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The study aimed to determine the impact of drop size on tear film pharmacokinetics

and assess important physiological parameters associated with ocular drug delivery

in dogs. Two separate experiments were conducted in eight healthy Beagle dogs: (i)

Instillation of one drop (35 µl) or two drops (70 µl) of 1% fluorescein solution in each

eye followed by tear collections with capillary tubes from 0 to 180min; (ii) Instillation of

10 to 100 µl of 0.1% fluorescein in each eye followed by external photography with blue

excitation filter (to capture periocular spillage of fluorescein) and tear collections from 1 to

20min (to capture tear turnover rate; TTR). Fluorescein concentrations were measured

in tear samples with a fluorophotometer. The TTR was estimated based upon non-linear

mixed-effects analysis of fluorescein decay curves. Tear film pharmacokinetics were not

superior with instillation of two drops vs. one drop based on tear film concentrations,

residual tear fluorescence, and area under the fluorescein-time curves (P≥ 0.163). Reflex

TTR varied from 20.2 to 30.5%/min and did not differ significantly (P = 0.935) among

volumes instilled (10–100 µl). The volumetric capacity of the canine palpebral fissure

(31.3 ± 8.9 µl) was positively correlated with the palpebral fissure length (P = 0.023).

Excess solution was spilled over the periocular skin in a volume-dependent manner,

predominantly in the lower eyelid, medial canthus and lateral canthus. In sum, a single

drop is sufficient for topical administration in dogs. Any excess is lost predominantly by

spillage over the periocular skin as well as accelerated nasolacrimal drainage.

Keywords: tear film, drainage, canine, tear flow, fluorophotometry, eye drop, drug delivery

INTRODUCTION

Topical administration is the route of choice for treating diseases that affect the anterior segment
of the eye (1, 2). This route is simple, convenient, non-invasive, and allows for the use of relatively
high drug concentrations at the target tissue while minimizing systemic exposure (1, 2). One of the
main challenges associated with topical administration, however, remains the poor bioavailability of
therapeutic drugs to the inner tissues of the eye given rapid precorneal loss from reflex blinking and
efficient nasolacrimal drainage (3–5). Optimization of eyedrop delivery can enhance therapeutic
benefits for the patient (2, 6), regardless of the underlying pathology (e.g., dry eye, infectious
keratitis, glaucoma), yet little consensus exists on fundamental concepts such as the number of
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eyedrops to apply. The label of ophthalmic products often
recommends to “apply one to two drops” (e.g., Optixcare R©,
Lotemax R©), while diverse publications in veterinary and human
ophthalmology describe the use of either “1 drop” (7, 8), “1 to 2
drops” (9, 10), or “2 drops” (11, 12).

The volume of solution instilled through topical
administration is known to influence the precorneal residence
time, a key parameter in ocular pharmacology (5, 13). A
prolonged contact time between the solution and the ocular
surface is often desired, as it enhances drug bioavailability and
permits longer intervals between instillations (6). In humans,
best practices for ocular delivery often recommend a single drop
of commercial preparations (∼35 µl) per dosing session (2, 5, 6),
as the maximum volume that the human palpebral fissure can
hold without overflowing is estimated at 25–30 µl (1, 14). Any
excess is rapidly lost via nasolacrimal drainage and spillage over
the eyelashes and periocular skin (6, 15); therefore, a second
drop does not provide any therapeutic advantage in humans
and may in fact be counterproductive by increasing systemic
absorption and the risk of associated adverse effects. In rabbits,
a single drop is also sufficient as the lacrimal drainage rate is
proportional to the volume of solution instilled (up to 50 µl),
hence tear film drug concentrations decrease less rapidly with
lower instilled volumes (13, 16). In fact, the smaller the instilled
volume, the greater the fraction of applied dose that is absorbed
inside the rabbit’s eye (13, 16). Similar findings may be true in
dogs, albeit direct extrapolation between species is not possible
given important differences in ocular anatomy and physiology.
In particular, the canine tear volume (65.3 µl) (17) is nearly
9-fold larger than humans (7.0 µl) (14) and rabbits (7.5 µl) (13),
while the canine tear turnover rate is comparable to humans
(12.2%/min vs. 10–20%/min, respectively) (17, 18) but faster
than rabbits (7.1%/min) (13).

The primary objective of this study was to determine the
influence of volume instilled via topical administration (i.e., one
vs. two drops) on tear film kinetics of fluorescein in dogs. Given
the aforementioned species differences in tear film dynamics, we
originally hypothesized that the kinetic profile would be superior
following instillation of two drops in canine eyes, a hypothesis
that was proven to be wrong. Hence, to explain why a single
eyedrop is deemed sufficient in dogs, a secondary objective was to
determine the maximal volume that the canine palpebral fissure
can hold, as well as the drainage rate relative to diverse volumes
(10–100 µl) instilled onto the canine ocular surface. The present
work focuses on canine-specific ocular physiology, providing
valuable information to veterinary practitioners, pet owners, and
scientists working with dogs as a translational animal model for
ocular surface diseases.

MATERIALS AND METHODS

Animals
Eight Beagle dogs (four neutered male, four spayed female) were
included in the study, all confirmed to be healthy based on
physical and ophthalmic examinations performed by a board-
certified veterinary ophthalmologist (LS), including Schirmer
tear test-1 (Eye Care Product Manufacturing, LLC, Tucson, AZ,

USA), rebound tonometry (TonoVet, Icare Finland Oy, Espoo,
Finland), slit-lamp biomicroscopy (SL-17; Kowa Company, Ltd.,
Tokyo, Japan), and indirect ophthalmoscopy (Keeler Vantage;
Keeler Instruments, Inc., Broomall, PA, USA). All dogs were 3.0–
3.5 years old and weighed 7.5–10 kg. The study was approved
by the Institutional Animal Care and Use Committee of Iowa
State University (IACUC #18-398) and was conducted in
accordance with the Association for Research in Vision and
Ophthalmology statement for the use of animals in ophthalmic
and vision research.

Tear Film Fluorescein Following Instillation
of One vs. Two Drops
A 1% fluorescein concentration was obtained by mixing 10%
fluorescein solution (Akorn Inc., Lake Forest, IL, USA) with
1.4% polyvinyl alcohol lubricating eye drops (Artificial Tears,
Rugby, Rockville Center, NY, USA). On Day 1, one eye in
each dog was randomly selected (Excel software, Microsoft
Corp., Redmond, WA, USA) to receive 35 µl (one drop) of 1%
fluorescein solution while the contralateral eye received 70 µl
(two drops) of the same solution, using a pipette (Eppendorf
Reference R© 2, 10–100 µl) for accuracy. On Day 2 (24 h
later), the order of eyes was reversed and the experiment was
repeated. Of note, the volume chosen for a single drop (35 µl)
approximates the average drop size of commercial ophthalmic
preparations used in veterinary and human medicine (35–39
µl) (19, 20) and is routinely described in previous scientific
publications (4, 8, 21, 22). Following topical instillation, tear
fluid was collected in each eye with a 2-µl capillary glass
tube (Drummond Scientific Co., Broomhall, PA, USA) at the
following time points: 0min (i.e., immediately after instillation
and spontaneous blinking), 1, 5, 10, 20, 30, 40, 50, 60, 90, 120,
and 180min. The capillary tube was placed against the inferior
tear lake for ≤2 s, a duration sufficient to collect tear fluid by
capillary action while minimizing the risk of inadvertent ocular
irritation and reflex tearing. Given the rapid collection time
(<2 s), the lack of blinking during collection (eyelids manually
opened), and the relatively large tear volume in dogs (∼65 µl)
(17), the authors believe that it is unlikely for reflex tearing,
if any, to affect tear fluorescein concentrations in a significant
manner. The length of fluid contained within each capillary
tube was measured to the nearest millimeter using a ruler, a
value used to calculate the volume of fluid collected (as 32mm
equates to 2 µl). The collected fluid was then expelled into
a 2-ml Eppendorf tube that contained 500 µl of phosphate
buffered saline (Gibco R© PBS, pH 7.2, Thermo Fisher Scientific,
Rockford, IL, USA), vortexed for 30 s, and transferred to a cuvette
for analysis. Fluorescein concentrations were measured (in
ng/ml) with a computerized scanning ocular fluorophotometer
(FluorotronMasterTM, Coherent Radiation, Palo Alto, CA, USA)
as previously described (17), with the exception that tear fluid was
diluted with 0.5ml of PBS herein (instead of 2ml) to improve the
sensitivity of fluorescein detection (data not shown); the cuvette
was slightly raised in the device’s cuvette holder to account for the
lower total volume.
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Volumetric Capacity of the Palpebral
Fissure
A 0.1% fluorescein concentration was obtained by mixing 10%
fluorescein solution with 1.4% polyvinyl alcohol lubricating
eye drops. Each eye received the following volumes of 0.1%
fluorescein solution via pipette administration, the order being
selected at random (Excel software) in each dog: 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100 µl. To minimize any carry-over
effect from one session to another, the eyes and periocular skin
were thoroughly rinsed with eye wash (Ocusoft R© Eye Wash,
OcuSOFT Inc., Richmond, TX, USA) at completion of each
experiment, and a 1-h break was provided between repeated
instillations in each eye to allow ample time for the physiological
tear film dynamics to be restored (17). At each session, within
10 s of topical instillation and spontaneous blinking, an external
photograph was taken with a Nikon D90 camera to capture
each eye and associated periocular skin. To enhance detection
of fluorescence, the camera was equipped with a screw-on Tiffen
Wratten 15 deep yellow filter (TiffenManufacturing, Hauppauge,
NY, USA) as well as an external flash (Nikon Speedlight SB-
700) covered with a blue excitation filter (SJ-4 blue color). Of
note, this photographic method better highlighted 0.1% than 1%
fluorescein, hence the choice of 0.1% solution for this experiment.

Tear Turnover Rate at Various Instilled
Volumes
In the experiment described above, following external
photography (taken ∼10 s after 0.1% fluorescein instillation),
tear fluid was collected with 2-µl capillary glass tubes at the
following time points in each eye: 1, 2, 4, 6, 10, 15, and 20min
(17). Tear film fluorescein concentrations were measured in all
samples (see above for details) and recorded in ng/ml.

Data Analysis
Fluorophotometry
First, a fluorescein calibration curve was established by analyzing
a dilution series of known fluorescein concentrations in triplicate
(1–10,000 ng/ml). Fluorescein concentrations in tear samples
were corrected based on the resulting calibration equation (y
= 19.3 + 0.9 x – 3E-05 x2) (17). Fluorescein data of each
animal were inputted to Monolix R© version 2019R1 (Lixoft,
Orsay, France), and tear turnover rate (TTR) was derived from
a non-linear mixed effects model as previously described (17),
assessing both reflex (rTTR) and basal (bTTR) tear turnover
rates. Selected data points were censored inMonolix when a peak
of fluorescence could not be identified on the fluorophotometer
reading, or if the tear fluorescein concentration did not make
physiologic sense (e.g., higher fluorescein at 2min compared with
baseline) (17). Overall, 11/640 (1.7%) of all data points were
left censored.

External Photography
The volumetric capacity of the palpebral fissure was calculated
in each eye as the average between the lowest instilled volume
that led to periocular spillage of fluorescein solution and the
highest instilled volume for which all fluorescence remained on
the ocular surface. For instance, a volumetric capacity of 35 µl

was calculated for an eye that had spillage first noted at 40 µl of
instilled solution, but no spillage was noted at 30 µl (Figure 1).
When present, the location of spillage was recorded (i.e., lower
eyelid, upper eyelid, medial canthus, lateral canthus), and the
area of fluorescence that extended beyond the eyelids margins
was delineated with the “freehand selection” tool in ImageJ 1.52a
software (National Institutes of Health, Bethesda,MD, USA). The
area of fluorescein spillage was recorded in mm2 (Figure 2) using
a length bar specific to each eye (i.e., palpebral fissure length
measured in mm with calipers).

Statistical Analysis
Normality of data was assessed with the Shapiro–Wilk test. A
mixed model for repeated measures (MMRM) was fitted to the
data using the R software version 3.6.0. In the model, fluorescein
concentration was the response variable; the group (one or
two drops), time (0–180min), and group-by-time interaction
were treated as fixed effects, and the animal and animal-by-
group interaction were treated as random effects, using animal
as block. After the model was fit, the fixed effects were tested,
and comparisons between one vs. two drops were made for
the following outcomes: (i) fluorescein concentration in tears
at each time point, and (ii) percent of fluorescein remaining at
each time point, using the baseline data of one drop for both
groups in order to account for the different volumes instilled
in both eyes. The R software was also used to calculate the area
under the concentration-time curve (AUC), a parameter that
was compared between groups (one vs. two drops) using the
paired t-test. Differences among volume instilled in fluorescein
periocular spillage and tear turnover rate were assessed with a
one-way ANOVA, while the relationship between the volumetric
capacity and the palpebral fissure length was assessed with the
Pearson’s correlation test. Statistical analyses were performed
with SigmaPlot 14.0 (Systat software, Point Richmond, CA), and
P < 0.05 were considered significant.

RESULTS

Data were normally distributed (P > 0.05), therefore results are
presented as mean± standard deviation (range).

Volumetric Capacity of the Canine
Palpebral Fissure
Mean ± SD (range) volumetric capacity of the canine palpebral
fissure was 31.3 ± 8.9 µl (15–45 µl). A moderate positive
correlation (r = 0.57, P = 0.023) was found between the
length (in mm) and the volumetric capacity (in µl) of the
palpebral fissure (Figure 3). Further, mean palpebral fissure
length and volumetric capacity were slightly larger in male
dogs (22.5mm and 35 µl) compared to female dogs (22mm
and 27.5 µl), although these differences were not statistically
significant (P ≥ 0.090).

Periocular Spillage of Instilled Solution
The lower eyelid represented the most common location (92%,
Figures 1B, 2, 4A) covered by fluorescein spillage from the ocular
surface, followed by the medial canthus (73%, Figure 4B), the
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FIGURE 1 | Photographs of the right eye and eyelids in a representative Beagle dog. The volumetric capacity of the palpebral fissure was calculated as 35 µl in this

eye, based on the lack or presence of periocular spillage of 0.1% fluorescein with instillation of either 30 µl (A) or 40 µl (B), respectively.

FIGURE 2 | Photograph of the right eye and eyelids following topical

instillation of 90 µl of 0.1% fluorescein in a representative Beagle dog. The

area of periocular spillage was delineated with ImageJ software (version 1.52a,

National Institute of Health), and recorded in mm2 based on a length bar

(10mm) specific to each eye.

lateral canthus (68%, Figure 4C), and the upper eyelid (32%,
Figures 4E,F). Instillation of large volumes often resulted in
excessive periocular spillage that covered multiple skin locations,
although the amount and distribution of spillage varied within
and between dogs; for instance, instillation of 100 µl of
fluorescein onto the left eye of 3 different dogs resulted in either
mild (Figure 4D) or pronounced (Figures 4E,F) periocular
spillage. Overall, the area of periocular spillage increased as the
volume of instilled solution increased (Figure 5), with statistical
differences noted between 90 and 100 µl vs. 50 and 60 µl (P
= 0.002), 90–100 µl vs. 30–40 µl (P < 0.001), and 70–80 µl
vs. 30–40 µl (P = 0.003).

FIGURE 3 | A positive association was found between the length and the

volumetric capacity of the palpebral fissure (Pearson’s correlation test).

Tear Turnover Rate
Parameter estimation was performed using the stochastic
approximation expectation maximization algorithm for non-
linearmixed-effects models implemented in theMonolix Suite, as
previously described for analysis of canine pharmacokinetic data
(23, 24). Standard goodness-of-fit diagnostics were used to assess
the validity of the model, including visual predictive checks,
individual predictions vs. observations, individual weighted
residuals plotted against tear fluorescein concentrations, and
simulations of fluorescein vs. time disposition from 500 Monte
Carlo simulations (Supplementary Appendix). Using the final
mathematical model, a visual inspection of individual fluorescein
decay curves showed a tendency for a “steeper” initial slope
(i.e., a faster tear drainage) with increasing volumes of instilled
fluorescein, as seen in a representative animal that received 10–
100 µl of topical solution (Figure 6). However, the average rTTR
(20.2–30.5%/min) did not vary significantly among groups (P =
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FIGURE 4 | Representative ocular images following instillation of 60 µl (A), 80 µl (B), 40 µl (C), or 100 µl (D–F) of 0.1% fluorescein solution in different Beagle dogs.

Notice the periocular spillage that predominantly affects the lower eyelid (A), medial canthus (B), lateral canthus (C), or multiple locations including the upper

eyelid (D–F).

FIGURE 5 | Bar chart depicting the mean area (+SD) of periocular spillage of

0.1% fluorescein solution, instilled at various volumes (10–100 µl) in 8 Beagle

dogs (n = 16 eyes).

0.935), nor did the bTTR (1.1–1.4%/min, P = 0.988) observed a
few minutes following fluorescein instillation (Table 1).

Tear Film Fluorescein Concentrations
Following One vs. Two Drops
Tear film fluorescein concentrations in eyes receiving one vs.
two drops are depicted in Figure 7. Immediately following
instillation of fluorescein (t = 0min), tear film concentrations

were significantly higher (P = 0.046) in eyes receiving two drops
(2,345± 237µg/ml) compared to one drop (2,104± 403µg/ml).
However, no statistical differences in fluorescein concentrations
were noted at t = 1min (P = 0.163) or any subsequent
time points (P ≥ 0.293). In fact, the overall exposure of the
ocular surface to fluorescein (AUC of fluorescein concentration-
time curve) was slightly higher in eyes receiving one drop
(30,513 ± 21,530 µg∗min/ml) compared to two drops (28,975 ±
17,410 µg∗min/ml). However, this difference was not statistically
significant (P = 0.742), and the overall effect of volume instilled
on tear film fluorescein was non-significant (P = 0.619) when
taking “time” into account in the model.

The percentage of solution retained on the ocular surface
following one vs. two drops is summarized in Figure 8. At t =
1min, the percent retained was higher in the eyes receiving two
drops (90.6 ± 16.7%) compared to one drop (81.8 ± 8.2%), a
difference that approached statistical significance (P = 0.071).
However, no significant differences were noted for any other time
point (P ≥ 0.220) or in the overall effect of volume instilled on
the percentage of solution retained (P= 0.731) when the variable
“time” was taken into account.

DISCUSSION

The present study supports the use of a single eyedrop in
dogs, whether used therapeutically in canine patients with ocular
disease or experimentally in canine models of translational
research (25, 26). A second drop achieved higher tear film
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FIGURE 6 | Comparison of predicted tear fluorescence over time (purple curve) with observed data (blue points) following topical instillation of 0.1% fluorescein

solution (10–100 µl) in a representative Beagle dog. Censored data are shown as vertical red bars.

TABLE 1 | Mean ± standard deviation of reflex tear turnover rate (rTTR) and basal tear turnover rate (bTTR) in 8 Beagle dogs following topical instillation of 10–100 µl of

0.1% fluorescein solution in each eye.

Volume

(µL)

10 20 30 40 50 60 70 80 90 100 P-value

rTTR

(%/min)

20.6 ± 14.5 20.2 ± 11.4 22.7 ± 17.1 24.3 ± 12.0 30.3 ± 23.3 22.3 ± 13.0 24.6 ± 13.2 24.6 ± 18.4 30.5 ± 22.1 22.2 ± 11.6 0.935

bTTR

(%/min)

1.4 ± 0.4 1.3 ± 0.4 1.3 ± 0.5 1.1 ± 0.5 1.2 ± 0.6 1.2 ± 0.6 1.1 ± 0.6 1.2 ± 0.5 1.1 ± 0.6 1.2 ± 0.6 0.988

P-values depict the results of one-way ANOVA testing.

concentrations immediately after topical administration (t =

0min), a finding that is partly explained by a lower dilution
effect for two drops (1.9-fold) than one drop (2.9-fold) from
the tear fluid present on the canine ocular surface (∼65
µl) (17). However, the benefit of instilling two drops was
short-lived (<1min) and unlikely to be clinically important,
although the present study focuses on fluorescein and cannot
be directly extrapolated to ophthalmic drugs such as antibiotics,
corticosteroids or anti-glaucoma medications. A second drop
is wasted from an economic perspective and can potentially
exacerbate local and/or systemic adverse effects by overflow on
the periocular skin and drainage through the nasolacrimal duct,
respectively. The latter was not evaluated herein as fluorescein is
non-biologically active, albeit previous studies have shown that
overwhelming the lacrimal system can increase the amount of
drug that reaches the blood via the naso-buccal mucosa (27). In
sum, the kinetic profile of fluorescein in tears was not superior

with two drops vs. one drop, a finding that is often explained
by an accelerated lacrimal drainage with increasing volume in
both rabbits (13) and humans (3). However, this explanation is
not valid in dogs as the rate of lacrimal drainage did not change
significantly in our canine subjects despite a 10-fold increase in
instilled volume (10–100 µl); rather, the present study shows
that excessive periocular spillage is the main culprit limiting the
benefit of using two topical drops in canine ophthalmology. The
amount of solution that overflowed on the periocular skin was
greater with larger volumes of instilled solution and primarily
affected the lower eyelid, medial canthus, and lateral canthus.
Such spillage can participate to local adverse effects, such as
Malassezia sp. overgrowth in dogs receiving topical medications
(28), or skin hyperpigmentation and lengthening of eyelashes in
humans receiving topical prostaglandin analogs (29).

The volumetric capacity of the canine palpebral fissure is 31.3
µl. This value is somewhat similar to the volumetric capacity
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FIGURE 7 | Scatter plot depicting the mean + SD of tear film fluorescence

over time in canine eyes receiving either one drop (35 µl; red circles) or two

drops (70 µl; blue triangles) of 1% fluorescein solution. Differences in tear

fluorescence were noted at t = 0min (P = 0.046) but no other time points

(P ≥ 0.163).

FIGURE 8 | Bar chart depicting the mean + SD of residual tear film

fluorescence at each time point in canine eyes receiving either one drop (35 µl;

plain red bars) or two drops (70 µl; hatched white bars) of 1% fluorescein

solution. For standardization, the residual fluorescence in both groups was

compared to the tear fluorescence obtained at t = 0min in eyes receiving a

single drop of fluorescein. No statistical differences were noted between both

groups at any time point (P ≥ 0.220).

in humans (25–30 µl) (1, 14), and approximates the average
volume of a single eyedrop of commercial preparations (∼35
µl) (19, 20). As such, a single eyedrop is deemed sufficient
in dogs and humans because their ocular surface is unable to
accommodate volumes larger than ∼30 µl, yet therapy with a
single drop is relatively inefficient in both species given the short
precorneal residence time and low ocular bioavailability (30).
Several strategies can be implemented to enhance the benefits
of eyedrop administration, including: (i) Eyelid closure and/or
nasolacrimal punctal occlusion for several minutes following
topical instillation (6, 31, 32); (ii) Higher drug concentration—
Walters et al. showed that topical 1.5% levofloxacin in humans
achieved tear concentrations that were 3–10 times higher than
those seen with 0.3% ofloxacin at multiple time points over 24 h
(11); (iii) Higher solution viscosity and/or use of mucoadhesive
polymers (15, 33); (iv) Administration of a second drop
≥1min apart from the first drop—Herring et al. showed that

administration of two drops (1-min apart) of 0.5% proparacaine
in dogs achieved significantly greater and longer anesthetic effect
compared to eyes that received a single drop (34); and (v) Use of
volumes smaller than the average commercial drop size (16, 35).

Strategies to improve ocular drug delivery should ideally be
investigated in each species separately, as direct extrapolation
between species is hindered by differences in ocular anatomy
and physiological parameters such as blink and tear turnover
rates (13, 14, 17, 36). Rabbits, for instance, have a much slower
blink rate (3–6 blinks/h) (37, 38) and a slower tear drainage
(7%/min) (13) compared to humans (17 blinks/min and 10–
20%/min, respectively) (18, 39) as well as a different expression
of mucins on the ocular surface that could affect the retention of
mucoadhesive polymers (40). These differences explain why an
instilled eyedrop is partially lost (20–30%) due to reflex blinking
and periocular spillage in humans, but not in rabbits (15, 37),
or why a solution’s viscosity has a great impact on precorneal
retention and drug ocular bioavailability in humans, but not
in rabbits (15, 41). In a study from over four decades ago,
it was recognized that “considerable reservations may be felt
about comparing results from rabbits with those from humans
because of the differences between the physiology of tear flow
and mixing and general anatomy,” yet “the rabbit is the principal
experimental animal in ophthalmology, so comparisons are
needed” (42). Since then, rabbits continued to be the “species of
choice” for ophthalmic studies given their availability and easy
handling, yet the present study shows that dogs likely represent a
more relevant model for translational research. Indeed, dogs and
humans share many similarities that are relevant to ophthalmic
drug delivery, although important differences exist (e.g., tear
volume) (17) that should be accounted for in comparative
studies. The similarities include the blink rate (14.2 vs. 17
blinks/min) (39, 43), basal TTR (12.2 10–20%/min) (17, 18),
reflex TTR following eyedrop instillation (20–30 vs. 30%/min,
respectively) (44), volumetric capacity of the palpebral fissure
(31.3 vs. 25–30 µl) (1, 14), and periocular spillage of excess
solution. The aforementioned similarities justify the use of dogs
as a translational model in ophthalmic research, especially given
the presence of spontaneous canine diseases that closely resemble
human conditions including keratoconjunctivitis sicca (45, 46),
herpetic keratitis (47), and neurotrophic keratopathy (48).

The main limitation of the study is the use of dogs from a
single breed (Beagles), all being ophthalmoscopically healthy and
relatively young (3–3.5 years). The tear film pharmacokinetics of
two drops may be different in a larger canine breed, presumably
due to differences in volumetric capacity and/or tear drainage,
as shown in German Shepherd dogs using the fluorescein
clearance test (20). Similarly, the ocular surface of older dogs may
accommodate a larger volume due to laxity in the eyelids, and
the instilled solution may be retained for longer durations due
to reductions in tear volume, reflex tearing, and tear turnover
rate (49, 50). In addition, the present findings do not fully
represent the physiology of eyes with ocular surface disease,
in which chemosis can reduce the volumetric capacity of the
palpebral fissure (51), inflammation can affect tear drainage
(52), and ocular absorption (53), and excessive tearing from
ocular irritation can further dilute the administered solution
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(54). In particular, patients with inflamed nasolacrimal duct
(dacryocystitis) may actually benefit from instillation of a second
drop, as greater nasolacrimal drainage would theoretically be
beneficial in such cases. A second limitation of the study is
related to the use of sodium fluorescein as a marker for tear film
kinetics. Fluorescein was shown to overestimate tear turnover in
human subjects, as a portion of instilled fluorescein can be lost
by conjunctival permeation and not nasolacrimal drainage (55).
However, a common alternative described by other investigators
(i.e., gamma scintigraphy) (56) is not applicable to dogs, in whom
the general anesthesia required to hold still for the procedure
would negatively impact the tear film dynamics.

The present study on drop size and tear film pharmacokinetics
can be summarized as follows. Instillation of two drops provided
tear film fluorescein concentrations that were higher than
one drop at baseline, due to lower dilution effect from tears,
although the benefits were short-lived (<1min) and not clinically
important. The kinetic profile of fluorescein in tear film was not
superior in eyes receiving two drops vs. one drop as determined
by the residual tear fluorescence at various time points and the
overall exposure of the ocular surface (AUC) to the solution
instilled. Therefore, a single standard size drop is sufficient
for topical administration in dogs, a finding supported by the
volumetric capacity of the canine palpebral fissure (31.3 µl). Any
excess is lost predominantly by spillage over the periocular skin
as well as accelerated nasolacrimal drainage.
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