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Background. Many gene-expression signatures exist for describing the biological state of profiled tumors. Principal Component
Analysis (PCA) can be used to summarize a gene signature into a single score. Our hypothesis is that gene signatures can be
validated when applied to new datasets, using inherent properties of PCA. Results. This validation is based on four key concepts.
Coherence: elements of a gene signature should be correlated beyond chance. Uniqueness: the general direction of the data being
examined can drive most of the observed signal. Robustness: if a gene signature is designed to measure a single biological effect,
then this signal should be sufficiently strong and distinct compared to other signals within the signature. Transferability: the derived
PCA gene signature score should describe the same biology in the target dataset as it does in the training dataset. Conclusions. The
proposed validation procedure ensures that PCA-based gene signatures perform as expected when applied to datasets other than
those that the signatures were trained upon. Complex signatures, describing multiple independent biological components, are also
easily identified.

1. Introduction

Theuse of gene signatures andPrincipal ComponentAnalysis
[1] (PCA) is a popular combination, but a recent publication
has clearly shown drawbacks with this combination [2]. Gene
signatures are used to represent a biological event and have
the potential to describe complex biology better and more
robustly than a single gene. There exists a large amount of
literature on how to properly analyze microarray data and
derive signatures [3–7], validate biomarkers [3, 8, 9], and, in
particular, validate prognostic models [10–13], all in response
to the poor reproducibility rate in publications [14–18]. A
recent report by the Institute of Medicine [19] summarizes
many of these issues of signature reproducibility and vali-
dation. We will, in this article, focus on how to quantitate
the validity of applying PCA-based gene signatures to new
datasets. PCA is a technique that reduces a high-dimensional
dataset to a low-dimensional dataset while retaining most of
the variation in the data. These new variables are referred to
as scores, 𝑡, and the importance (weighting) of the original

variables given in the loadings, 𝑝. For a more in-depth
discussion of PCA, we refer to a recent tutorial by Bro and
Smilde [20]. PCA models can describe unintended biology
when there is large variation due to sources other than
the biological process of interest, which can cause random
signatures to be significantly associated with outcome [2].

Gene based signatures can be derived using several differ-
ent techniques. One technique is to include all genes known
to be involved in a specific pathway or process, such as a
signaling pathway, and treat the signature as a representation
of pathway activation. Gene signatures can also be derived
from cell line experiments, where a specific biological event is
being modulated, or by comparing different knownmutation
types within the cell lines. In this case, the signature is usually
derived from a list of statistically significant differentially
expressed genes.

In cancer research, these gene signatures can be used,
for example, to predict tumor chemotherapy resistance,
aggressiveness, and several other types of clinically relevant
scores. These scores are then commonly used for survival
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analysis, such as Kaplan-Meier plots and log-rank tests. In
order to associate these clinical metrics to a gene signature, a
single score value is commonly calculated from the individual
expression levels of all genes within the signature. One
commonly used technique is PCA, where the score vector for
the first component is used to represent the gene signature.
PCA is a well-established technique for data analysis and has
been widely used in many areas. The resulting score can be
seen as a weighted average, where each gene is weighted by
its importancewithin the first principal component.There are
several advantages to using PCA. For example, not all genes
are weighted equally—more important (statistically and, we
assume, biologically) genes are weighted higher. It is also
robust to noise and can handle both up- and downregulated
genes equally well. There are also some pitfalls, due to the
inherent properties of PCA, that require special attention.
One such pitfall is that if the gene signature is biologically
complex, describingmore than one biological event, the score
from the PCA model may only describe one of the biological
events. The PCA model does not necessarily describe all the
biological events in the first principal component. Another,
probably more well known, issue with PCA models is sign-
flipping.The sign of the score value for a sample may change,
or flip, depending on the software used and/or small changes
in the data. This does not change the interpretation of the
PCA model, but it may lead to trouble when comparing
different PCA models derived from different datasets and/or
software, where the signs may be reversed. The PCA model
can easily be flipped back by multiplying both the scores and
loadings with −1, a 180-degree rotation.

These issues clearly demonstrate the need to define the
ideal characteristics of a PCA-based gene signature and
measures of how “well behaved” a signature is when applied
to a dataset. Currently, one common way to measure the
performance of a signature within cancer tumor datasets
is by survival analysis. Even if this is the ultimate goal of
a signature, it may be misleading, as was recently shown
by Venet et al. [2]. They showed that many random gene-
set PCA models were as good as literature-derived and
experimentally derived signatures in predicting survival.
They ascribed this effect to a proliferation-signature bias
present in many tumor datasets. Due to the large number of
genes affected by proliferation pathways in tumors, together
with large differences in proliferation status between samples,
the first principle component of a PCA analysis, PC1, often
captures proliferation-related effects in addition to any effects
related to the signature of interest. This can result in false-
correlation with survival, where the correlation comes more
from proliferation-bias effects, rather than from the signature
of interest. Due to these issues, it has been shown that gene
signatures can be unstable [21] and that single genes can be as
good as a multigene signature [22], leading to a recent review
on the value of gene-expression signatures by Chibon [14].
This manuscript describes the key aspects of a PCA-based
signature, along with a set of measures and figures that will
describe how suitable a gene signature is when applied to a
given dataset. This includes measures on how robust it is, if
the signature is too complex toworkwell with a PCAmodel, if
the signature differs from the general direction in the dataset,

and, most importantly, if the signature describes the same
biology that it was intended to. We define a gene signature as
a list of genes with corresponding direction and if relevant,
magnitude, which are used to describe a biological signal,
such as tumor aggressiveness, distant metastasis, survival, or
gender.

2. Material and Methods

Principal Component Analysis was performed using MAT-
LAB. Gene-expression data consisted of log2 intensities.
Mean-centering and unit variance scaling were applied to
expression values prior to computing PCA models.

2.1. Generation of Randomized Gene Signatures. Results for
the gene signature PCA model are compared to thousands
of PCAmodels, based on randomly selected gene signatures.
This approach has many benefits, including (1) the perfor-
mance statistics of PCA, including explained variance, are
dependent on many factors and are, thus, not comparable
across different datasets and gene signatures. (2) Many of the
datasets used are biased in one or several ways, as clearly
shown by Venet et al. [2]. Using randomized gene signatures
as comparisons removes this bias. (3) It allows for a clear
measurement of how much “better” the true gene signature
is than randomly generated gene signatures.

Randomized gene signatureswere generated by randomly
selecting an equal number of genes as the true signature and
performing a PCA model for this random gene signature.
This is repeated many times to get a distribution of expected
values. In thiswork,we have chosen to use 10,000 randomized
gene-sets.

2.2. Signatures. We have, in this study, used two signatures,
alongwith somemodifications of these signatures, in order to
exemplify our results. The two signatures, gender and tumor
versus normal, were chosen due to their strong biological
signal, commonuse cases, and potential problems.The tumor
versus normal signature largely captures proliferation/cell
cycle biology, which is often a dominant feature of tumor biol-
ogy [2], and gender may be used in quality control analysis,
where the gender derived from molecular data is compared
to the clinically known gender to identify potential sample
mismatches. Each signature was also chosen to highlight a
different potential pitfall of PCA analysis: nonuniqueness of
signature (tumor versus normal) and absence of meaningful
signal when the biology of interest does not vary (gender).

The first signature is a gender signature (Gender-29),
consisting of 29 probesets representing 20 unique genes,
19 of which are present in the TCGA RNAseq dataset. To
describe the directionality of these genes, we used either
−1, for male-specific genes, or 1, for female-specific genes.
The second signature was derived from a publically available
Tumor/Normal dataset (GSE18842). An all-probeset PCA
model of GSE18842 shows a clear separation between tumor
and adjacent normal samples in the first principal compo-
nent (data not shown). The Tumor/Normal (TvsN-100) gene
signature was derived by taking the top 100 probesets with
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Figure 1: Conceptual view of how a good PCA-based gene signature should behave. The genes in a signature should be coherently expressed
within the data (a). A signature should represent a single biological effect (b). A signature should represent unique and distinct signal within
the data (c). A signature should represent the same biology as a known reference dataset (d).

the largest absolute loading values for the first principal com-
ponent. Additionally, we only selected probesets that were
also present on the Affymetrix U133A chip. The individual
loading value from the first principal component was used
to both describe the directionality and the magnitude for
each gene. Since proliferation is the major biological process
that is different between tumors and adjacent normals, this
signature will be related to proliferation. When applied to
the TCGA RNAseq dataset, 84 unique genes were used
for this signature. The TvsN-100 was also used to generate
modified signatures by gradually adding probesets not related
to the separation of Tumor/Normal samples. This was done
to simulate the addition of random noise to the signature.
These are named TvsN-50/50, TvsN-25/75, and TvsN-10/90,
respectively, corresponding to the percentages of TvsN-
100/unrelated probesets. The last signature is a mix of the
Gender-29 and the TvsN-100 signature (Mix-29/29). It was
generated by merging all 29 probesets from the Gender-
29 signature with the top 29 probesets for the TvsN-100
signature. For this signature, only the directionality was used.
To further investigate the effect of mixing two signatures,
the number of TvsN-100 probesets was gradually decreased,
creating three additional datasets, Mix-29/24, Mix-29/19, and
Mix-29/14. These mixed signatures will exemplify a complex
signature describing more than one type of biology.

2.3. Datasets. Three publically available datasets were used in
this study. These were chosen for several reasons: DC (lung
tumors, both genders), GSE2034/Breast (same tumor type
as data used in Venet et al. [2], single gender), and PRAD
(prostate adenocarcinomas, single gender). The rationale
for selecting these three datasets is the following: (1) the
TvsN-100 signature is expected to perform well on all three
datasets, (2) gender signature is expected to perform well on
the DC dataset but not on Breast and PRAD datasets, (3)
GSE2034/Breast was the same tumor type used by Venet et al.
[2], and finally (4) they represent three different tumor types.
The first is Director’s Challenge (DC) dataset, which consists
of 442 lung tumor samples [23] arrayed on the Affymetrix
Human Genome U133A Array. This dataset was batch

corrected using COMBAT [24], since it shows a clear depen-
dence on the institution where the samples were run. The
second dataset is from286Breast (Breast) samples (GSE2034)
arrayed on the Affymetrix Human Genome U133A Array.
Both of these datasets were normalized using IRON [25].
The third dataset is fromThe Cancer Genome Atlas (TCGA)
and contains 297 primary prostate adenocarcinoma (PRAD).
The level 3 Illumina HiSeq RNAseqV2 RSEM gene-level
normalizedmRNAexpression datawas downloaded from the
TCGA data portal in December of 2014.

3. Results and Discussion

As illustrated in Figure 1, we propose several intrinsic char-
acteristics of PCA-based signatures. Rather than focus on
correlation of a PCA-based signature with a desired outcome,
the characteristics by which a PCA-based signature may
be considered valid are examined, independent of endpoint
outcome.

3.1. Coherence. Individual genes in a gene signature should
be correlated beyond chance, as illustrated in Figure 1(a).
A coherent gene signature is an indication that a common
mechanism or biological pathway is measured.

3.2. Robustness. If a gene signature describes more than one
distinct biological effect, more than one PCwill be significant
(Figure 1(b)). PC1 may describe a combination of biological
effects, but one effect should predominate. If the explained
variances of PC1 and PC2 are similar to each other, this
may be an indication that more than one biological effect is
present. This is challenging, as the biological effect described
in PC1 can easily change (PC1 and PC2 can switch ranking) if
a few genes or samples are removed or if the gene signature is
applied to a different dataset. Thus, it is preferred for a PCA
signature to represent only a single biological effect.

3.3. Uniqueness. Datasets may be biased, meaning that many
genes are not just random but actually describe a true effect
such as proliferation (Venet et al. [2]). This bias can also
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Figure 2: Validation plot for Gender-29 signature applied to DC dataset.The probesets in the Gender-29 signature show a coherent behavior
when applied to the DC dataset (a). Furthermore, the PCAmodel is robust, with a PC1/PC2 ratio of 4.57 (b), and is unique (c).TheGender-29
signature describes gender difference, since the positive (female) probesets are positive in the PCA loadings and the male-specific probesets
are negative (d).

originate from differences in RNA quality between samples
or other types of batch-related effects. It is important to
determine if the true gene signature is different from the
general direction (Figure 1(c)) in the dataset, in order to
determine the uniqueness of the gene signature.

3.4. Transferability. It is important that the same biology
is present and described by the PCA model as the gene
signature was intended to explain (Figure 1(d)). Often, the
gene signature is derived from a dataset with controlled
variation, for example, a knockout experiment in several
different cell lines. In these cases, a reference value can
relate (positively or negatively) the biological effect to the
gene signature. It is important to define which genes are
upregulated versus downregulated, compared to all the genes
in the signature.

3.5. Measures of PCA-Based Signature Validation. Given the
4 characteristics of a PCA-based signature, we developed
measures to determine the validity of these characteristics
for a given signature when applied to a particular dataset
(Table 1).We use theGender-29 signature as a positive control
and example; when applied to a relevant dataset (DC, or
lung cancer with mixed gender), it is expected to perform
well (Figure 2). Random signatures were used for comparison
of PCA model parameters throughout (see Materials and
Methods for details). Taken together, the validation results
indicate that the Gender-29 signature is a good signature
when applied to the DC dataset.

3.5.1. Coherence. For a measure of coherence, the amount
of variance explained in the first principal component is
used. Increased correlation among variables results in a larger
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explained variance in the first component, since PCA can
be seen as finding the largest eigenvalue to the correlation
matrixwhen the variables are scaled to unit variance [20].The
explained variance for the signature PCA is compared to the
distribution of the explained variance of the randomized gene
signature PCA models. The coherence figure (Figure 2(a))
shows that the genes in theGender-29 signature are expressed
in a coherent way, since its explained variance is 45.3%.
This is larger than any of the randomized gene signature
PCA models (mean: 10.9%), and none of the 10,000 random
models score higher than the gender signature model in
coherence.

3.5.2. Robustness. Our measurement of robustness is simple:
the ratio of explained variance between PC1 and PC2. This
value should be as large as possible and should also be
compared to the distribution of ratios from the randomized
gene signature PCA models. The results for the robustness
figure (Figure 2(b)) indicate the Gender-29 signature has a
PC1/PC2 explained variance ratio of 4.57. This ratio is also
higher than that for the randomized gene-set PCA models.
This indicates that the gender signature clearly describes a
single biological effect in this dataset.

3.5.3. Uniqueness. We use PC1 from a PCA model using all
the genes in the dataset as a representation of the overall
direction of the dataset. The uniqueness value is derived by
calculating the absolute value of the correlation between the
true gene signature PCA scores versus the PCA scores of the
all-gene model. This is then compared to the distribution
of the absolute value correlation between the random gene
signature PCA models and the PCA model using all genes.
This plot indicates if there is a major variability in the dataset
(most random models highly correlated with PCA scores
from the all-gene model). This could be a potential problem
if this major variability is also correlated to outcome, as was
shown by Venet et al. [2].

The uniqueness figure (Figure 2(c)) shows that the
Gender-29 signature also differentiates from the general
direction of this dataset.

3.5.4. Transferability. The measurement of transferability is
the correlation between the PCA loadings for the gene
signature versus the reference values. If these are correlated,
it implies that the gene signature describes the same biology
within the dataset that it was intended to. The PCA loadings
are directly related to the importance and directionality of
each variable relative to the principal component [20]. This
is a direct result from the fact that the scores can be seen as
a weighted average of all the variables. The gender signature
also describes the same biology (gender) in this dataset, since
the transferability figure (Figure 2(d)) shows that the same
genes have a positive loading value in both the PCA model
and the reference value, and the same is true for the negative
values.

In conclusion, the gender signature, when applied to the
DC dataset, fulfills all the criteria for being a good signature
and describes the correct biology.

3.6. The Gender Signature Fails to Translate in the Breast
Dataset (Good Signature/Nonrelevant Dataset). Figure 3
shows the results for the Gender-29 signature when applied
to the Breast dataset, which only contains tumor samples
from females. It is clear that this signature does not work
as intended for the Breast dataset. The coherence figure
(Figure 3(a)) shows a lower value of 11.8% explained variance
for PC1, below the random mean of 12.3%. The robustness
ratio (Figure 3(b)) is also worse, at 1.32, compared to 4.57
in the DC dataset. More importantly, the uniqueness plot
(Figure 3(c)) shows that its direction is similar to most of the
randomized gene signature PCA models and is correlated to
the general direction of the dataset. The transferability plot
(Figure 3(d)) confirms that this is not a good dataset for the
Gender-29 signature, since there is no correlation between
the PCA loading and the reference values. All these results
indicate that even if the gender signature is a valid signature, it
does not work as intended on the Breast dataset.These results
also show that random models can be as good as the true
model.

3.7. Tumor versus Normal Signature Validation in Breast
Dataset (Good Signature/Relevant Dataset). To demonstrate
that valid gene signatures exist within the Breast dataset,
a tumor versus normal (TvsN-100) signature, derived in
lung cancer, was applied to the Breast dataset. The results
clearly demonstrate that this is a good signature applied to a
relevant dataset (Figure 4). The coherence is high with values
of 46.7%, clearly higher than any of the 10,000 randomized
gene-set PCA models. The PCA model is also robust with a
PC1/PC2 ratio of 5.28, which is higher than any of the random
gene signature PCA models. The direction of the TvsN-100
signature is also unique, with a correlation coefficient of 𝑟 =
0.036 to the general direction. Finally, the same biology, genes
that differentiate tumor samples from normal samples, is
also present in this dataset, as shown by the transferability.
The results are similar to the results seen for the Gender-29
signature when applied to the DC dataset (Figure 2).

3.8. Noise Injection Demonstrates the Power of PCA-Based
Signatures. To investigate the effect random noise has
on a PCA-based signature, we gradually increased the
number of nonrelevant probesets in the TvsN-100 signa-
ture. The original TvsN-100 signature performed well in
the DC dataset, as seen in Table 1 or in Supplemen-
tary Figure 1, in Supplementary Material available online
at https://doi.org/10.1155/2017/2354564. The new signatures
consisted of 50/50, 25/75, and 10/90 original and unrelated
probesets. As can be seen in Table 1, both the TvsN-50/50
and the TvsN-25/75 signatures exhibit good statistics. This is
also confirmed in the validation plots (Supplementary Fig.
S2–S4). It is not until there are only 10 relevant probesets
and 90 nonrelevant probesets, TvsN-10/90, that the signature
starts to fall apart. This is most visible in the robustness
measure, with a PC1/PC2 ratio of 1.4, and with 19% of the
random PCA models having a better PC1/PC2 ratio. This
is further confirmed by calculating the correlation between
the original TvsN signature and the modified ones. The
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Figure 3: Validation plot for Gender-29 signature applied to Breast dataset. The probesets within the Gender-29 signature are no longer
coherent (a), and the ratio of PC1/PC2 is much lower (b). It is also clear that the signature is no longer unique (c). Finally, the biological
meaning of the probesets has changed in the Breast dataset (d).

correlation to the original TvsN signature is as follows: 𝑟2 =
0.993, 𝑟2 = 0.979, and 𝑟2 = 0.873 for the TvsN-50/50, TvsN-
25/75, and TvsN-10/90, respectively (Supplementary Fig. S5).
It is also noteworthy to see how the explained variance falls
from 58.5% for the original TvsN signature to just 9.4% for
the TvsN-10/90 signature. This is expected, since more and
more noise is added that is not explained by the first PCA
component.

3.9. PCA Signatures Do Not Represent Mixed Signatures
Robustly (Bad Signature/Relevant Dataset). As was seen in
Figure 2 and Supplementary Figure 1, both the Gender-29
and theTvsN-100 signature performedwell in theDCdataset.
When they are merged into the mixed signature, Mix-29/29,
the results are different, as can be seen in Figure 5. The

coherence is still high, with an explained variance of 35.2%,
higher than any of the randomized PCA models. That there
are some problems becomes clear in the robustness plot
(Figure 5(b)), which shows a lower PC1/PC2 ratio (1.55 versus
4.57 and 9.7 for the individual signatures) than before.This is
due to the fact that the mixed signature model is not a one-
component PCA model, but, rather, there are two significant
principal components for this signature in this dataset. This
is confirmed by investigation of the explained variance for
each principal component. The explained variance for the
first five PCA components are (1) 35.5%, (2) 22.7%, (3) 5.4%,
(4) 3.5%, and (5) 2.7%.These numbers indicate that there are
two significant principal components, since there is a large
drop between components 2 and 3, but not between any of the
later components. This is in accordance with the SCREE test
for deciding the number of principal components [1]. That
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Figure 4: Validation plot for TvsN-100 signature applied to Breast dataset. To demonstrate a signature that is valid within the Breast dataset,
the TvsN-100 gene signature was applied. The probesets for the TvsN-100 signature are coherent (a), and the PCA model is robust (b). The
signature is also unique (c) and describes the same biology as in the dataset that it was trained upon (d).

the Mix-29/29 signature is not optimal is further exemplified
in the transferability plot (Figure 5(d)), where there is no
indication that the loadings from the mixed signature PCA
model match the reference values.

The question then arises: what does the mix signature
describe: Gender-29, TvsN-100, or a mix of both of these?
Exploring the correlation between the different PCA models
shows that the first PCA component is the TvsN-100 signa-
ture, 𝑟2 = 0.986, and that the second PCA component is the
Gender-100 signature, 𝑟2 = 0.989. This also implies that, for
this mixed signature, the first component is not a mix of the
two signatures but is, instead, predominately one of them.

3.10. Investigation of the Stability for the Mixed Signature.
When two PCA components have similar explained variance,
this can cause several problems. To demonstrate this, we

made small modifications to the Mix-29/29 signature by
gradually removing TvsN-100 probesets, making the gender
signature more prominent. The explained variance (Supple-
mental Fig. S6–S8) ranges between 28.5% and 35.2% for the
different signatures, with the Mix-29/29 mix model having
the largest explained variance. The robustness ratio is lowest
for theMix-29/19 signature PCAmodel, with a PC1/PC2 ratio
of 1.1.This indicates that the two signatures are almost equally
important for this signature. One can also see a change in
the uniqueness correlation, where the Mix-29/14 signature
differs from the rest: 0.087 compared to 0.331, 0.338, and
0.255. All of these findings are further confirmed in Figure 6,
where the PCA scores for the different signatures are plotted
against each other. The Mix-29/24 signature is describing
the same biology as the original mixed signature, since the
PCA scores show a high correlation (Figure 6(a)). Figure 6(b)
indicates that theMix-29/19 signature is actually amix of both
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Figure 5: Validation plot for Mix-29/29 signature applied to DC dataset. Merging two “good” signatures and applying the resulting signature
to a relevant dataset do not mean that the new signature will be valid. The probesets in the Mix-29/29 signature have a coherent expression
(a), but the ratio of PC1/PC2 (b) is lower than that in the individual signatures. The uniqueness is also slightly worse (c). That the Mix-29/29
model is not working as expected is clearly seen in the transferability plot (d), where the PCA model for the DC dataset is not related to
reference values.

the Gender-29 and the TvsN-100 signature, since it shows
both a correlation with TvsN score and a separation between
the female and male samples. If further TvsN probesets
are removed, the gender signature predominates, as demon-
strated in Figures 6(c) and 6(d). The Mix-29/14 signature is
clearly the same as the gender signature (Figure 6(d)) and no
longer related to theTvsN-100 signature (Figure 6(c)). Figures
6(e) and 6(f) further confirm that the Mix-29/24 signature is
not correlated to the Gender-29 signature (f) and that only
the Mix-29/19 signature is a mix of the two signatures (e).

3.11. Additional Validation on TCGADataset. To further con-
firmour finding, we also repeated the analysis for theGender-
29 and the TvsN-100 signature on a prostate adenocarcinoma
(PRAD) dataset retrieved fromTCGA.The results from these
two signatures are shown in Table 1 and Supplementary

Figures 9-10. It is clear from Table 1 and Supplementary
Figure 9 that the Gender-29 signature does not work for
the PRAD dataset. This is especially clear from the low
PC1/PC2 explained variance ratio of 1.62 and that there is no
correlation to the reference values, 𝑟2 = 0.025. The results
are completely opposite for the TvsN-100 signature, as can be
seen in Table 1 and Supplementary Figure 10. The TvsN-100
signature shows both much higher explained variance and
much higher PC1/PC2 explained variance ratio than any of
the random models. Furthermore, the transferability is high,
with 𝑟2 = 0.904.

4. Conclusions

We have, in this manuscript, described the characteristics of
PCA-based gene-expression signatures. Using the proposed
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Figure 6: Correlation between the PCA scores from different mixed-gene signatures and the Gender-29 and TvsN-100 signature applied to
the DC dataset. Even when five TvsN probesets are removed, the Mix-29/24 model is still correlated with the TvsN-100 signature (a). This
correlation further decreases when more probesets are removed (b), until it is finally gone (c). TheMix-29/14 signature is, instead, correlated
with the Gender-29 signature (d). The Gender-29 signature is less correlated with the Mix-29/19 signature (e) and shows no correlation with
the Mix-29/24 signature (f).
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characteristics, a signature can be validated before survival
analysis or any other type of predictive modeling is done.
It is important to stress the importance of validation of the
signature, independent of the correlation of the signature to
an outcome (e.g., survival), as was clearly shown in Venet
et al. [2]. Too often, statistical significance of the signature
with an outcome is used as the criteria for whether or not
the signature “worked.” This is, of course, not a replacement
for real biological testing that the signature is accurately
predicting what it is intended to. We see this as a set of
minimal requirements that any PCA-based gene signature
must fulfill before moving forward with the signature in a
given dataset.

Using PCA to summarize the expression of several genes
has proven to be useful by others, and we also show, herein,
that it is stable to randomnoise.However, the same properties
of PCA that contribute to this usefulness can also potentially
lead to misinterpretation of the signature, as shown by Venet
et al. [2]. One of the most important findings presented here
is that complex signatures, signatures describing multiple
events, do not work well with PCA. There is always a
temptation to include more genes in a signature, in order
to limit the effects of outlier genes, as well as thinking that
including more biologically relevant genes should result in
a more stable signature. The results presented show quite
the opposite, that when using PCA, a complex signature is
actually less robust. The PCA will describe just one of the
biological events, and which one is represented can change
from dataset to dataset (Figure 6). Only if one has a perfect
balance will there be a mix of the signatures (Figure 6(b)).
This result is not surprising if one considers the properties
of PCA. The first PCA component describes the direction
in the dataset with the largest variation. The second PCA
component is orthogonal to the first one and describes
the second largest direction. If there are multiple biological
events presented in the signature and they are not related
to each other, they will thus end up in individual PCA
components.The first PCA component will generally not be a
combination ofmultiple biological events.The robustness plot
addresses this by looking at the ratio of explained variance
between PC1 and PC2. There are, of course, many ways to
estimate the number of significant principal components,
many reviewed in references [26, 27], but the ratio of PC1/PC2
clearly indicates if the first PCA component is describing
more explained variance than the second one.

Another important finding is that it is necessary to verify
that the gene signature describes the same biology, when
applied to new datasets, as it was derived for: in other
words, that is it transferable. In many cases, the signature
is derived from cell line experiments where something has
been perturbed. The genes that show a significant change
between the control and perturbed cell lines are then used
as a signature. One important note is that, in a cell line
system, there is much less variation compared to what is
seen in, for example, tumor data. In the cell line experiment,
everything is controlled and there is only one cell type. On the
other hand, in tumor data, there will be much more variation
from different cell types, intracellular signaling, and immune
response, to name a few. A gene selected from the cell line

experiment may have a very distinct expression pattern, but,
in a tumor, the expression may be dependent on many more
biological effects not present in the cell line experiment. This
was also shown in the paper by Venet et al. [2], where many
of the tested signatures were correlated to cell proliferation,
even if theywere derived for describing other types of biology.
It has been shown, especially in breast tumors, that one of
the strongest signals in tumor expression data is proliferation
[2, 28, 29]. It is then easy to see that if a signature describes
a weak signal, or is not distinctive, the PCA model will
detect the proliferation effect in that signature as the first
PCA component. This can be easily spotted by comparing
the expression pattern in the cell line experiments with those
seen in the tumor data, hence the need for the transferability
plot. If there is no correlation seen in this plot, it indicates
that when applied to a dataset, it does not work as expected.
This could be due to several reasons, such as that it may be
a good signature, but it was applied to a nonrelevant dataset,
for example, the gender signature on the Breast dataset. Using
the reference values also solves the problemwith sign-flipping
between PCA models.

The uniqueness plot is another indicator of if the PCA-
based gene signature describes the general direction in the
dataset. This is an issue if the same general direction is also
predictive of outcome, as it was in the case presented by
Venet et al. [2]. They showed that any random signature was
as good as most of the real signatures in survival analysis.
This does not mean that the signature is not working, but
one cannot claim that the biology it represents is predictive,
since any random signature would also be as predictive. This
measure of uniqueness can be extended to include a set
of validated and distinct gene-sets describing major effects
seen in tumor biology, such as proliferation, epithelial-to-
mesenchymal transition (EMT), or immune response. With
such an analysis, it would be possible to see how the new
gene signature compares to already available and validated
signatures.

Lastly, the coherence plot addresses the fact that the genes
within a gene signature should be expressed in a coherent
way when applied to a dataset. In the derivation of a gene
signature, this is commonly one of the criteria used to select
the genes for the signature. Examples include selected genes
that are correlated to EC50 values from the NCI-60 data or
genes that are coherently expressed across several different
conditions. If this is not true, when applied to another dataset,
this is manifested by a low and similar explained variance
compared to the randomized gene signature PCA models.
A low value of the explained variance can also indicate that
there are many nonrelevant genes in the signature.

We also feel that the use of a large set of randomized gene
signatures enhances the results. Many of the PCA statistics
used here, like explained variance, are dependent on many
factors, including sample size, number of genes used, and
the general behavior of the dataset. By comparing the results
from the true gene signature PCA model to the results from
the randomized gene signature PCA models, this problem is
minimized. It also directly addressed the question if the true
gene signature is better than any random signature. It is also
true that a randommodel can be as good as the true signature,
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seen in Figure 3 in this article and also in the study be Venet
et al. [2].

The proposed methodologies do not remove the need
for the usual best practices when it comes to using PCA to
analyze data. Use score plots to find outliers, groupings, and
other trends in the data that are not from biological variation,
such as RNA quality and other types of batch effects. Use
loading plots to see if all probesets are important for the first
component, or if only some are important for later compo-
nents. Furthermore, validation of survival analysis 𝑝 values
using randomized random models is also recommended, as
recently pointed out by Brulard and Chibon [30] or Venet et
al. [2].
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