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Ferroptosis is a newly discovered type of programmed cell death, which is

closely related to the imbalance of iron metabolism and oxidative stress.

Ferroptosis has become an important research topic in the fields of

cardiomyopathy, tumors, neuronal injury disorders, and ischemia perfusion

disorders. As an important part of non-coding RNA, microRNAs regulate

various metabolic pathways in the human body at the post-transcriptional

level and play a crucial role in the occurrence and development of many

diseases. The present review introduces the mechanisms of ferroptosis and

describes the relevant pathways by which microRNAs affect cardiomyopathy,

tumors, neuronal injury disorders and ischemia perfusion disorders through

regulating ferroptosis. In addition, it provides important insights into

ferroptosis-related microRNAs, aiming to uncover new methods for

treatment of the above diseases, and discusses new ideas for the

implementation of possible microRNA-based ferroptosis-targeted therapies

in the future.
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Introduction

Ferroptosis is a newly discovered programmed cell death mechanism with

characteristics that are different from those of autophagy, apoptosis and necrosis.

Several studies have demonstrated that ferroptosis is involved in the occurrence and

development of cardiomyopathy, tumors, neuronal injury disorders, and ischemia

perfusion disorders (Masaldan et al., 2019; Jiang et al., 2021; Van Coillie et al., 2022).

MicroRNAs are a class of endogenous non-coding small RNA molecules, generally

21–25 nucleotides in length, which regulate various metabolic pathways in the human

body at the post-transcriptional and translational levels, including regulation of tumor cell

growth and induction of chemotherapy resistance (Ambros, 2001). Noncoding RNAs play

a significant role in ferroptosis of various cells (Zhang X. et al., 2020; Zhi et al., 2021; Zuo

et al., 2022). Previous reviews have mainly focused on the role of noncoding RNAs in

cancer through regulating ferroptosis (Valashedi et al., 2022), but the role of microRNAs

in other diseases through regulating ferroptosis has not been summarized.

The present review first discusses the mechanisms of ferroptosis and then summarizes

the diseases and related pathways regulated by microRNAs through regulating

ferroptosis. MicroRNAs have great potential as therapeutic targets. This report
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provides reference information for more in-depth studies of

microRNAs in the field of ferroptosis.

Overview of ferroptosis

In 2012, Dixon et al. first used the concept of ferroptosis to

describe the mode of cell death, which is caused by the

accumulation of lipid peroxides (Dixon et al., 2012).

Ferroptosis is an iron-dependent mode of cell death that

involves lipid reactive oxygen species (ROS) accumulation

(Stockwell et al., 2017). The mechanism of its occurrence has

been partially uncovered (Jhelum et al., 2020). First, the

overloaded iron ions generate a lot of free hydroxyl groups

via the Fenton reaction. Iron is a vital trace element involved

in many physiological processes in the human body. Excess iron,

however, increases the oxidative sensitivity of cells (Chen et al.,

2019). Cells take up Fe3+ primarily through the transferrin

receptor protein 1 complex (Gao et al., 2015). The six-

transmembrane epithelial antigen of the prostate 3 (Steap3)

reduces intracellular Fe3+ to Fe2+. Ferroportin (FPN), also

known as solute carrier family 40 member 1 (SLC40A1), is

involved in the regulation of iron balance by expelling Fe2+

out of the cells (Geng et al., 2018). Overexpression of ferritin

heavy chain1 (FTH1) inhibits erastin-induced ferroptosis by

regulating Fe2+ (Gao et al., 2016; Hou et al., 2016).

Next, lipid peroxidation induction leads to lipid metabolism

disorders, and the accumulation of lipid oxides and ROS is

responsible for ferroptosis. Fe2+ overload causes a series of

oxidative stress reactions in the cell, resulting in the

destruction of the nucleus, membrane, organelles, and

proteins. Esterified polyunsaturated fatty acids (PUFAs) are

the most common substrates in lipid peroxidation (Kagan

et al., 2017). Acyl-CoA synthetase long-chain family member

4 (ACSL4) is involved in the biosynthesis and reassembly of

PUFAs on the cell membrane (Chen et al., 2021b).

Lysophosphatidylcholine acyltransferase 3 then mediates

PUFA activation to induce ferroptosis (Doll et al., 2017).

Finally, System Xc− - glutathione - glutathione peroxidase 4

(Xc−-GSH-GPX4) is considered a crucial antioxidant axis in

ferroptosis. Xc− complex is a cysteine-glutamate reverse

transporter composed of two-subunit solute carrier family

7 member 11 (SLC7A11/xCT) along with solute carrier family

3 member 2 (SLC3A2) (Koppula et al., 2018). The main function

of Xc− is to regulate the transport balance of glutamate and

cysteine and participate in the synthesis of GSH (Koppula et al.,

2021). GSH is a cofactor for GPX4. It protects cells from oxidative

damage. GPX4 is a selenoprotein that neutralizes toxic lipid

peroxides and inhibits ferroptosis (Forcina and Dixon, 2019;

Weaver and Skouta, 2022). GPX4 inactivation is a pivotal

condition for the occurrence of ferroptosis (Jhelum et al.,

2020). Large amounts of GSH are depleted, resulting in

decreased glutathione peroxidase 4 (GPX4) activity. Certain

intracellular components, including oncoprotein activating

transcription factor 4 (ATF4), nuclear factor erythroid 2-like

factor 2 (NFE2L2/NRF2), and Beclin-1, can also regulate iron by

affecting systems Xc− and GSH death level (Habib et al., 2015;

Song et al., 2018). In addition, the classic tumor suppressor gene

P53 affects the occurrence and development of various diseases,

such as tumors, by regulating GPX4-dependent and GPX4-

independent ferroptosis pathways (Liu and Gu, 2022).

At present, numerous genetic hallmarks and protein

hallmarks of ferroptosis are available for detection, but their

specificity remains limited (Chen et al., 2021a).

Other auxiliary evidence, such as detection of cell activity,

iron levels, GSH levels in cells and tissues, ROS and ROS product

content, malondialdehyde (MDA), and mitochondrial

membrane potential (MMP) is also often used to demonstrate

the occurrence of ferroptosis. Moreover, changes in cell

morphology, particularly mitochondrial morphology, observed

under transmission electron microscopy, are the main features

that distinguish ferroptosis from other forms of programmed cell

death, such as apoptosis, autophagy, and necrosis. Mitochondrial

shrinkage, high membrane density, diminished or absent cristae,

and exterior membrane rupture are common in cells undergoing

ferroptosis (Agmon and Stockwell, 2017; Stockwell, 2022).

More research on ferroptosis has continued to accumulate

over the last few years. Ferroptosis has been shown to take part in

the development of various diseases, such as tumors,

cardiovascular diseases, and autoimmune diseases (Nguyen

et al., 2020; Guo et al., 2022; Lai et al., 2022). Next, the role

of microRNAs was explored in ferroptosis separately from

microRNA-involved cardiomyopathy, tumors, nervous system

diseases, and ischemia perfusion disorders.

The role of microRNA in cardiomyopathy
via regulating ferroptosis

As mentioned earlier, GPX4 is critical for the regulation of

ferroptosis (Ursini et al., 2022). Zhuang et al. used an ischemia-

reperfusion (I/R) rat model and cardiac fibrosis cell model

induced by angiotensin II to determine that miR-375–3p

promotes ferroptosis and accelerates cardiac fibrosis by

inhibiting GPX4 (Zhuang et al., 2022). Fan et al. have showed

that inhibition of miR-15a-5p decreases ferroptosis through

GPX4 and thus alleviates myocardial injury in acute

myocardial infarction (Fan et al., 2021). Inhibition of miR-

1224 has also been found to alleviate hypoxia/reoxygenation

myocardial injury by upregulating GPX4 (Li G. et al., 2021).

GPX4 is a critical target in ferroptosis. MiR-375-3p, miR-15a-5p

or miR-1224 inhibition may protect cardiomyocytes and alleviate

myocardial injury by increasing GPX4 and decreasing

ferroptosis. As a part of the Xc− transporter, SLC7A11 also

plays a significant role in the antioxidant system (Jyotsana

et al., 2022). The study of Liu et al. inhibited cardiac
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fibroblast-derived exon-miR-23a-3p by using the exosome

inhibitor GW4869, and inhibition of miR-23a-3p resulted in

upregulation of SLC7A11, thereby reducing ferroptosis in

H9c2 cardiomyocytes and preventing continued development

of atrial flutter (Liu D. et al., 2022). It suggests that miR-23a-3p

inhibition increases intracellular cystine and GSH levels, thereby

neutralizing ROS and treating atrial fibrillation. Glutaminase 2

(GLS2) can cause ROS accumulation through mitochondria by

accelerating glutamate formation (Matés et al., 2020). After

myocardial infarction, cardiomyocytes often undergo cell

death and pathological remodeling, which easily lead to heart

failure (Duan, 2020). Zhou et al. have suggested that miR-190a-

5p inhibits cardiomyocyte ferroptosis by inhibiting GLS2 and

decreases the levels of ROS, MDA, and Fe2+ in H9c2 cells, thus

playing a protective role in myocardial infarction (Zhou et al.,

2021). MiR-190a-5p reduces lipid peroxidation by inhibiting

GLS2 mRNA, thereby inhibiting ferroptosis and lowering the

risk of myocardial infarction. Autophagy related protein 5

(ATG5) has been suggested to inhibit ferroptosis by inhibiting

autophagy (Liang et al., 2022). Tang et al. have found that

overexpression of miR-30d promotes ferroptosis after

myocardial infarction by targeting ATG5, thus inhibiting

autophagy in cardiomyocytes (Tang et al., 2020). Therefore,

crosstalk may exist between ferroptosis and autophagy. The

incidence of cardiovascular disease is high worldwide.

Decreasing cardiomyocyte death and repairing damaged

cardiac tissue are urgent clinical needs (Xu S. et al., 2021).

Ferroptosis decreases reduces the overall cardioprotective

effect of ischemia/reperfusion (I/R) injury. Ferroptosis

suppression decreases inflammation and limits the extent of

left ventricular remodeling after I/R injury (Komai et al., 2022).

Common clinical cardiovascular diseases include

atherosclerosis, myocardial infarction, heart failure, and

arrhythmia. Ferroptosis plays a vital role in the development

of cardiovascular disease (Guo et al., 2022). The mechanism of

microRNA in ferroptosis occurs through regulation of the

antioxidant system and lipid oxidation. Most existing studies

have shown that microRNA overexpression damages

cardiomyocytes by promoting ferroptosis. However, because

microRNAs have diverse functions, further research is needed

to reveal more details. Table 1 shows microRNAs that affect

cardiomyopathy through regulating ferroptosis.

The role of microRNA in tumors via
regulating ferroptosis

GPX4 remains an important target of microRNAs in tumor

diseases (Gao et al., 2022). The experiments by Xu et al. showed

that miR-15a overexpression can inhibit cell proliferation,

increase the release of lactate dehydrogenase, MDA, Fe2+, and

ROS, and then destroy MMP by inhibiting GPX4 in prostate

cancer cells (Xu P. et al., 2022). In colorectal cancer cells, Liu et al.

reported that miR-15a-3p overexpression can also promote

ferroptosis by inhibiting GPX4 (Liu L. et al., 2022). Xu et al.

found that miR-1287–5p still targets GPX4 to promote

ferroptosis in osteosarcoma cells (Xu Z. et al., 2021). Deng

et al. study suggested that miR-324–3p targets inhibition of

GPX4, promotes ferroptosis in lung adenocarcinoma cells, and

reverses their resistance to cisplatin (Deng et al., 2021). These

microRNAs directly bound to the 3′-UTR of GPX4 mRNA and

inhibited its expression, causing ROS accumulation in tumor

cells and acting as tumor suppressor genes. Inhibition of the

ATF4-HSPA5-GPX4 pathway reduces GPX4 levels and induces

ferroptosis. Loss of ATF4 leads to increased ferroptosis (Chen

et al., 2017; Zhu et al., 2017). The study by Bai et al. reported that

miR-214–3p targets ATF4 to promote ferroptosis in hepatoma

cells (Bai et al., 2020). Gomaa et al. found that overexpression of

miR-4715–3p can inhibit aurora kinase A (AURKA) and GPX4,

inducing ferroptosis in upper gastrointestinal adenocarcinoma

cells (Gomaa et al., 2019). GPX4 content is a key factor in tumor

ferroptosis, and these microRNAs have been shown to promote

ferroptosis in various tumor cells by inhibiting target genes

involved in GPX4 synthesis. Ferroptosis suppressor protein 1

(FSP1) exerts antioxidant effects parallel to GPX4, and FSP1-

CoQ10-NAD(P)H is another pathway that inhibits ferroptosis

(Bersuker et al., 2019; Doll et al., 2019). One experiment showed

that exosomal miR-4443 targets methyltransferase 3 (METT3) to

regulate FSP1 expression, thereby inhibiting ferroptosis in non-

small cell lung cancer (Song et al., 2021). In the absence of GPX4,

TABLE 1 The role of microRNA in cardiomyopathy via regulating ferroptosis.

microRNA name Target gene Cell model Disease name Effect on ferroptois

miR-23a-3p SLC7A11 H9c2 Atrial fibrillation Promote ferroptosis

miR-375–3p GPX4 Cardiac fibroblasts Cardiac fibrosis Promote ferroptosis

miR-190a-5p GLS2 H9c2 Myocardial infarction Suppress ferroptosis

miR-30d ATG5 H9c2 Myocardial infarction Promote ferroptosis

miR-1224 GPX4 H9c2 Myocardial H/R injury Promote ferroptosis

miR-15a-5p GPX4 HL-1 Myocardial infarction Promote ferroptosis
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FSP1 can be used as an oxidoreductase to inhibit ROS and

alleviate ferroptosis.

SLC7A11 is widely expressed in various tumor tissues, and

plays a significant role in inhibiting ferroptosis during the

occurrence and development of tumors by controlling cysteine

transport (Tang et al., 2022). Sun et al. found that the miR-34c-

3p/SLC7A11 axis can potentiate erastin-induced ferroptosis in

oral squamous cell carcinoma (Sun et al., 2022). Yadav et al.

reported that overexpression of miR-5096 can promote

ferroptosis by targeting SLC7A11 and inhibit breast cancer

cell growth (Yadav et al., 2021). The study by Ni et al.

showed that miR-375/SLC7A11 inhibits gastric cancer stem

cells by triggering ferroptosis. They believe that miR-375 can

reduce the stemness of gastric cancer cells by inducing ferroptosis

(Ni et al., 2021). SLC3A2, like SLC11A7, is an important

functional subunit of the Xc− system (Liu M. et al., 2022). Hu

et al. found that exosomal miR-142–3p secreted by hepatocellular

carcinoma cells targets SLC3A2 to promote ferroptosis in MI-

type macrophages, thus, accelerating the development of

hepatocellular carcinoma (Hu et al., 2022). The microRNAs

mentioned above reduced GSH levels by regulating cystine

transport into tumor cells by targeting SLC7A11 and SLC3A2.

Dickkopf-related protein 1 (DKK1) inhibits the occurrence of

ferroptosis and protects cells from ferroptosis by enhancing the

expression of SLC7A11 (WuM. et al., 2022). Liao et al. found that

miR-130b-3p targets DKK1 to inhibit ferroptosis in melanoma

cells (Liao et al., 2021). MicroRNAs essentially regulated tumor

ferroptosis via the antioxidant system, whether by regulating

GPX4, FSP1, or GSH.

ACSL4 can promote lipid peroxidation of PUFAs to promote

ferroptosis, and is also an important target of many microRNAs

(Chen et al., 2021b; Liu et al., 2021). Bao et al. demonstrated that

miR-670–3p can inhibit ferroptosis in glioblastoma cells by

targeting ACSL4. Furthermore, miR-670–3p inhibitor-treated

U87MG and A172 cells increase chemosensitivity to

temozolomide (Bao et al., 2021). The study by Ma et al.

showed that miR-424–5p targeting ACSL4 negatively regulates

ferroptosis in ovarian cancer cells (Ma et al., 2021). They

inhibited ROS production from PUFAs by targeting

ACSL4 mRNA, thus resulting in ferroptosis inhibition.

Solute carrier family 1 member 5 (SLC1A5) transports

glutamine into the cell during ferroptosis, and may increase

cell sensitivity to ferroptosis (Xu F. et al., 2022; Zhu D. et al.,

2022). Luo et al. reported that overexpression of miR-137, which

results in decreased glutamine and MDA levels, can inhibit

ferroptosis in melanoma cells by targeting SLC1A5 (Luo et al.,

2018). Aspartate aminotransaminase (GOT1) is an enzyme

involved in glutamate metabolism, which catalyzes the

production of α-ketoglutarate (Kremer et al., 2021). Zhang

et al. have shown that overexpression of miR-9 inhibits

ferroptosis in melanoma cells by directly binding to the 3′-
UTR of GOT1 (Zhang et al., 2018). These findings suggest

that miR-137 and miR-9 speed up the progression of

melanoma by inhibiting ferroptosis through reducing lipid

peroxidation.

Iron-responsive element-binding protein 2 (IREB2) is related

to intracellular iron ion concentration, and suppression of

IREB2 can inhibit the level of Fe2+, thus inhibiting ferroptosis

(Li et al., 2022). Fan et al. showed that miR-19a inhibits

ferroptosis in colorectal cancer cells HT29 by inhibiting

IREB2 (Fan et al., 2022). Transferrin (TF) mediates Fe2+ entry

into the cells, and TF blocking can reduce Fe2+ overload and

inhibit ferroptosis (Pandrangi et al., 2022). Zheng et al. found

that miR-545 inhibition can reduce ferroptosis in rectal cancer

cells by regulating TF (Sixin Zheng, Lingling Hu, Qingwen Song

et al., 2021). Intracellular Fe2+ can transport Fe2+ out of the cells

via FPN1/SLC40A1. FPN participates in ferroptosis by regulating

intracellular Fe2+ concentration (Hao et al., 2021; Wang et al.,

2021; Pandrangi et al., 2022). Wei et al. reported that miR-302a-

3p can strengthen ferroptosis in non-small cell lung cancer by

targeting FPN (Wei et al., 2021). Zhu et al. showed that miR-

4735–3p targets SLC40A1 to promote ferroptosis in clear cell

renal cell carcinoma, thereby inhibiting tumor proliferation (Zhu

C. et al., 2022). Ferroptosis is characterized by iron overload.

Different microRNAs have different effects on iron metabolism

target genes, resulting in ferroptosis regulation.

Tumor necrosis factor-α-induced protein 8 (TNFAIP8/

TIPE) can participate in ferroptosis by inhibiting p53. One

prior study showed that miR-539 overexpression can promote

ferroptosis in colorectal cancer cells by inhibiting TIPE (Yang

et al., 2021). Two studies by Tomita et al. demonstrated that miR-

7-5p knockdown can reduce radioresistance in radioresistant

cancer cells by regulating ferroptosis through changes in Fe2+

content (Tomita et al., 2019; Tomita et al., 2021). Tumor cells

change their own microenvironment to achieve continuous

proliferation (Xu et al., 2020), and microRNAs affect the

proliferation of various tumor cells through the regulation of

ferroptosis. The function of microRNA can be accomplished by

the degradation or the translation inhibition of targeted mRNA

after binding to the 3′-UTR region. However, this regulatory

effect is complex, in that it presents two aspects of tumor-

promoting and tumor-suppression. Table 2 lists microRNAs

that affect tumors through regulating ferroptosis.

The role of microRNA in neuronal injury
disorder via regulating ferroptosis

FSP1 acts as a complementary antioxidant pathway and is

also a target gene of microRNA-672–3p. Inhibition of miR-

672–3p was reported to inhibit ferroptosis by upregulating

FSP1, thereby promoting neural repair in spinal cord injury

(Wang F. et al., 2022). The SLC7A11/GPX4 signaling pathway is

a major antioxidant pathway in ferroptosis-induced nerve injury

(Fu et al., 2022). Wang et al. reported that inhibition of miR-

378a-3p reverses lead exposure-induced ferroptosis by targeting
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SLC7A11 in HT22 cells (Wang W. et al., 2022). The two

microRNAs mentioned above induced ferroptosis by

inhibiting key molecules in the antioxidant pathway. It

suggests that blocking them can reduce nerve cell death and

alleviate specific neuronal injury disorders.

BTB and CNC homology 1(Bach1) is an oxidative stress-

responsive transcription factor in ferroptosis, which promotes it

by inhibiting the antioxidant system (GSH-GPX4 and FSP1-

CoQ10 pathways) (Nishizawa et al., 2022). Li et al. showed that

miR-194-loaded mesenchymal exosomes can inhibit

neurovascular endothelial cell ferroptosis by targeting Bach1,

resulting in neuroprotection (Li X. et al., 2021). Prostaglandin

peroxidase synthase-2(Ptgs2) is a regulatory gene in ferroptosis

lipid oxidation (Macías-Rodríguez et al., 2020). Xiao et al.

reported that overexpression of miR-212–5p overexpression

can inhibit ferroptosis in neuronal cells by inhibiting Ptgs2,

thereby attenuating traumatic brain injury (Xiao X. et al.,

2019). Overall, miR-194 and miR-212-5p reduced ROS

production or increased ROS decomposition by targeting key

lipid peroxidation targets.

TABLE 2 The role of microRNA in tumor via regulating ferroptosis.

microRNA
name

Target
gene

Cell model Disease name Effect on
ferroptois

miR-4735–3p SLC40A1 786-O, A498 Cell Renal cellcarcinoma promote ferroptosis

miR-19a IREB2 HT29 Colorectal cancer Suppress ferroptosis

miR-142–3p SLC3A2 HepG2,THP-1 Hepatocellular carcinoma caused
hepatitis B virus

promote ferroptosis

miR-34c-3p SLC7A11 SCC-25,CAL-27 Oral squamous cell carcinoma promote ferroptosis

miR-15a GPX4 LNCAP Prostate cancer promote ferroptosis

miR-545 TF HT-29,HCT-116 Colorectal cancer Suppress ferroptosis

miR-15a-3p GPX4 HCT-116,CaCo2, HT29, KM12 Colorectal cancer promote ferroptosis

miR-539 TIPE HCT-116 Colorectal cancer promote ferroptosis

miR-5096 SLC7A11 MDA-MB-468,MDA-MB-453, BT-549, MDA-MB-231,SKBR-3,
T-47D, MCF-7, ZR-75

Breast cancer promote ferroptosis

miR-1287–5p GPX4 SaOS2, U2OS Osteosarcoma promote ferroptosis

miR-7-5p - HeLa,SAS Cancer radioresistance Suppress ferroptosis

miR-670–3p ACSL4 U87MG, A172 Glioblastoma Suppress ferroptosis

miR-302a-3p Ferroportin A549,H358,H1299, H1650 Non-small cell lung cancer promote ferroptosis

miR-130b-3p DKK1 A375,G-361 Melanoma Suppress ferroptosis

miR-375 SLC7A11 SGC-7901,BGC-823 Gastric cancer promote ferroptosis

miR-424–5p ACSL4 HO8910,SKOV3 Ovarian cancer Suppress ferroptosis

miR-214–3p ATF4 HepG2,Hep3B Hepatocellular carcinoma promote ferroptosis

miR-4715–3p AURKA OE33, MKN45 Upper gastrointestinal cancers promote ferroptosis

miR-9 GOT1 A375, G-361 Melanomma Suppress ferroptosis

miR-137 SLC1A5 A375, G-361 Melanomma Suppress ferroptosis

miR-324–3p GPX4 A549 Lung adenocarcinoma promote ferroptosis

miR-4443 METT3 A549-R,A549S Non-small cell lung carcinoma Suppress ferroptosis

TABLE 3 The role of microRNA in neuronal injury disorder via regulating ferroptosis.

microRNA name Target gene Cell model Disease name Effect on ferroptois

miR-378a-3p SLC7A11 HT22 Nerve injury caused by lead exposure promote ferroptosis

miR-672–3p FSP1 HN,PC12 Spinal Cord Injury promote ferroptosis

miR-194 Bach1 MSCs Oxygen-glucose deprivation/reoxygenation-induced neuronal injury Suppress ferroptosis

miR-335 FTH1 PC12 Parkinson’s disease promote ferroptosis

miR-137 - SH-SY5Y Hemorrhagic stroke Suppress ferroptosis

miR-212–5p Ptgs2 HT-22,Neuro-2a Traumatic brain injury Suppress ferroptosis
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FTH1, an important subunit of ferritin, plays a crucial role in

Fe2+ metabolism as an iron chelator (Muhoberac and Vidal,

2019). Previous studies have shown that inhibiting

neurotransmitters such as glutamate A may help alleviate

movement disorders (Tugan Yildiz and Tuncel Berktas, 2021).

Li et al. reported that miR-335 enhances ferroptosis in vitro and

in vivo models of Parkinson’s disease by degrading FTH1

(Xinrong Li et al., 2021). The pathogenesis of stroke is

complex and is thought to potentially be related to glutamate-

induced oxidative stress (Wu and Prentice, 2021). It was

confirmed that exosomal miR-137 can inhibit oxyhemoglobin-

induced ferroptosis in SH-SY5Y cells, thereby initiating

protection (Li et al., 2020). Studies have shown that iron ion

imbalance, oxidative stress, and abnormal glutamate have

TABLE 4 The role of microRNA in ischemia-reperfusion via regulating ferroptosis.

microRNA name Target gene Cell model Disease name Effect on ferroptois

miR-124–3p Steap3 BMMSCs Liver ischemia reperfusion injury Suppress ferroptosis

miR-214–3p GPX4 Acute kidney injury mice and Acute kidney injury Acute kidney injury induced by cisplatin promote ferroptosis

miR-132 _ peripheral vessels of atherosclerosis, HUVECs Atherosclerosis promote ferroptosis

miR-3587 HMOX1 NRK-52E Renal ischemia-reperfusion promote ferroptosis

miR-182–5p GPX4 Hk-2,TCMK-1 Ischemia/reperfusion kidney injury promote ferroptosis

miR-378a-3p SLC7A11

miR-30b-5p Pax3,SLC7A11 HTR-8, TEV-1 Preeclampsia promote ferroptosis

miR-17–92 A20 HUVEC Endothelial cell death Suppress ferroptosis

FIGURE 1
Schematic overview of the mechanism of microRNA in ferroptosis. MicroRNAs regulate various biological processes in the occurrence and
development of ferroptosis by interfering with ironmetabolism ((A): accumulation process of intracellular Fe2+), lipid peroxidation ((B): accumulation
process of ROS and other peroxidation products) and antioxidant systems ((C): antioxidant axis dominated by Xc−-GSH-GPX4).
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important effects on ferroptosis and nerve damage. Therefore,

ferroptosis in neurological diseases is increasingly being studied.

Studies have shown that the roles of microRNAs in ferroptosis of

neurological diseases are involved in the complex of bidirectional

regulation of neurological diseases (Wu et al., 2018). Table 3 lists

microRNAs that affect neuronal injury disorder through

regulating ferroptosis.

The role of microRNA in ischemia
perfusion disorders via regulating
ferroptosis

Ferroptosis is an important mechanism leading to I/R injury

in multiple organs (Chen Y. et al., 2021). GPX4 and SLC7A11 are

key ferroptosis enzymes that act as target genes for multiple

microRNAs in ischemic perfusion disease. Cell and animal

experiments by, Zhou et al. demonstrated that miR-214–3p

inhibition inhibits ferroptosis through GPX4, thereby reducing

renal tubular damage (Zhou et al., 2022). Ding et al. reported that

miR-182–5p and miR-378a-3p contribute to the activation of

ferroptosis in I/R renal injury by inhibiting GPX4 and SLC7A11

(Ding et al., 2020). Zhang et al. showed that miR-30b-5p targets

paired box protein 3 (PAX3) and SLC7A11 to enhance

trophoblast ferroptosis, and that miR-30b-5p inhibition

alleviates symptoms in a rat model (Zhang H. et al., 2020).

GPX4 and SLC7A11 are still important microRNA target

genes in ischemic perfusion disorders. This is related to

GPX4’s critical antioxidant role in ferroptosis.

Steap3 is involved in ferroptosis as a key regulator of iron

metabolism (Yan et al., 2021). A prior study demonstrated that

miR-124–3p reduces the degree of ferroptosis in HO-1-modified

bone marrow mesenchymal stem cells by inhibiting Steap3,

alleviating the risk of hepatic I/R injury (Wu L. et al., 2022).

Nuclear factor erythroid 2-related factor 2/heme oxygenase 1

(Nrf2/HO-1) signaling axis inhibits ROS generation and

prevents oxidative stress damage (Yan et al., 2021). Tao et al.

reported that miR-3587 inhibition could upregulates HO-1 by

regulatingHMOX1, thereby attenuating I/R-induced ferroptosis in

kidney tissue (Tao et al., 2021). MiR3587 inhibition increases HO-

1, a key antioxidant that reduces intracellular ROS and ferroptosis.

Xiao et al. found that miR-17–92 overexpression can affect

ACSL4 expression by targeting tumor necrosis factor, alpha-

induced protein 3(A20), thereby reducing ferroptosis in

endothelial cells (Xiao F. J. et al., 2019). Liu et al. showed that

miR-132 overexpression can accelerate the progression of

atherosclerosis by reducing the level MMP, increasing ROS

production, and promoting ferroptosis (Zexin et al., 2022).

Ferroptosis is involved in the ischemic injury of various

organs and tissues (von Samson-Himmelstjerna et al., 2022).

Existing studies have shown that the mechanism through which

microRNAs act on ischemic perfusion diseases mainly involve

promotion of ferroptosis. Therefore, interventions may

potentially target microRNA to achieve protection of target

organs. Table 4 lists microRNAs that affect ischemia perfusion

disorders through regulating ferroptosis.

Summary and outlook

Many studies have confirmed that microRNAs are involved in

the occurrence of cardiomyopathy, tumors, neuronal injury

disorder and ischemia perfusion disorders by promoting or

inhibiting ferroptosis (Li N. et al., 2021; Maslov et al., 2022;

Zuo et al., 2022). Figure 1 shows their relevant mechanisms. A

significant number of studies have demonstrated that microRNAs

can participate in the ferroptosis process through key targets, such

as GPX4, SLC7A11, and ACSL4 (Chen et al., 2021b). Most of the

current microRNA research explores its impact on a key target in

the ferroptosis pathway alone, and does not explore the

mechanism of action related to ferroptosis. The mechanism of

microRNA’s impact on disease through regulating ferroptosis

remains largely unexplored. Therefore, it is still necessary to

further analyze the relevant mechanisms of microRNA from

the aspects of metabolic pathways and epigenetic modifications

in order to be able to, intervene in the development of diseases.
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