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ABSTRACT: Odor is analyzed on the human olfactometry systems in
various steps. The mapping from chemical structures to olfactory
perceptions of smell is an extremely challenging task. Scientists have
been unable to find a measure to distinguish the perceptual similarity
between odorants. In this study, we report regression analysis and
visualization based on the odorant chemical space. We discuss the relation
between the odor descriptors and their structural diversity for odorants
groups associated with each odor descriptor. We studied the influence of
structural diversity on the odor descriptor predictability. The results
suggest that the diversity of molecular structures, which is associated with
the same odor descriptor, is related to the resolutional confusion with the
odor descriptor.

1. INTRODUCTION
Odor is analyzed on the human olfactometry systems in
various steps. The total system includes the olfactory receptor
neurons in the olfactory epithelium, the glomeruli in the
olfactory bulb, the peripheral olfactory system of the brain,
and/or the central olfactory system of the brain. Odor shows
numerical and/or non-numerical representation in these steps,
respectively.1 In this study, we propose the presence of a vector
space that aids in an understanding of the whole difficult
mechanism in the human olfaction.
Since odorant molecules encode the olfactory percept,

several researchers have focused on mapping from molecular
structures to odor perception in the current decade.2−8 In
those studies, the analysis is based on the “chemical space” of
odorants. The concept of chemical space has historically been
applied in a wide range of fields, such as drug discovery and
functional molecular design, owing to its multiple potential
applications. The chemical space is usually defined as the set of
all of the possible organic compounds. Of late, the mapping
from chemical structures to olfactory perception has been
attracting considerable attention. However, up to today,
scientists have been unable to develop a physical measure;
there is not a straightforward way to link odorants and
descriptors. Human olfactory intervention is an essential issue.
The participation of the human sense, which is not possible to
replace by a machine, is still indispensable. The relationship
between the chemistry and perception of odors remains
unclear; even a clue is unclear to merely digitize the extent of
perceptual similarity between odorants.
For exploring the chemical space, it is self-evident that the

structural diversity or variety of chemicals must be of

fundamental importance. However, the “diversity” is still, to
some extent, a subjective concept because of the difficulty of
giving a numerical measure. There are four main strategies to
approach the structural diversity that have been consistently
identified in the literature: (i) appendage diversity (or
building-block diversity), (ii) functional group diversity, (iii)
stereochemical diversity, and (iv) skeletal (or frameworks/
scaffolds) diversity.9−11 Since the diversity is still difficult to
quantify, we consider the similarity. We adopted a conven-
tional approach of Tanimoto similarity scores as an index for
structural diversity in the current study.
In this paper, we investigate the reason why mapping from

chemical structures to olfactory perceptions of smell is an
extremely challenging task. We propose a clue to get into an
effective approach. We believe that the classification of the
difficulty provides an aid to the design of new odorants. As the
first step of the approach to this subject, we will present
regression analysis and mapping based on the odorant
chemical space. The “explanatory” odor-sensing space is a
fingerprint representation of each chemical space, and the
“target” odor-sensing space is odor descriptors. We will discuss
the relation between the odor descriptor and each structural
diversity in their chemical spaces, indicating why and how
there is difficulty in characterizing and digitizing the odor.
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2. MATERIALS AND METHODS
2.1. Odorants and Odor Descriptors in the Flavornet

Database. The Flavornet database is a compilation of aroma
compounds found in the human odor space.12 At least 10,000
odorants invoke a huge number of human olfactory
perceptions. In this database, odorants are arranged by
chromatographic and odor descriptors. The data of the current
study are collected from articles published since 1984 using
GCO to detect odorants in natural products. In Table 1, we
show odor descriptors and the number of odorants
(molecules) extracted from the Flavornet database. The rest
of the database is in the Supporting Information (S1).
Notice that the database has generally an unavoidable

difficulty between odorants and odor descriptions: the main
limitation in establishing the structure−odor relation is that the
descriptor labeling (the word for descriptor) is vague and
ambiguous in nature because the descriptors consist of natural
languages. Kaeppler reported that the word for descriptor can
also originate from contextual cues such as the color or verbal
label.13 When it comes to descriptors for taste, they are derived
from the words indicating the taste itself. To the contrary, the
descriptors for smell are derived from natural language, which
requests one step of transformation, odor of sweet, odor of
green, etc. The situation is especially serious when odorant
molecules are collected from different sources.6

2.2. Fingerprints. The molecular fingerprint is a method
to represent a molecule as a sequence of bits (on or off); it
encodes features of the molecular structure. The molecular
fingerprints are representations of chemical structures in the
chemo-informatics database, invented in the early days. It is
used for search and analysis, such as similarity searching,
clustering, and classification. The fingerprints are used as a

measure of “molecular distance” in substructure screening or as
inputs for machine learning functions.
In this study, we tried four fingerprints: MACCS keys,

ECFPs, Avalon fingerprints, and RD-kit fingerprints. The
MACCS keys fingerprint has 166 bits structural key descriptors
(a vector with 166 elements) in which each bit is associated
with a SMARTS pattern.14,15 Extended-connectivity finger-
prints (ECFPs) are circular topological fingerprints designed
for various wide molecular studies and structure−activity
modeling.16,17 The ECFP encodes substructure patterns from
molecules on to the bit string of length 1024 (length can be
varied). The Avalon fingerprint is a hashed fingerprint
enumerating paths and feature classes. Similar to Daylight
fingerprints, the Avalon fingerprint uses a fingerprint generator
that enumerates certain paths and feature classes of the
molecular graph. The RDKit fingerprint18 is a hashed
substructure/path fingerprint similar to the Daylight finger-
prints.19

We carried out the analysis by these four fingerprints, and
the essential arguments are qualitatively conserved; thus, we
explain mainly the results developed by RDkit, and the results
by others are also shown in Supporting Information (S1). For
the similarity measures of pairs in each chemical space,
Tanimoto similarity scores are used for all odor descriptors.
We adopt this as an index for molecular diversity, to be
discussed later.
2.3. Mapping. For comparison and exploration of the

internal relations in the chemical space, it is necessary to map
the complicated higher-order vector space of various finger-
prints onto a low-dimensional space. We adopt the principal
component analysis (PCA), which is a typical mapping widely
used for exploratory data analysis and to make predictive
models.20 We plotted the first two principal components.

Table 1. Odor Descriptors in the Flavornet Database for the Current Study

Figure 1. Odor informatization of the human olfactometry system.
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Then, kernel density estimation (KDE)20 is applied to estimate
the density of odor descriptors on the plot space. The contour
lines show their obtained KDE. Dots are shown by the vertical
and horizontal axes of the first two principal components.
Results are shown later in Section 3.2.
2.4. Regression Model and Its Evaluation. We

performed logistic regression analysis between the odorant
molecules and the descriptors. The regression model was
evaluated by k-fold cross-validation [see Supporting Informa-
tion (S5)],21 and then the average of the values computed in
the loop was reported. The grid search was used for optimizing
hyperparameters of this regression model using the first k − 1
of the fold as training data. The model is trained using the first
k − 1 of folds as training data, and then the resulting model is
validated on the remaining part of the data. A receiver
operating characteristic (ROC) curve illustrates the diagnostic
ability of a binary classifier system as its discrimination
threshold is varied.
For example, we show the model evaluation of the odor

descriptor “fruit”. The 69 “fruit” chemicals were found in the
Flavornet database. Among the 69 molecules, we have shown
representative 20 molecules in Figure 2, and the rest of the 49
chemicals are in Supporting Information (S1). By the
regression model, the resultant ROC curve of evaluation is
shown in Figure 3 [area under curve (AUC) of ROC curve:
0.70, by the RDKit fingerprint]. We perform the process for all
odor descriptors and for four fingerprints (Supporting
Information (S1)).
As described above, the predictability was obtained by

iterative k-fold cross-validation for the regression model for
each odor descriptor.

3. RESULTS AND DISCUSSION
This study reports the regression analysis, in which the
explanatory variables are fingerprint representations of odor-
ants and the target variables are binary class labels
corresponding to one odor descriptor. The objective of the
regression model is to examine whether one odorant might
have one odor descriptor. The descriptors are adopted from
natural languages since there are not enough words to describe
the smell directly. Therefore, natural languages are borrowed.
It is not always evident that the borrowed language is
appropriate to the smell of interest. Thus, odor descriptors in
the Flavornet database are also considered to be mainly
adopted from nonolfactive languages.

The frequency (number of odorant molecules) of one odor
descriptor is shown in Table 1. It is noteworthy that the
relation between frequency and the odor descriptors is not
homogeneous. That is, some descriptors have many odorant
molecules, and others have only a few molecules. There are
cases in which one descriptor has only one odorant. The
examples are shown in Supporting Information (S1). The
descriptors with only one odorant are somehow unpopular and
are the subject of future study. In the current study, we define
the molecules having the same odor descriptor as the
“odorants group”. We investigate the relation of the descriptor
to the odorants group.
Because there is not a unique definition to transfer the

structural properties into an indexing number. Their similarity
and diversity are only partially evaluated, and it is unclear how
much they differ by number. There are some metrics to
calculate the distance among molecular structures, including
machine learning metrics such as the GNN-based22 and the
latest.23,24 Tanimoto similarity scores show less discriminatory
power for the chemical space than the latest metrics. However,
it has been widely used and tested for a long time. We applied
it for the pairwise group among the same odor descriptor as an
index for structural diversity.

Figure 2. Molecules of the odor descriptor “fruit”.

Figure 3. ROC curve for regression for the target odor descriptor:
“fruit”.
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When the value is 1.0, it is the case that the similarity is very
close. The average of similarity scores of each odorants group
is shown in Table 2. The color in the matrix of the left side,

shown with a gradation from green to white, represents the
average of Tanimoto similarity scores. The lower scores are
shown with darker colors (low similarity), whereas the higher
scores are shown with lighter colors (high similarity). The
results by other three fingerprints are in Supporting
Information (S1). The arguments described above are
consistent.
3.1. Cross-Validation Result of the Regression Model.

In Figure 3, we show the ROC curve of the descriptor “fruit”;
for example, the other ROC curves are in the Supporting
Information (S1). In Table 2, we show the heat map of the
AUC variance of the ROC metric obtained by iterative k-fold
cross-validation of the regression model for each odor
descriptor. In order to avoid arbitrariness depending on a
fingerprint, we carried out regression model analyses by four
fingerprints. We show the results by the other three
fingerprints in Supporting Information (S1). The color in
the matrix of the middle position, shown with a gradation from
yellow to white, represents the mean AUC in “training”, while
the color in the matrix of the right side, shown with a gradation
from red to white, represents the mean AUC in “validation”.
The lower AUC values are shown with darker colors (“low
predictability”), whereas the higher AUC values are shown
with lighter colors (“high predictability”).
We plotted the results of the AUCs of each odorants group

as shown in Figure 4. The AUC value is in vertical axes, and
the average of Tanimoto similarity scores, an index of
structural diversity in each odorants group, is in horizontal
axes. The logistic regression and the similarity scores for each
odor descriptor were obtained by the sklearn package and the
RDKit package, respectively. The other plots of AUCs based
on ECFPs, MACCS keys, and Avalon fingerprints are shown in
Supporting Information (S1).
There is a broad correlation between the AUC and

structural diversity. That is, the odorants groups with a large
average of Tanimoto similarity scores have narrow structural
diversity. They have relatively high AUC values. It indicates
that the prediction can be effective when structural diversity is
narrow. It also indicates that structural diversity influences the
predictability. Nevertheless, there are four or three outlier
points (SU and CA, upper left of Figure 4) to be discussed
later.

Table 2. AUC Values and Similarity Scores for Each Odor
Descriptor Obtained by the RDKit Fingerprint; the
Odorants Groups Marked as *1 and *2 Are the Examples of
“High Predictability” and “Low Predictability”, Respectively

Figure 4. Correlation between AUC values and the average of Tanimoto similarity scores (RDKit fingerprint).
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In an attempt to clarify the relation thus obtained between
structural diversity and the odor descriptor associated with the
odorants group, we obtained the histograms of the Tanimoto
similarity score. In fact, we calculated the pairwise values across
all odorants groups. They are shown in Figures 5A, 6A, and 7A.
They are the results of Tanimoto similarity scores by the
RDKit fingerprint; the results by other fingerprints are in

Supporting Information (S1). The similarity values (Tanimoto
similarity scores) are in the horizontal axes and the frequency
(histogram of how many pairs are included) is in the vertical
axes. We will discuss the results below.
3.2. Correlation between Predictability and Struc-

tural Diversity. The descriptors “rose”, “cucumber”, and
“cabbage” are the examples of “high predictability”. These

Figure 5. Structural diversity of the “high predictability odorants group”; (A) histogram of pairwise Tanimoto similarity scores in each odorants
group; (B) mapping of principal component analyses based on RDKit fingerprints; and (C) molecules in the “high predictability odorants group”
(i) “rose”, (ii) “cucumber”, and (iii) “cabbage”.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02268
ACS Omega 2024, 9, 25054−25062

25058

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02268/suppl_file/ao4c02268_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02268?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02268?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02268?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02268?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02268?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


odorants groups contain a relatively small number of
chemicals: 15, 8, and 10, respectively. As remarked by “*1″
in Table 2, their AUCs show relatively high values: 0.983,
0.958, and 0.997, respectively. As shown in Figure 5A and

Table 2 (average of Tanimoto scores), the average of pairwise
similarity values are relatively high: 0.321, 0.409, and 0.153,
respectively, among these three odorants groups, meaning that
these three odorants groups show narrow structural diversity

Figure 6. Structural diversity of the “low predictability odorants group”; (A) histogram of pairwise Tanimoto similarity scores in each odorants
group and (B) mapping of principal component analyses based on RDKit fingerprints. (C) Molecules in the “low predictability odorants group” (i)
“oil”, (ii) “must”, and (iii) “fresh”.
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and consist of similar molecular structures. In Figure 5B, we
plot the results of PCA mapping among the whole chemical
space (shown in gray). It also shows that these three odorants
groups have narrow structural diversity. In fact, they have
relatively common building-blocks, functional groups, and/or
skeletal molecular features, as shown in the molecules in Figure
5C. Especially “alkane” is an obvious example, where all
molecules are evidently so similar (note the 13th row with
“*1″ in Table 2, validation 1.00).
Although these three odor descriptors are used neither

frequently nor popularly, their predictions worked relatively
well. As shown in Table 2, for these descriptors, the regression
shows a high potential for predictability (high validation
values).
As shown in Figure 4, “cabbage (CA)” and “sulfur (SU)” are

the outliers; these odorants groups have relatively wide
structural diversity but still show “high predictability”. Figure
5A also shows that “cabbage” has a relatively wider structural
diversity compared to that of “cucumber” or “rose”. The most
probable explanation may be due to their chemical property;
that is, the molecular structures of “cabbage” have a unique
functional group (thioether, sulfide, thiocyanate, and/or
thiophen-ring), as shown in the molecules of (iii) of Figure
5C. Thus, it shows a high AUC in odor descriptor prediction,
as shown in Table 2. It also shows a narrow variance, as shown
in Figure 5B. The “sulfur (SU)” is also an outlier. They
obviously have the functional groups containing sulfur. The
predictability is elevated, in spite of the large difference in their
skeletal structure; most probably, this factor (the influence of
atomic sulfur) is superior to the structural factor.
The descriptors “oil”, “must”, and “fresh” are the examples of

“low predictability”. These odorants groups contain a relatively
small number of chemicals: 16, 17, and 15, respectively. As
remarked in Table 2 by “*2”, their AUCs in evaluation are

small: 0.694, 0.429, and 0.691, respectively. Because the
histogram bars in Figure 6A are left-skewed in some way, the
pairwise similarity values are low, indicating a wide structural
diversity in these odorants groups. Figure 6B shows the wide
structural diversity of these odorants groups throughout the
entire Flavornet chemical space. It is noteworthy that these
odorants might have different building-blocks, functional
groups, and/or skeletal molecular features, as shown in Figure
6C.
The result of regression analysis for these three “low

predictability odorants groups” is potentially multimodal
regression. These three odor descriptors are used in the
odorant chemical space neither frequently nor popularly. Thus,
it is possible to understand the difficulty to be predicted.
We now discuss the descriptor and predictability relation.

The descriptors “sweet”, “green”, and “fruit” are examples of
the “odorants group with a large number of molecules”; they
contain a relatively large number of chemicals in the Flavornet
database.
As shown in Table 2, for “sweet”, “green”, and “fruit”, we

found that the AUCs in training and in evaluation data have
low and relatively medium values. Figure 7A shows that their
pairwise similarity values in each odorants group are relatively
low. Figure 7B also shows that these three odorants groups
have wide structural diversity among the whole Flavornet
chemical space. It suggests that these odorants groups might
have relatively different building-blocks, functional groups,
and/or skeletal molecular features.
When it comes to “the odorants group with a large number

of molecules”, the low AUC reflects the vagueness of these
odor descriptors in regression analysis. These odor descriptors
seemed to be frequently used for the odorant chemical space in
human culture (natural language) in comparison with other
descriptors. As a matter of fact, the descriptions cover a wide

Figure 7. Structural diversity of “the odorants group with a large number of molecules”; (A) histogram of pairwise Tanimoto similarity scores in
each odorants group and (B) mapping of principal component analyses based on RDKit fingerprints.
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range of meanings in natural language, and these odorants
groups also contain wide structural diversity. These odorants
groups have a relatively large number of chemicals, and as a
result, the AUC turns out to be relatively small or medium (see
also Figures 2 and 3 for the odor descriptor “fruit”).
3.3. Additional Verification by Arctander and

Goodscents. The human olfaction community has put
considerable effort into making odorant-linked data sets such
as Flavornet,12 Arctander,25 Goodscents,26 and many more. In
addition to the Flavornet that we mentioned now, we also
carried out the analysis of the same regression study on
Arctander, which contains 2751 molecules, and Goodscents,
which contain 4565 molecules. The argument we obtained
from these two data sets is consistent with the results that we
have presented so far. The details and the discussion are shown
in Supporting Information (S2−S4).
3.4. Resolution of Descriptors. In this study, we

examined whether it is possible to clearly link the information
space of odor descriptors with molecular structures. Previous
researchers tried vector representations for each odorant and
applied them to various regressions to solve the odor type
prediction problem. Some related research studies are shown
in Supporting Information (S6). The methodological accuracy
of some modern models was reported by Gerkin; their AUC
values were high compared to those of our simple regression in
this study.27 However, they faced other problems. Some
researchers reported that some odorants groups have large
structural diversity in them, which is sometime called “scaffold
hopping”.28 Some researches introduced various methods and
attempted to establish molecular structure-based descriptors.
They have so far concluded that the prediction is very difficult
due to the nature of the descriptors. Other research studies
concluded that some odor descriptors are hard to predict due
to large structural diversity within one odorants
group.2,4−8,27,29,30 This is a regression problem of two
information spaces: the target variables are odor descriptors,
whereas the explanatory variables are molecular structures. The
predictability (accuracy) reflects the properties of two
information spaces: complexity in odor descriptors and
diversity in molecular structures. We have shown that the
predictability of odor descriptors depends on the diversity of
molecular structures within each odorants group.
The odor descriptors might have ambiguity. It might also

have a kind of multimodality. Some researchers reported that
odor descriptors have a vector representation based on NLP
studies such as word2vec.31−33 Kowalewski has also previously
noted them in his paper.34

Is it possible to visualize and quantify the resolution of odor
descriptors? Iatropoulos et al. introduce two new metrics: the
olfactory association index (OAI, how strongly a word is
associated with olfaction) and the olfactory specificity index
(OSI, how specific a word is in its description of odors).35

Ravia et al. introduced “olfactory metamers�pairs of non-
overlapping molecular compositions that generated identical
odor percepts”.36 Since both reports provided a degree of
perceptual similarity, their concepts may be close to each
other. The OSI and OAI are based on a text corpus study; on
the other hand, “olfactory metamer” is based on a
psychological experiment. They might be related to the
resolution in the odor descriptors.
3.5. Hierarchical Definition of the Odor-Sensing

Space. We previously defined the “odor-sensing space”.1 By
using this definition, there are various “odor-sensing spaces”

corresponding to each step in the olfactory system (Figure 1).
In this study, we discussed a regression from one step in the
chemical space to another step in the odor descriptor space.
Thus, we faced difficulties with complications in the odor
descriptor space. Therefore, the viewpoint of hierarchical odor-
sensing space provides a clue.
The odor descriptors consist of natural language. Therefore,

it is closely related to the odor-sensing space in the human
brain. We can make further progress by considering the
informatization of odors as a hierarchical process in the living
body.
In parallel, the next subject to be carried out is an

investigation of variable methods to extract the properties of
molecules other than fingerprints, such as quantum chemical
properties and vibrational modes. A molecular study using
these approaches is now ongoing.

4. CONCLUSIONS
In this study, we report regression analysis and mapping based
on the odorant chemical space. We examined whether it is
possible to clearly link the information space of odor
descriptors with molecular structures. The strong influence is
traced between structural diversity and the predictability of the
odor descriptor. We carried out the analysis by four
fingerprints; the essential arguments are qualitatively conserved
among the four fingerprints. In this investigation, we
encountered difficulties related to the complexity included in
the odor descriptor. The viewpoint of the hierarchical
definition in the odor-sensing space will allow for further
improvement in odor informatization.
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