decreased Treg Infiltration in SM

First, we examined whether Treg infiltration rates are associated with age, BMI or OA
severity (K&L score) as displayed in the correlation matrix (see Figure 3). Treg proportions
in all tissues (PB, SF, SM) were not related to age or OA-grade. However, we found a
moderate negative correlation between Treg proportions in SM and the weight of knee
OA patients (p = 0.003, rs = −0.47), indicating that patients with higher BMI scores present
lower synovial Treg infiltration rates (see Figure 3).
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Figure 2. Regulatory T-cell (Treg) infiltration profile in OA joints and peripheral blood. (A) Overview
of the mean Treg proportions (% Treg of CD4+ cells) in peripheral blood (PB), synovial fluid
(SF) and synovial membrane (SM). (B–D) Matched-pairs analysis comparing mean Treg propor-
tions in PB with the mean Treg proportions in (B) joint-derived samples (SF and SM), (C) SF and
(C) SM alone. (A) Comparing the mean Treg proportions (% Treg of CD4+ cells) in peripheral blood
(PB), synovial fluid (SF) and synovial membrane (SM) did not show significant differences between
tissue types (Kruskal–Wallis test, p = 0.1636). (B–D) However, matched-pairs analysis demonstrated
(B) significantly higher Treg proportions in joint-derived samples (SF and SM) than in PB (Wilcoxon
matched-pairs signed rank test, p = 0.0203, n = 14), which can be mainly attributed to (C) high
infiltration rates of Tregs in SF (Wilcoxon matched-pairs signed rank test, p = 0.0250, n = 16) rather
than (D) the Treg proportions in SM (Wilcoxon matched-pairs signed rank test, p = 0.8907, n = 35).
p-Values < 0.05 were considered statistically significant and are indicated with asterisks: * p < 0.05.
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Figure 3. Heatmap of the correlation matrix screening for relevant associations between Treg pro-
portions (% Treg) in peripheral blood (PB), synovial fluid (SF) and synovial membrane (SM) and
OA-severity (K&L score), age and body mass index (BMI). A significant negative correlation was
found between Treg proportions in SM and the BMI (bold red square; p = 0.003, rs = −0.47). Values
displayed in the squares of the correlation matrix represent the Spearman’s rank correlation coefficient
(rs) for every pair of data set. Bold red squares highlight significant correlations (p-value < 0.05). K&L
score = Kellgren and Lawrence score.

3.4. Functional Disability Is Associated with Decreased Treg Infiltration in SM

To examine the influence of compartment-specific Treg infiltration on OA-related
knee function, Treg proportions in PB, SF and SM were correlated with clinical assessment
scores (AKSS, OKS-12 and FFbH-OA). Interestingly, we observed no significant correlations
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between Treg proportions in PB and SF and knee function (see Supplementary Figure S1).
However, Treg infiltration rates in SM significantly correlated with AKSS knee (p = 0.01,
rs = 0.43) and OKS-12 scores (p = 0.02, rs = −0.38), which suggests that OA patients with
worse knee function present decreasing synovial Treg infiltration (see Figure 4A–D).
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Figure 4. Correlation analyses between synovial membrane (SM) infiltration of Tregs and functional
parameters of knee OA patients. Spearman’s rank correlation coefficient (rs) revealed that Treg
proportions (% Treg) significantly correlated with knee joint function. Higher percentage rates of
Tregs in SM were associated with better scores in the (A) AKKS knee and (C) OKS-12. No significant
associations were found between Treg proportions and AKSS functional (B) and FFbH-OA scores (D).
p-Values < 0.05 were considered statistically significant and are indicated with asterisks: * p < 0.05, **
p < 0.01. AKSS = American Knee Society Score; FFbH-OA = Hannover Functional Questionnaire of
Functional Disability Caused by OA; OKS-12 = Oxford Knee Score.

3.5. Knee Pain Is Associated with Decreased Treg Infiltration in SM and PB

We next examined associations between compartment-specific Treg infiltration and
OA-related knee pain. Correlation analyses (see Figure 5) revealed that increasing propor-
tions of Tregs in PB are associated with lower pain levels (p = 0.03, rs = −0.34). Similarly,
we found a significant negative correlation between Treg infiltration in SM and knee pain
ratings (p = 0.02, rs = −0.37). These results indicate that knee OA patients with lower
proportions of infiltrating Tregs in both PB and SM have higher levels of knee pain.
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Figure 5. Correlation analyses between tissue-specific infiltration of Tregs and pain of knee OA
patients. Spearman’s rank correlation coefficient (rs) revealed that Treg proportions (% Treg) in
(A) peripheral blood and (C) synovial membrane (SM) significantly correlated with knee pain
intensity measured on a numerical rating scale (NRS). Higher pain levels were associated with
decreasing Treg proportions in PB and SM. (B) In synovial fluid, no associations between Treg
proportions and pain scores were observed. p-Values < 0.05 were considered statistically significant
and are indicated with asterisks: * p < 0.05.

4. Discussion

In summary, the current study analyzed the infiltration profile of Tregs in different
compartments of knee OA-patients and screened for potential associations between Treg
infiltration and OA-related symptoms. In line with previous results, we could demonstrate
that Treg proportions are enriched in joint-derived samples (SF and SM) when compared
to the percentage of Tregs in PB. This is mainly attributed to high Treg frequencies in
SF. Moreover, we found significant coherences between infiltrating Tregs and OA-related
symptoms which indicate that lower Treg proportions—especially in SM—are related to
increased pain and functional disability in knee OA. This is in line with recent data by
our group, analyzing mainly Kellgren and Lawrence stage IV OA patients [33]. To our
knowledge this is the first study to evaluate Treg infiltration in relation to clinical symptoms
of knee OA patients.

Recent evidence from both clinical and preclinical studies indicates that Tregs play
an important role in the complex inflammatory cascade that triggers OA. They modu-
late the secretion of anti-inflammatory cytokines such as IL-10 [20,22,35]. Thus, reduced
Treg responses in inflammatory diseases are thought to shift the balance between pro-
and anti-inflammatory processes towards inflammation. This is proven to drive disease
progression in animal models for antigen induced arthritis (AIA) and collagen-induced
arthritis (CIA) [36,37]. Similarly, it has been reported that OA patients have fewer Treg cells
in PB when compared to age-matched healthy controls [23]. Here, we also found reduced
Treg proportions in PB when compared to joint-derived samples. However, conclusions
regarding healthy controls cannot be drawn since we did not harvest control samples from
healthy individuals due to ethical reasons.

In line with our previous findings, the percentage of Tregs was highest in SF samples
followed by SM and PB. In SF, Tregs accounted for ~12% of CD4+ T cells. Differences
between Treg proportions in tissue types could be explained by the physiology of Treg
compartmentalization which has been reported to be organ- and tissue-specific. The
underlying mechanisms might include compartment-specific Treg trafficking and retention.
In line with this, we have previously shown that in synovial samples of end-stage OA knee
joints, a pro inflammatory Th1 polarization is predominant [33]. Therefore, we hypothesize
that the high Treg proportions observed in OA-joints are present to counterbalance the
pro inflammatory milieu with their anti-inflammatory properties. Mechanistically, Tregs
develop their suppressive activity in a contact-dependent manner [38], thereby emphasizing
the importance of Treg infiltration into the joint (SF and SM). Furthermore, the importance
of SM-infiltrating Tregs is underlined by the fact that soluble factors alone are unable to
exhibit immunosuppressive activity [21,39–41]. Once activated in the SM, Tregs can release
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the anti-inflammatory IL-10 to suppress Th1 and/or cytotoxic T-cell activation [42–44].
Interestingly, IL-10 secretion from PB Tregs of OA-patients was found to be decreased
despite elevated Treg frequencies when compared to non-OA controls [42]. Decreased
IL-10 secretion from Tregs was accompanied by reduced Tim-3 expression on Tregs which
is a marker of T-cell exhaustion. This suggests that decreased IL-10 release by Tregs might
be related to a suppressed capacity of Tim-3+ Tregs to produce IL10 in OA [44]. Taken
together, the high Treg proportions in joint-derived samples in combination with the fact
that patients were admitted for arthroplasty indicate that the counterbalancing capacity of
Tregs to restore inflammatory homeostasis is limited.

Nevertheless, Treg proportions in SM seem to be related to the degree of OA-induced
symptoms. Both knee pain and functional disability were significantly associated with
decreased Treg proportions in SM indicating important cross-talk with joint innervating
nociceptive neurons. The majority of knee joint nociceptors are located in deep somatic
tissue including the joint capsule, insertion of tendons, ligaments, subchondral bone and
periost [1,45,46]. The synovium, especially, is one of the most densely innervated intra-
articular structures of the knee joint, and the degree of synovitis in MRI studies highly
correlates with knee pain [7–9]. Therefore, Tregs infiltrating the SM have a high potential to
mediate nociceptor activation. Their role in pain processing has been studied in several neu-
ropathic pain models, including partial sciatic nerve ligation (PSNL), chronic constriction
injury (CCI), diabetic painful neuropathy (DPN) and chemotherapy-induced peripheral
neuropathy (CIPN) [19]. After experimental Treg depletion, mechanical allodynia was
significantly enhanced in response to CCI [25] and CIPN was reduced following intrathecal
injection of Tregs [28]. Despite these promising results, the mechanisms underlying the
pain-alleviating effect of Tregs remains elusive. Most likely, it is also mediated through their
capacity to shift the milieu to a more anti-inflammatory environment by IL-10 secretion [19].
In fact, many pain ameliorating Treg effects can be reproduced by IL-10 application and
are absent in mice lacking IL-10 [47–50]. Therefore, IL-10 seems to be a key factor in Treg-
mediated pain attenuation. Nevertheless, it is unclear if Tregs produce sufficient IL-10 by
themselves to resolve pain or if they induce IL-10 secretion in other cell types [48,50,51].
In fact, IL-13 released by Tregs induces IL-10 secretion in IL13R+ macrophages in models
of acute systemic inflammation [51]. Although the exact mechanisms remain unclear, the
growing body of literature supports a pain-alleviating role of Tregs.

Of note, the Treg infiltration data might be influenced by sociodemographic and clin-
ical parameters such as age, OA-severity and BMI. Indeed, we found that patients with
higher BMI scores presented decreased Treg proportions in the SM. This is in line with
previous reports, demonstrating that circulating Tregs are reduced in obese patients when
compared to patients with normal body weight [52]. Furthermore, compartment-specific
reduction of Tregs in adipose tissue of both obese humans and mice has been reported [53].
Here, we also found a significant compartment-specific association between reduced Tregs
in SM and increasing body weight. Due to the limited and different numbers of matching
data per variable adequate adjustments for confounding factors were not performed. Al-
though OA severity ranged from K&L scores II to IV, all patients suffered from clinically
advanced OA and therefore underwent knee replacement surgery. Thus, the reported
Treg profile represents the infiltration status of patients requiring surgery due to relevant
OA-induced symptoms. However, generalization of our findings needs to be done with
caution as early and intermediate OA stages present a different Treg infiltration patterns,
as we showed in a previous work by our group [54]. Especially the relation of pro- and
anti-inflammatory T cells seems to shift during disease progression. Furthermore, data
interpretation might also be affected by the method of Treg identification due to the lack of
one specific Treg marker. Here, we used the surface markers CD4, CD125 and CD127 to
detect viable Tregs (CD4+CD25+/high CD127low/-) after isolation of CD3+ T lymphocytes
(MACS). In general, the specificity of Treg detection has been improved with labeling of
FoxP3—a transcription factor which is required for Treg development. However, due to
its intracellular location FoxP3 does not allow separation of viable cells [21,55]. Thus, we
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used CD127 as an additional surface marker, in combination with CD25, which has been
shown to facilitate consistent quantitative identification of viable Tregs (CD4+CD25+/high

CD127low/−), which are highly positive for FoxP3 [34,40,56]. Different techniques of identi-
fying Tregs might partly explain contradicting results of studies assessing Treg frequencies
in tissue samples [21,39,41,54–60]. Moreover, variability across patients might affect the
interpretation of the results but was not tested in detail.

In conclusion, our study provides a solid foundation for further experimental and
clinical studies to untangle the role of Tregs in OA-related symptoms by identifying specific
Treg profiles and their potential associations with clinical characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10092111/s1, Figure S1: Correlation analyses between
Tregs in peripheral blood, synovial fluid and functional parameters of knee OA patients.
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