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Dexamethasone Does not Compensate for Local
Anesthetic Cytotoxic Effects on Tenocytes: Morphine

or Morphine Plus Dexamethasone May Be a
Safe Alternative
Anne Lene Oeyen, M.D., Jörn Kircher, M.D., Ph.D., Melanie Vogl, M.D., Irina Ickert, M.D.,
Nani Osada, Ph.D., Rüdiger Krauspe, M.D., Prof., Bernd Bittersohl, M.D., Ph.D., and

Monika Herten, Ph.D.

Purpose: The purposes of this in vitro study were to investigate whether the addition of dexamethasone can compensate for
any cytotoxic effects of the amide-type local anesthetics (LA) bupivacaine and ropivacaine and whether morphine and
morphine-6-glucuronide (M6G)may be a safe alternative for peritendinous application.Methods: Biopsies of human biceps
tendons (n ¼ 6) were dissected and cultivated. Cells were characterized by the expression for tenocyte markers, collagen I,
biglycan, tenascin C, scleraxis, and RUNX via reverse transcriptase-polymerase chain reaction and immunohistochemistry.
Tenocytes were incubated with bupivacaine, ropivacaine, morphine, M6G, or a saline control with and without addition of
dexamethasone for 15, 60, or 240 min. Cell viability was determined by quantifying the presence of adenosine-triphosphate.
Results: Significant time-dependent cytotoxic effects were observed for LA after all exposure times. After 15, 60, and 240
minutes, cell viability decreased to81.1%,49.4%and0%(P< .001) for bupivacaineand to81.4%,69.6%,and9.3%(P< .001)
for ropivacaine compared to saline control.Dexamethasonedidnot compensate for these cytotoxic effects. Cell viabilitywasnot
affected after 15, 60-min exposures tomorphineandM6Gbut decreased significantly (P< .001) after 240minutes compared to
saline control. However, in combination with dexamethasone, tenocyte viability was significantly increased at all times for
morphine (P< .01) and at 15 and 60minutes forM6G (P< .01).Conclusions: The results showed that amide-type LAhave a
time-dependent cytotoxic effect onhuman tenocytes invitro,which couldnot becompensated for bydexamethasone,whereas
morphine andM6Ghadnocytotoxic effects on tenocytes after 15 and60minutes. The additionof dexamethasone tomorphine
and M6G had a positive effect on viability, which increased significantly compared to the opioids. Clinical Relevance: It is
knownthat amide-type local anestheticsused for local joint analgesiahavechondrotoxic side-effects. The combined application
of morphine and dexamethasone may be a safe alternative.

have proven that amide-type local anesthetics have
Introduction
ntraarticular, periarticular, and peritendinous in-
Ijections with amide-type local anesthetics (LA) and/

or corticosteroids are performed for analgesia and to
inhibit inflammation in patients with substantial joint
pain (postoperative, degenerative, and inflammatory
diseases). Although analgesia is required for early
rehabilitation and prevention of joint stiffness, studies
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chondrotoxic side effects, whose intensity depends on
the actual active substance, time of exposure, and
concentration.1-9 Currently, intraarticular injection is
only performed under strict indication and is becoming
less common, whereas postoperative intra-articular
infusion of a local anesthetic via a pain pump has
been abandoned because of devastating cases of
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glenohumeral chondrolysis.10-17 Recent research has
confirmed a similar cytotoxic effect of LA on tenocytes
in vitro.6,18-21,22 In vivo studies evaluating the cytotoxic
profile of LA in tendons are limited and present
partially conflicting results after periarticularly injected
LA. Whereas Friel et al. found no effects on rotator cuff
tendons in rabbits after continuous subacromial bupi-
vacaine infusion (.25 % with epinephrine for 48 h)
after 2 weeks , Lehner et al. demonstrated that a single
injection of .5% bupivacaine caused short-term
changes in rat Achilles tendons.23,24 Similarly, Nuelle
et al. noted significant tenotoxicity of the supraspinatus
tendon after a single injection of a combination of
bupivacaine in low concentration (.06%) and cortico-
steroids into the subacromial space in adult dogs at
day 7.25

Corticosteroids still play a major role in the manage-
ment of all kinds of inflammatory disease, especially in
the musculoskeletal system.26-29 In multiple clinical
trials, the addition of corticosteroids extended the
duration of the analgesic effect of LA in regional blocks
(brachial plexus).30-34 Corticosteroid adjuvants in peri-
articular analgesic injections are of interest; in fact,
several clinical studies have reported a slight reduction
in postoperative pain or prolongation of analgesic effect
with the addition of corticosteroids to periarticular and
intra-articular LA.35-42

Alternatives to LA with fewer side-effects are ur-
gently needed. The mode of action of opioid drugs
differs from that of amide-type local anesthetics
and may be a safe and potent alternative for
particular application. Morphine has been proven to
provide sufficient analgesic effect in periarticular
application 43,44 and intraarticular application.45-50

Experimental trials have shown that morphine is
significantly less chondrotoxic1,51,52 and tendotoxic20

compared to LA.
Morphine-6-glucuronide, an active metabolite of

morphine, is an effective analgesic with a slower onset
but and a longer analgesic effect/duration of action
compared to morphine when administered intrave-
nously or subcutaneously. Side effects, most impor-
tantly postoperative nausea and vomiting, occur less
frequent after M6G treatment.53 Studies suggest that
the metabolite M6G instead of morphine itself is the
major contributor of analgesic effect via m-opioid re-
ceptors after administration of morphine to patients,
irrespective of the route of administration.53,54

In the present study, we investigated whether the
addition of dexamethasone can compensate for any
cytotoxic effects of the amide-type LA (bupivacaine and
ropivacaine) and whether opioids (morphine and
morphine-6-glucuronide) may be a safe alternative for
peritendinous application.1

Our hypothesis is, that morphine and M6G do not
reduce the viability of the primary human tenocytes, in
contrast to the LA bupivacaine and ropivacaine and that
the addition dexamethasone can compensate for the
cytotoxicity caused by the LA.

Materials and Methods

Study Population
The study was approved by the local Ethics Committee

of the Heinrich-Heine-University Düsseldorf (#3506).
Informed consent was gathered prior to the study initi-
ation from the patient, caregiver, or legal representative.
The tendon samples were obtained from patients
without preexisting illnesses (i.e., metabolic syndrome,
diabetes, coronary heart diseases, acute or chronic in-
fections, and cancer), who were scheduled to undergo
arthroscopic surgery for rotator cuff repair or open
shoulder surgery, such as hemiarthroplasty following
humeral head fractures. Exclusion criteria were the
presence of substantial degenerative tendon changes,
infections, or previous surgery at the site of biopsy.
Proximal explants of human long biceps tendons were
obtained from 6 patients in total (2 male and 4 female),
with an average age of 48.5 � 18.9 years (range: 24-75
years). A case number estimation for unrelated samples
and continuous targets was performed using the pro-
gram "jumbo" from the University of Münster, Münster,
Germany.55 For the power analysis, we used our pre-
vious study as a guide, in which the effect of LA and
morphine on the viability of chondrocytes was tested.1

The case number estimation resulted in a maximal
case number of 5; we decided to take n ¼ 6.

Tenocyte Harvesting and Culture
Visually intact proximal explants of the long biceps

tendons were washed 3 times in sterile PBS (Gibco,
Deisenhofen, Germany). Tenocytes were harvested by
cell migration, as previously described.56,57 The tendons
were dissected into 30-60 mm3 fragments and culti-
vated in culture flasks using Dulbecco’s Modified Eagle
Medium (DMEM; Gibco) with 4.5 g/L glucose, 20%
fetal bovine serum (Gibco), 100 units/mL penicillin,
100 mg/mL streptomycin and 2 mM glutamine (Gibco)
culture conditions analogous to chondrocytes, as pre-
viously described.1 The culture conditions were 8.5%
CO2 at 37�C. No further growth or differentiation fac-
tors were added. The medium was changed twice per
week. Tenocytes continuously migrated from the
tendon fragments and adhered to the culture flask.
Immediately before the cells displayed a confluent
monolayer (defined as passage zero, or P0), they were
trypsinized (.05% trypsin/.02% ethylenediaminetetra-
acetic acid (EDTA) (Gibco) counted and either cry-
opreserved or subcultured directly into passage one
(P1). Cryopreservation of cells (P0) was performed in
90% FCS þ 10% DMSO (Gibco) at �80�C in 5 of 6
patients. For the experiments, the cells were thawed
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and subcultured as P1. The cells of all 6 patients were
subsequently subcultured into passage two (P2), which
was used for the experiments.

Cell Characterization
The tenocytes of P2 of all 6 patients were character-

ized by their expression via RT-PCR and protein profiles
via immunocytochemisty for five typical tenocyte
markers, collagen I, biglycan, tenascin C, scleraxis, and
RUNX. GAPDH was used as a housekeeping gene.

Reverse Transcriptase Polymerase Chain Reaction
In order to control the tenocyte genotype, RNA was

extracted from 6 wells (w7.4 � 104 tenocytes in total)
using the RNeasy mini kit (Qiagen, Hilden, Germany),
according to the manufacturer’s instructions. RNA
concentration was measured by a photometer (Nano-
Drop, Peqlab, Erlangen, Germany). For PCR, the One-
Step RT-PCR Kit (Qiagen) was used in a thermocycler
(Allignet Technologies, Ratingen, Germany), according
to the manufacturer’s instructions. The PCR program
consisted of the reverse transcription at 50�C for 30
minutes, the initial PCR activation at 95�C for 15 mi-
nutes, 35 times (35�) the following three-step-cycle: 1)
denaturation at 94�C for 30 seconds, 2) annealing at
55�C for 30 seconds, and 3) extension at 72�C for 60
seconds with a final extension at 72�C for 10 minutes.
PCR products were separated via agarose gel electro-
phoresis. The primers for Aggrecan, Biglycan, Decorin,
Collagen I and Tenascin C were used as described
before.58 GAPDH (50-ctc aag atc agc aat gcc, 30-gat ggt
aca tga caa ggt gc) was used as housekeeping gene.

Immunocytochemical Staining
In order to control the tenocyte phenotype, the cells

were immunocytochemically stained for tenocyte
markers. The cells of the second passage were seeded
onto 24-well plates in a cell density of 3 � 103 cells/cm2

and cultured for 4 days. After fixation with 4% buffered
paraformaldehyde (Rotifix, Carl Roth, Germany),
endogenous peroxidase was blocked with .3% hydrogen
peroxide for 30 minutes. After washing, the fixed cells
were incubated with the primary monoclonal or poly-
clonal antibodies at 5�C. The monoclonal antibodies
were collagen I, (1:100 dilution, AbDSerotec, Puchheim,
Table 1. Incubation Scheme and the Concentrations Used

Without dexamet

Incubation time final concentration 15 min 60 min
Bupivacaine 5 mg/ml ¼ 0.5 % X X
Ropivacaine 7.5 mg/ml ¼ 0.75 % X X
Morphine 0.5 mg/ml ¼ 0.05 % X X
Morphine-6 glucuronide 0.5 mg/ml ¼ 0.05 % X X
control saline NaCl 9 mg/ml ¼ 0.09 % X X
Germany), biglycan (1:200 dilution, Abcam, Cambridge
United Kingdom), and tenascin C (1:100 dilution, Acris
Antibodies, Hiddenhausen, Germany). The polyclonal
antibodies were Runx 2 (1:500 dilution, rat-anti-human;
R&D Systems, Minneapolis, MN) and scleraxis (1:100
dilution, rabbit-anti-human; Acris Antibodies). The
respective negative controls were incubated in compa-
rable concentrations of either mouse IgG1, IgG2a (Vector
Laboratories, Burlington, CA), polyclonal rat or rabbit
serum in antibody diluent (Dako, Agilent, Santa Clara,
CA) at 5�C. After washing, a secondary anti-mouse or
anti-rat biotin-labeled antibody (Vector Laboratories)
was added for 60 minutes at RT. The antibody-antigen
complex was visualized using streptavidin peroxidase
(Vector Laboratories) and diaminobenzidine (Sigma-
Aldrich, Steinheim, Germany) as chromogen.

Experimental Setup
Tenocytes of n ¼ six donors (P2) were seeded onto 24-

well plates (Nunc, Darmstadt, Germany) in a concentra-
tion of 3 � 103 cells/cm2 using the DMEM, as described
before. At day 4, the cells were incubated with the sub-
stances, and finally, they were fixed for immunocyto-
chemistry or conserved for PCR. The cell supernatant was
removed for incubation, and the cells were exposed to the
following substances for increasing incubation times (15,
60, and 240 minutes) (Table 1). The cells were incubated
with the anesthetics bupivacaine (5 mg/mL; Bucain-
Actavis, Actavis, Langenfeld, Germany), ropivacaine
(7.5 mg/mL; Naropin, AstraZeneca, Wedel, Germany),
morphine (10 mg/mL, diluted with saline; Merck Serono
Darmstadt, Germany), morphine-6-glucuronide (M6G; 5
mg/mL; diluted with saline; Sigma-Aldrich, Deisenhofen,
Germany) or saline as a control. Furthermore, dexa-
methasone (2.5 mg/mL; Lipotalon, Merckle Recordati,
Ulm, Germany)was also added to the cells. Combinations
of dexamethasone and local anesthetic were diluted 1:10
(dexamethasone: local anesthetic) to mimic clinical
practice.6 Dexamethasone alone was diluted with saline.
These concentrations of the LA have been used in previ-
ous and comparable in vitro studies with chon-
drocytes1,7,52,59 and tenocytes18-20,60, as well as intra-
articular and periarticular38,45,61,62 in clinical studies.
Furthermore, these are concentrations that can be used
for anesthesiologic field blocks with LA in surgery.63,64
hasone with dexamethasone 0.23 mg/ml ¼ 0.023 %

240 min 15 min 60 min 240 min
X X X X
X X X X
X X X X
X X X X
X X X X
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For each concentration, time point, and patient, n ¼ 6
wells were used. After incubation with the anesthetics,
the cells were washed with PBS and cultured further in
a fresh medium without additives. Three days after
incubation, cell viability was measured in n ¼ 6 wells
per substance and time point for each of n ¼ 6 donors
(¼ 36 wells in total per condition) (Table 1).
To exclude any side effects, the final anesthetic and

dexamethasone solutions in culture medium were
controlled for osmolarity (Osmometer, Knauer, Ober-
ursel, Germany) and pH value. Cell culture medium is
designed to have osmolarity in the range of 260 and
320 milliosmoles (mOsm), basically to mimic the os-
molarity of serum at 290 mOsm/kg.65 For ropivacaine
and bupivacaine, the values were 301.7 and 290.0
mosmol/L. After the addition of dexamethasone, the
values were 303.7 and 288.7 mosmol/L. Morphine and
M6G yielded values of 313.7 and 292.7 mosmol/L. The
addition of dexamethasone did not change osmolarity,
and the pH values were in the range of 6.0e6.5.

Cell Viability Measurement
Cell viability was assessed using the CellTiter-Glo

luminescent cell viability assay (Promega, Mannheim,
Germany), as described before.1,66 This assay quantifies
the presence of adenosine triphosphate (ATP), which
identifies the metabolically active cells. Luminescence
produced by the luciferase-catalyzed reaction of lucif-
erin and ATP was measured using a multilabel plate
reader (VICTOR3; PerkinElmer LAS, Rodgau-Jüge-
sheim, Germany).
Onemajor advantage of thismethod is that it is fast, the

background interference (autofluorescence from com-
pounds,media, and cells) is low, and it generally provides
amuch broader dynamic range and higher sensitivity. In
brief, the medium was removed, 50 mL PBS and 150 mL
CellTiter-Glo reagent was added into each well. After an
incubation period of 20 minutes at room temperature,
the luminescent signal was recorded in counts per sec-
ond. ATP standard curves were plottedwith defined ATP
concentrations (25-4000 nM) for each measurement,
and the number of cells was calculated with standard
measurements performed for each patient with defined
numbers of tenocytes from the monolayer culture
(standard curves with 7.8 � 102, 1.5 � 103, 3.12 � 103,
6.2 � 103 1.25 � 104, 2.5 � 104, 5 � 104, and 1.0 � 105

cells). The mean intra-assay coefficient of variability of
the CellTiter-Glo luminescent cell viability assay was
1.28 % in the preliminary experiments (n ¼ 3; .88-1.62
%). The mean inter-assay coefficient of variability of the
CellTiter-Glo luminescent cell viability assay of the main
experiments was 2.49 % (n ¼ 5, .93-3.35%).

Statistics
The statistical analyses were performed using SPSS

software (SPSS 27.0, Chicago, IL; Microsoft Excel,
Redmond, WA). Data were expressed as means � SD
for cell viability. For the statistical comparisons between
the different independent groups, the nonparametric
ManneWhitney U-test was used to compare cell
viability after incubation with the different substances.
To determine the influence of dexamethasone on the
incubation with LA (bupivacaine/ropivacaine) or
morphine/M6G, the t-test for equality of means for
independent samples was used. The level of significance
was set at P < .05.
Results

Cell Proliferation and Characterization
The average generation time of the first two passages

of cells was 3.46 � 1.00 days; the range was 2.84-5.45
days for n ¼ 6 donors. The cells were characterized as
tenocytes by the expression of the tenocyte markers
biglycan, runx, scleraxis, collagen I, and tenascin C on
the protein level, as shown via immunohistochemical
staining of the typical tenocyte marker (Fig 1). Also, on
the mRNA level, the expression of the tenocyte markers
could be detected in 5 of the 6 patients. For one patient,
the amount of mRNA was not sufficient for all PCRs
(Fig 2).

Cell Viability After Exposure
There was a significant time-dependent decrease in

the tenocytes’ cell viability after exposure to amide-type
local anesthetics (bupivacaine and ropivacaine) (Fig 3).
After 15, 60, and 240 minutes of incubation with
bupivacaine, cell viability decreased to 81.1 � 18.9 %
(P < .001), 49.4 � .22 % (P < .001) and .0 % in relation
to the saline control (¼100 %). Ropivacaine caused a
similar decrease in tenocyte viability after short-term
incubation but did not lead to complete cell death af-
ter long-term incubation. After incubation for 15, 60,
and 240 minutes, cell viability decreased to 81.4 � 18.2
% (P < .001), 69.6 � 14.0 % (P < .001) and 9.2 �3.1 %
(P < .001) in relation to the saline control.
There was no statistical difference in cell viability after

incubation with morphine and M6G for 15 and 60
minutes compared to the saline control (morphine:
96.1 � 16.1% and 100.5 � 15.3%, M6G: 97.0 � 19.0%
and 99.2 � 18.4%). After 240 minutes, the viability
decreased to 78.6 � 6.0% (morphine, P < .001) and to
86.1 � 8.5 % (M6G, P < .01) compared to saline con-
trol. The further time-dependent decrease at 240 mi-
nutes, compared to viability after 15 and 60 minutes,
was only significant for morphine (Fig 3).
Exposure to dexamethasone alone (without other

additives) had no significant effect on viability after any
exposure time (t ¼ 15: 101.6 � 20.5 %; t ¼ 60: 104.2
�17.3%; t ¼ 240: 99.3 � 19.7 % compared with saline
as control.



Fig. 1. Immunohistochemical
staining of tenocyte markers:
biglycan (A), Runx (B), scleraxis
(C), collagen I (D), unstained
control (E), tenascin C (F).

Fig 2. Expression profile of typical tenocyte markers. In the
cells of all five patients tested, the tenocyte markers were
expressed in comparable intensities.
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The cytotoxic effects of bupivacaine and ropivacaine
were not compensated for by the addition of dexa-
methasone. In contrast, after incubation for 15 minutes,
the viability of the tenocytes decreased significantly,
with the addition of dexamethasone compared to when
they were incubated with the anesthetics alone (bupi-
vacaine: 81.1 � 19.0 % vs 50.1 � 22.5 % [P < .001],
ropivacaine 81.4 � 18.2 % vs 69.5 � 19.2 % [P < .05])
(Fig. 4A). After a more prolonged incubation (60 and
240 minutes), there was no significant difference in the
viability with or without the addition of dexametha-
sone. (Fig 4, B and C).
The addition of dexamethasone to morphine and

M6G had a positive effect on the viability of tenocytes,
which increased significantly for all incubation times
compared to the opioids alone. It was even higher than
the saline control (¼100%) for most time points (Fig 4,
AeC). The values for morphine and dexamethasone
were 110.7 � 18.5% (P < .01), 116.5 � 23.2%
(P < .001), and 112.4 � 19.2% (P < .001) after 15, 60,
and 240 minutes and with >100% higher than the
saline control. Also combined incubation of M6G and
dexamethasone displayed increased cell viability with
111.1 � 21.3% (P < .01), 110.6 � 16.4 % (P < .001),
and 100.0 � 20.1% after 15, 60, and 240 minutes
compared to the saline control (¼100%).



Fig 3. Cell viability after exposure to all substances. (A) In-
fluence of different incubation times (15, 60, and 240 mi-
nutes) with anesthetics on the viability of tenocytes in relation
to the saline control (¼100 %). (B) Influence of different
incubation times (15, 60, and 240 minutes) with anesthetics
combined with dexamethasone on the viability of tenocytes in
relation to the saline control. The box plots span the inter-
quartile range. The vertical line inside the box represents the
mean. The whiskers extend to the highest and lowest obser-
vations. Experiments reveal the means � SD of n ¼ 6 wells
per patient (n ¼ 6 patients) for each time point and substance,
amounting to a total of 36 wells per time point and substance,
except for morphine and M6G with n ¼ 5 patients at 60 mi-
nutes with a total of 30 wells. Statistical significances are
expressed as *P < .05; **P < .01; ***P < .001.
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Discussion
The tested opioid drugs, morphine and M6G, showed

no cytotoxic effects on human tenocytes after short-
time exposure of up to 60 minutes, as cell viability
was as high as in the saline control. After long-time
exposure to opioids for 240 minutes, the slightly
decreased cell viability was counterbalanced by the
addition of dexamethasone. We observed severe cyto-
toxic effects of LA after incubation for 240 min,
resulting in complete cell death in bupivacaine, and
nearly complete cell death in ropivacaine, which could
not be compensated for by the addition of dexameth-
asone. Dexamethasone alone had no significant impact
on the viability of the tenocytes compared to saline
control in our experiments.
In our study, we observed the absence of relevant

cytotoxic effects of opioids after short-term exposure.
These findings are in line with the results of the study by
Haasters et al., who did not find any adverse effect for
morphine (.25 mg/mL, 120 minutes) on the viability of
human tendon stem/progenitor cells from hamstring
tendons.20 However, in contrast to Haasters, we
observed a low, but significant, decrease in viability after
longer exposure (240 minutes) to both opioids. This
might be due to the different time points for viability
measurement (Haasters after 0-6 hours, our study after
72 hours), delayed cytotoxic effects, and the double
concentration of morphine (.5 mg/mL) used in our
study. So far, there have been no studies showing the
effect of M6G on tenocytes. In previous experiments on
human chondrocytes, morphine, as well as M6G (both
.5 mg/mL) did not affect viability after 240 minutes of
incubation.1 Other in vitro studies confirmed this neutral
effect of morphine on chondrocyte viability in cocultures
of canine cartilage and synovial tissue explants52 and on
human chondrocytes.67

We detected a time-dependent cytotoxicity of LA on
tenocyte viability in vitro. Our results confirm previous
findings, which demonstrated that 6 hours of exposure
to bupivacaine (5.0 mg/mL) and ropivacaine (7.5 mg/
mL) resulted in total cell death of human hamstring
tenocytes. The cytotoxic effects were concentration-
and time-dependent.20 Other studies have also reported
cytotoxic effects of bupivacaine (5.0 mg/mL) on human
rotator cuff tenofibroblasts after 24 hours of exposure,
as well as of ropivacaine (7.5 mg/mL).18,21 Lower
concentrations of bupivacaine up to .05 mg/mL and 24
hours incubation time had no toxic effect, whereas
concentrations of more than 2.5 mg/mL were cyto-
toxic.6,21 It can be concluded that the cytotoxic effect of
LA on tenocytes depends on the substance (bupivacaine
> ropivacaine), concentration and time of exposure.
The same has been demonstrated for chondrocytes in
various studies.1,3,6,7

In our in vitro study, the time-dependent negative
effect on cell viability of both bupivacaine and ropi-
vacaine was particularly distinct after the long incu-
bation time of 240 minutes. For bupivacaine, this
reduction of tendon cell viability could not observed
in vivo, as shown in the study of Lehner et al., who
compared cell viability after bupivacaine treatment
in vitro and in vivo. In vitro, the rat tendon-derived
cells were treated with bupivacaine (.5% for 10 mi-
nutes), while in vivo, the rats received a single peri-
tendinous injections into the Achilles tendon.24



Fig 4. Influence of the addition of dexamethasone.
Addition of dexamethasone to tenocytes after incuba-
tion with anesthetics for 15 minutes (A), 60 minutes
(B), and 240 minutes (C). The box plots span the
interquartile range. The vertical line inside the box
represents the mean. The whiskers extend to the
highest and lowest observations. Experiments reveal
the means � SD of n ¼ 6 wells per patient (n ¼ 6 pa-
tients) for each time point and substance amounting to
a total of 36 wells per time point and substance, except
for M6G and M with only n ¼ 5 patients after 60 mi-
nutes of exposure. Statistical significances are expressed
as *P < .05; **P < .01; ***P < .001.
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Treatment of rat tendon-derived cells had detrimental
effects on cell viability, which could be reduced by
N-acetyl-L-cysteine or reduction of extracellular cal-
cium. In vivo, single peritendinous injections had
impairing effects on cells within areas of loose con-
nective tissue and elicited considerable, although only
temporary, functional damage. It could be shown that
bupivacaine induces mitochondrial dysfunction, as
well as overproduction of reactive oxygen species
(ROS), which cause necrosis or apoptosis.3,24 Other
studies also showed that the cytotoxic ROS-mediated
effect is potentiated by a higher level of extracellular
calcium.68-70 The reason for the different observations
in vivo and in vitro is most likely the missing extra-
cellular matrix, which may provide protection for
tenocytes, thus mitigating the damaging effects
observed using in vitro monolayer cell culture models,
as postulated by Sherb et al.22

In the present study, dexamethasone alone in a
concentration of .23 mg/mL did not significantly affect
the viability of tenocytes regardless of the duration of
the exposure time. This observation is in line with
previous studies with a similar experimental setup,
which reported results for .25 mg/mL dexamethasone
and 24 hours of incubation6 and for .8 mg/mL and 30
minutes of incubation.66

Our results demonstrated that the tendotoxic effect of
bupivacaine and ropivacaine could not be compensated
for by the addition of dexamethasone. On the contrary,
after incubation for 15 minutes, the tenocytes’ viability
decreased significantly with the addition of dexameth-
asone compared to incubation with the LA alone.
However, after incubation for 60 minutes with LA and
dexamethasone, no differences between the combina-
tion and the LA alone were detected. This corresponds
to previous findings, in which the combined incubation
with dexamethasone and ropivacaine (.8 mg/mL and
5.0 mg/mL) for 30 minutes also reduced the viability of
bovine tenocytes significantly compared to ropivacaine
alone.66

In all probability, it is the different modes of action by
which LA and opioids lead to analgesia that are
responsible for the distinct difference in the cytotoxic
effects on tenocytes. The opioids morphine and M6G
act directly via the m-opioid receptor as signaling ago-
nists.71,72 Morphine has several different roles in cell
protection and the modulation of cell death. In a review
by Tegeder et al.,73 several studies reported on the
protective and proliferating effect of morphine on
different cell types (i.e., immune cells, neurons and glia,
endothelial cells and fibroblasts, tumor cells) at low
concentrations, while relatively high concentrations
in vitro, as well as chronic clinical opioid treatment can
lead to inhibition of cell growth. So far, no studies have
been published on whether these findings also apply to
human tenocytes.
Regarding the mode of action, amide-type local an-
esthetics influence sodium channels in the cell mem-
brane, leading to an induction of mitochondrial
dysfunction, as well as overproduction of ROS, DNA
damage, and apoptosis.3,68,69

Regarding the clinical application of morphine,
morphine was only added to a multimodal drug injec-
tion and admitted periarticularly. In the most recent
study, a mixture of steroids, local anesthetics, NSAIDs,
and epinephrine with or without morphine (.1 mg/kg)
was injected periarticularly into randomly assigned
patients (n ¼ 100) after total hip arthroplasty. The re-
sults suggested that the addition of morphine to the
multimodal cocktail injection after total hip arthroplasty
was not effective for relieving postoperative pain, alle-
viating swelling, or improving range of motion.74

Also, after total knee arthroplasty, the effect of
morphine added to periarticular multimodal drug in-
jection (PMDI) or spinal anesthesia on pain manage-
ment and functional recovery was investigated in n ¼
100 patients in total. The data revealed that the efficacy
of morphine added to periarticular multimodal drug
injection was limited and that of morphine added to
spinal anesthesia disappeared within 20 h post-
operatively. Adding morphine to PMDI or spinal anes-
thesia did not improve functional recovery and caused
some adverse effects.75

Limitations
There are some limitations to this study. The teno-

cytes derived from a limited number of healthy in-
dividuals. Therefore, interindividual variation in tendon
quality and susceptibility to cytotoxic agents cannot be
excluded. The age range of the patients and was high
(24-75 years). In clinical practice, mean patient age
could be higher, resulting in even greater local anes-
thetic cytotoxicity.
The exposure time and the number of applications in

a clinical setting can vary substantially between
different individuals, physicians, and locations, due to
many heterogeneous factors. We cannot exclude
regeneration of the cells after a single exposure, nor can
we exclude long-term detrimental effects of a single
application to the cells due to the experimental setup.
Another limitation in this study is that only one

concentration per local anesthetic was used in the ex-
periments, although lower concentrations have also
been used in clinical practice and studies that have
lower cytotoxicity profiles (i.e., .25% bupivacaine and
.2% ropivacaine).19,21,66 We focused on the concen-
trations that have been used in both clinical prac-
tice6,45,61,62 and previous studies18-20,60 and that are
used for anesthesiological field blocks with LA. We used
these known cytotoxic concentrations to be able to
investigate possible compensatory effects of the addi-
tion of corticosteroids.
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Conclusions
The results showed that amide-type local anesthetics

have a time-dependent cytotoxic effect on human
tenocytes in vitro, which could not be compensated for
by dexamethasone. Morphine and M6G, on the other
hand, were found to have no cytotoxic effects on
tenocytes after 15 and 60 minutes of exposure. The
addition of dexamethasone to morphine and M6G had
a positive effect on the viability of tenocytes, which
increased significantly compared to the opioids alone.
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