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Abstract

Microbiome dysbiosis is strongly associated with alcoholic liver disease (ALD). Recent studies on 

comprehensive analyses of microbiome compositional and functional changes have begun to 

uncover the mechanistic relation between microbiome and the pathogenesis of ALD. Importantly, 

targeting the microbiome has become a potential strategy for the prevention and treatment of 

ALD. In this review, we summarize the clinical evidence of microbiome dysbiosis in ALD 

patients, and experimental advances in microbiome and metabolomic functional changes in 

animals with different species and genetic backgrounds in ALD. We also summarize the studies in 

humanized intestinal microbiome and fecal microbiota transplantation in mice. We introduce new 

developments in the studies on the role of the circulating bacterial microbiome, oral bacterial 

microbiome and fungal microbiome in the development of ALD. We highlight the potential 

mechanisms by which microbiome dysbiosis contributes to ALD, including short chain fatty acid 

changes, bile acid metabolism, intestinal barrier function, release of bacterial and fungal products, 

and inflammation. In addition, we summarize the recent developments targeting the microbiome in 

prevention and treatment of ALD, including dietary nutrient interference, herbal medicine, 

antibiotics, anti-fungal agents, probiotics, engineered bacterial therapy, fecal transplantation and 

oral hygiene. Although recent preclinical studies have advanced our understanding of the 

microbiome and ALD, clinical studies, especially prospective studies with large samples, are 

needed to better understand the cause-effect of microbiome dysbiosis in ALD. Identifying new 

precision-based strategies targeting the microbiome are expected to be developed as more effective 

therapies in ALD.
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1. Introduction

Bacteria, fungi and other microorganisms create the human microbiome, a community of 

various microbial communities located in different areas of the human body including 

intestine, mouth, vagina and skin.1 The bacterial microbiome is the most studied of these 

regarding its functions in the mammalian host. There are over 3 million bacterial genes, 

approximately ten times more than human host genes. The gut bacterial microbiome consists 

of more than ten phyla, and 90% of the bacteria belong to two phyla, Bacteroidetes and 

Firmicutes, and most of the rest belong to four phyla Actinobacteria, Fusobacteria, 

Proteobacteria and Verrucomicrobia. The human gut microbiome is created in utero and 

becomes relatively stable in early childhood. The microbiome composition and function 

affect the host by enhancing food metabolism,2 supporting the barrier for defense against 

dangerous pathogens and providing the host with essential metabolites.3,4 Recent studies 

have demonstrated that an imbalanced microbiome (dysbiosis) is associated with many 

diseases and disorders such as cancer,5-8 cardiovascular diseases,9-11 liver diseases,12-20 and 

other metabolic disorders.21-23 Investigation of the relation between the microbiome and 

these diseases and disorders provides opportunities for unique treatment strategies. The 

studies on intestinal, skin, oral and vaginal microbiome have begun to support the 

development of unique approaches to potentially modulate microbiome-related diseases.

Alcoholic liver disease (ALD) encompasses a broad spectrum of stages including fatty liver 

(steatosis), steatohepatitis, fibrosis, cirrhosis, and even liver cancer.24 Although 

approximately 95% of heavy drinkers develop hepatic steatosis, only a small portion 

progresses to advanced liver disease, indicating that factors other than the amount of alcohol 

consumed may contribute to ALD development/progression. Despite extensive research, the 

cellular and molecular mechanisms underlying the development/progression of ALD are not 

fully understood.

Accumulating evidence demonstrated that microbiome dysbiosis is a risk factor in ALD 

development/progression. The majority of studies on relation between the microbiome and 

ALD have been focused on intestinal bacterial microbiome dysbiosis. Recent studies also 

indicate that oral bacterial dysbiosis and intestinal fungal dysbiosis are risk factors for ALD. 

The aim of this review is to summarize recent advances in ALD studies related to the 

microbiome, including the intestinal microbiome, oral microbiome, circulating microbiome, 

intestinal fungal microbiome, potential mechanisms of toxicity, and microbiome targeted 

treatment strategies.

2. Intestinal bacterial dysbiosis

Intestinal bacterial dysbiosis is defined as an imbalance of the different microbial entities in 

the intestine with a disruption of symbiosis.25 There are three types of dysbiosis including 

pathobiont expansion, reduced diversity, and loss of beneficial microbes, and they are not 

mutually exclusive.

Both chronic and acute alcohol consumption induce small and large intestinal bacterial 

dysbiosis, particularly the overgrowth of Gram-negative bacteria and alterations in bacterial 

Li et al. Page 2

Liver Res. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diversity. Alcohol metabolism-generated aldehydes in the intestine produce reactive oxygen 

species that trigger pro-inflammatory responses and cause intestinal epithelial barrier 

dysfunction. This results in increased bacterial transcytosis and translocation of bacterial 

products, including endotoxin (lipopolysaccharide, LPS), bacterial deoxyribonucleic acid 

(DNA), and other pathogen-associated molecular patterns (PAMPs), from the gut lumen to 

the liver, causing liver injury. Alcohol consumption-induced leaky gut has been 

demonstrated in human subjects with ALD, in which higher levels of serum bacterial 

products were found compared to healthy controls.26,27

2.1. Gut bacterial dysbiosis and functional changes in ALD patients

Gut bacterial dysbiosis has long been observed in human alcoholic subjects. That alcohol 

abuse causes small intestinal bacterial overgrowth was documented over three decades ago.
28 Bacterial cultures of samples from jejunal juice displayed significantly higher bacterial 

counts in alcoholics compared to healthy controls. The small intestinal bacterial overgrowth 

may contribute to gut leakiness in patients with chronic alcohol abuse. Similar results were 

found by the same group of investigators using a breath test showing a higher prevalence of 

small intestinal bacterial overgrowth in chronic alcoholics compared to controls.29 This 

observation was later confirmed in alcoholic patients with hepatic cirrhosis by other groups.
30-32

Development of sequencing techniques greatly advanced gut bacterial research. Alcohol 

consumption, either excessive or moderate, caused small intestinal bacterial overgrowth.33 In 

a study involving 244 alcoholic cirrhotic patients, investigators found that intestinal 

dysbiosis was more severe in decompensated cirrhotics compared to compensated cirrhotics.
34 A comparative metagenomic study of 99 patients with alcohol dependence syndrome with 

or without liver cirrhosis found that alcoholic dependence and liver cirrhosis were associated 

with profound shifts in gut bacterial community structures and metabolic potential across the 

patients, suggesting a strong negative influence of alcohol dependence and associated liver 

dysfunction on gut microbiota.35 Colon biopsy sample analysis revealed that colonic 

mucosa-associated bacteria were persistently altered in a subset of alcoholics, and this was 

correlated with serum LPS levels.36 This clinical finding was also documented in the 

authors’ preclinical observations in rats.37

Although studies on bacterial overgrowth and dysbiosis are increasing, as yet there is no 

specific intestinal bacterial pattern identified to have an etiological role in the development 

of ALD. However, the fact that alcohol consumption causes intestinal bacterial dysbiosis 

provides an opportunity for the treatment and/or prevention of ALD by targeting intestinal 

microbiota.

Alcohol-dependent subjects who had gut leakiness on admission were more likely to exhibit 

psychological symptoms following three weeks of abstinence compared to those without gut 

leakiness. Moreover, subjects with initial altered gut permeability had greater alteration in 

gut microbiome and fecal metabolites.38 The functional changes in microbiota (gut bacteria-

mediated metabolite changes) have also been studied in ALD patients. Alcohol-dependent 

subjects with high intestinal permeability showed higher phenol and lower 4-methyl-phenol 

concentrations in feces than the subjects with low intestinal permeability, while indole and 
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3-methyl-indole concentrations were lower in subjects with high gut permeability. Volatile 

organic compounds (VOC) were analyzed in fecal samples collected from alcoholics and 

non-alcoholic healthy controls. Several notable metabolite alterations were found in the 

alcoholics that were different from healthy controls. While propionate and isobutyrate 

(beneficial short chain fatty acids (SCFAs)), caryophyllene (alcohol consumption natural 

suppressant) and camphene (hepatic steatosis attenuator) were decreased, tetradecane 

(oxidative stress biomarker) was elevated in alcoholics.39 These metabolite alterations could 

be associated with liver injury from alcohol abuse.

2.2. Gut bacterial dysbiosis and functional changes in animal models of ALD

2.2.1. Rodent models—Studies in experimental animal models of ALD provide more 

detailed mechanistic information on gut dysbiosis compared to clinical observations. Yan et 
al.40 showed that 3 weeks of intragastric alcohol ingestion led to bacterial dysbiosis in mice, 

which was associated with the reduction of antimicrobial peptides, regenerating islet-derived 

3 (Reg3) beta (Reg3B) and gamma (Reg3G). Alcohol-feeding increased Bacteroidetes and 

Verrucomicrobia and decreased Firmicutes levels compared to pair-feeding. Interestingly, an 

overgrowth of Akkermansia muciniphila was observed in one mouse model of ALD, and 

this bacterium is believed to be responsible for mucin degradation. Moreover, the population 

of Lactobacilli was depleted in alcohol-fed mice, which is generally considered as a 

beneficial bacterial group.

In another study using the Lieber DeCarli alcohol feeding mouse model,41 metagenomic 

analysis demonstrated a decline in the abundance of both Bacteroidetes and Firmicutes 

phyla, with a proportional increase in the Gram-negative Proteobacteria and Gram-positive 

Actinobacteria phyla. Genera analysis showed the greatest expansion in Gram-negative 

alkaline tolerant Alcaligenes and Gram-positive Corynebacterium. These alterations were 

accompanied by the increases in colonic pH and levels of liver steatosis.41

Chronic ethanol consumption leads to alterations in fecal bacterial microbiome, as well as 

gastrointestinal content of metabolites. One of the major functions of gut bacteria is to 

metabolize food to produce metabolites that are beneficial (or harmful) to the host. A 

metabolomic study revealed profound alterations in metabolite contents within the 

gastrointestinal tract in rats following four or eight weeks of ethanol exposure.42 Major 

metabolic pathways that are critical for host physiology were affected, including markedly 

altered bile acids (BAs), increased levels of certain fatty acids and steroids, decreased 

carnitines and metabolites involved in lipid metabolism, a significant decrease of all amino 

acids and branched chain amino acids, and significantly decreased SCFAs except for acetic 

acid, which rapidly elevated as a product of ethanol metabolism.42 Metabolomic studies by 

our group also revealed changes in metabolites in the liver and intestine. Levels of diet-

derived long chain fatty acids increased in mouse livers and decreased in mouse feces when 

mice were chronically exposed to alcohol. Several amino acids including branched chain 

amino acid L-Isoleucine were down-regulated in the liver and fecal samples from animals 

exposed to alcohol.43 Interestingly, heptadecanoic acid (C17:0), a long chain fatty acid 

produced only by bacteria, was reduced by alcohol ingestion, indicating alcohol exposure 

changes gut fatty acid-metabolizing bacteria. Supplementation of saturated long-chain fatty 
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acids maintains intestinal eubiosis and reduces alcohol-induced liver injury.44 The effect of 

the types of dietary fat on gut microbiota homeostasis was evaluated in mice with ALD. 

Saturated fat (medium chain triglycerides enriched) feeding reduced Proteobacteria and 

Actinobacteria and increased Bacteroidetes in feces of mice exposed to 8-weeks of alcohol 

feeding.45 A reduction in endotoxemia and liver steatosis and injury was observed in 

animals fed a saturated fat diet as compared to a comparable amount of unsaturated fat 

(mainly linoleic acid) diet.

More recent studies analyzed polar metabolites in the feces from mice fed with or without 

alcohol.46 Taurine, nicotinic acid, and several major SCFAs, were significantly decreased in 

mice fed alcohol. Moreover, we showed that the deficiency of an antimicrobial peptide, 

cathelicidin, in mice (Camp−/− mice) led to similar alterations in intestinal metabolites to 

that observed in alcohol-fed wild type mice.46

The translocation of bacteria and bacterial products from the intestine to the liver is a 

hallmark of ALD.47 In a recent study in which mice were subjected to chronic ethanol 

feeding for eight weeks, researchers found that alcohol exposure changes bacterial α-

diversity in the ileum and the liver and leads to compositional changes, especially in the 

ileum which is largely driven by an increase in the endotoxin-producing Gram-negative 

phyla. Among these phyla, Prevotella was not only increased in the mucus layer of the ileum 

but also in liver samples.47

2.2.2. Mouse models with altered genetic background—Alcohol exposure-

associated gut bacterial alteration was also studied in mice with various genetic 

backgrounds. Mucin production from Goblet cells in the intestine is important for the 

integrity of intestinal mucus layer, which forms a physical barrier between the underlying 

epithelium and the gut lumen. Mucin 2 is the dominant mucin in the small and large 

intestine. Surprisingly, wild-type mice have higher alcohol-induced hepatic steatosis and 

injury than mucin 2 knockout mice (Muc2−/−).48 Muc2−/− mice are protected from intestinal 

bacterial overgrowth after alcohol feeding compared to wild-type mice. This protective 

effect may be due to the higher expression of antimicrobial peptides, Reg3B and Reg3G 

lectins, and less mucus layer thickness that allows antimicrobial peptides to readily enter 

into the gut lumen and enhance intraluminal killing of bacteria. Interestingly, overexpression 

of Reg3G in the intestinal epithelial cells restricts bacterial colonization of the mucosal 

surface, reduces bacterial translocation, and protects mice from alcohol-induced 

steatohepatitis.49

The importance of antimicrobial peptides Reg3B and Reg3G was further demonstrated in 

Reg3b−/− and Reg3g−/− mice. Compared to wild-type mice, the knock-out mice had a similar 

change in fecal microbiota after alcohol feeding. However, Reg3b−/− and Reg3g−/− mice 

showed significantly higher numbers of mucus-associated bacteria in the mucus and 

epithelial layer of the small intestine and an enhanced bacterial translocation to the 

mesenteric lymph nodes and liver.49 Alcohol appears to impair control of the mucosa-

associated microbiota, and the subsequent breach of the mucosal barrier facilitates the 

progression of ALD.
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Alcohol consumption also decreased other types of antimicrobial peptides. Cathelicidin-

associated antimicrobial peptides (CRAMP) is a mouse ortholog of LL-37, the only member 

of the human cathelicidin family. Intestinal CRAMP is down-regulated by alcohol feeding, 

which was associated with gut dysbiosis and increased circulating LPS levels.19,50 CRAMP 

knock-out exacerbated ALD,51 which was associated with decreased butyrate-producing 

bacteria population (unpublished data) and reduced fecal butyric acid concentration.46 The 

Paneth cell-produced antimicrobial peptide, α-defensin, is another important group of 

antimicrobial peptides. Although expression of α-defensin 5 did not differ significantly in 

mice fed alcohol intragastrically for 3 weeks,40 dysfunction of α-defensin 5 exacerbated 

alcohol-induced luminal and mucus-associated microbiota and resulted in a severe liver 

injury.52 Zinc supplementation increased α-defensin 5 production and reduced ALD.

Alcohol consumption has been correlated with intestinal epithelial expression of hypoxia-

inducible factor 1 (HIF1), which regulates a number of barrier-protective genes including 

intestinal trefoil factor (ITF/TFF3), CD73 (NT5E), P-glycoprotein (P-gp/ABCB1), 

cathelicidin, claudin-1, mucin-3, and β-defensin-1 (DEFB1). Intestinal specific Hif-1α−/− 

mice displayed an exacerbated gut dysbiosis and liver steatosis and injury after alcohol 

feeding compared to wild-type mice.19 It seems that intestinal HIF-1α is essential for the 

adaptive response to alcohol-induced changes in intestinal microbiota and barrier function 

associated with elevated endotoxemia and hepatic steatosis and injury.

Alcohol-associated metagenomic changes are associated with alterations in bile acid profiles 

with significant decreased taurine-conjugated BAs in intestine and in the serum in rat model 

of ALD.42,53 Alcohol feeding increased abundance of bacteria harboring cholylglycine 

hydrolase (CGH),54 a major enzyme that deconjugates bile acid.55 Interestingly, serum 

conjugated BAs were markedly elevated in alcoholic cirrhosis patients.56 The mechanism 

underlying the difference of conjugated bile acid in human and rodents are unknown, but the 

changes in gut microbiota may be a causative factor for these changes. In contrast, recent 

study showed increased amount of unconjugated BAs in the small intestine of mice fed 

alcohol for 8 weeks.54 Increased unconjugated BAs are associated with lower farnesoid X 

receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein 

secretion and increased hepatic cytochrome P450 enzyme (Cyp)-7A1 protein expression and 

circulating bile acid levels. Depletion of the commensal microbiota with non-absorbable 

antibiotics attenuated hepatic Cyp7A1 expression and reduced ALD in mice, suggesting an 

important role of gut bacteria in bile acid de novo synthesis. Pharmacological intervention 

with the intestine-restricted FXR agonist, fexaramine, to restore intestinal FXR activity 

protected mice from ethanol-induced liver injury.54 While inhibition of bile acid synthesis 

by activating intestinal FXR is beneficial in ALD, genetic knock out of Cyp7a1 exacerbated 

ALD in mice subjected to binge-on-chronic alcohol feeding.57 These contradictory results 

are likely due to the differences in animal species, feeding protocol and animal sex 

difference in these observations. Interestingly, clinical study showed an increase in serum 

total BAs, while a decrease in de novo bile acid synthesis in alcoholic hepatitis (AH) 

patients compared to healthy controls.58

2.2.3. Monkey and fish models—The relation between ALD and the gut microbiome 

was also explored in other animal models. The rhesus monkey provides great translational 
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validity in preclinical studies due to its similarities to humans in genetic, physiological, 

metabolic and behavioral aspects. Wang et al.59 demonstrated that rhesus monkeys fed 

alcohol displayed a change in the intestinal bacterial community structure at phylum, order, 

family, genus and species levels, along with liver steatosis.59 Firmicutes, Proteobacteria, and 

Verrucomicrobia tended to increase whereas Bacteroidetes and Actinobacteria decreased. At 

the genera level, Lactobacillus and Streptococcus decreased in ALD monkeys compared 

with normal controls.

Small-sized medaka fish have been used to study the changes of intestinal microbiome by 

alcohol exposure.60 Exposing the fish to alcohol for two months caused liver steatosis and 

injury, along with changes of fecal microbiota composition. Decreased numbers of 

Fusobacterium, Tenericutes and Firmicutes, and increased abundance of Proteobacteria and 

Bacteroides were observed. Moreover, at the species level, Alcaligenes incertae sedis and 

Cloacibacterium incertae sedis decreased while Cetobacterium incertae sedis and 

Erysipelotrichaceae incertae sedis increased with ethanol administration. These changes 

were similar to those observed in humans.60

2.3. ALD models using germ-free mice and microbiota humanized mice

The germ-free rodent model provides a unique tool to study the contribution of intestinal 

microbiota to disease. Germ-free mice/rats can be protective in autoimmune hepatitis and 

liver cancer induced by chemicals,61-63 while they can exacerbate acute liver injury and liver 

fibrosis.64-66 The protective effects may be due to the deficient natural killer T cells in germ-

free mice, which have lower levels of presented bacterial glycolipid antigens compared to 

conventional mice, and/or due to the absence of bacterial LPS and lack of Toll-like receptor 

4 (TLR4) signaling in germ-free mice. On the other hand, germ-free mice are more sensitive 

to acute liver injury and liver regeneration. These effects may be also due to the absence of 

LPS, since LPS has been shown to stimulate liver regeneration.67 In ALD, germ-free status 

can be associated with worsened or improved hepatic phenotype depending on the type of 

animal and the experimental models. Feeding germ-free Swiss mice alcohol for 7 days 

resulted in a reduced liver injury compared to conventional mice.68 This was associated with 

a reduced intestinal permeability and lower neutrophil accumulation. On the other hand, 

C57BL/6 germ-free mice showed significantly more pronounced liver injury, inflammation 

and steatosis than conventional mice treated with acute alcohol administration.69 The 

increased susceptibility to acute alcohol-induced liver injury in germ-free mice may be 

related to a more efficient xenobiotic metabolism, elevated baseline levels of inflammatory 

factors and up-regulated genes involved in lipid synthesis. The discrepancy between these 

two studies could be due to the different animal strains and germ-free status maintenance. 

Studies using different rodent strains in ALD have shown that the strain can have a 

significant effect on multiple aspects of ALD pathogenesis, including alcohol metabolism, 

inflammation, fat accumulation and stress response. It is also very difficult to sterilize the 

liquid Lieber DeCarli diet every day and to keep germ-free status in animal facilities.

To overcome the limitations of germ-free mice, microbiota humanized mice have been used 

in studies of ALD.70 Humanization of mice using human intestinal microbiota transplants 

from ALD patients showed significant differences between germ-free and conventional 
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mice.18 The germ-free mice receiving the intestinal microbiota from a patient with severe 

AH developed more severe liver inflammation, greater liver necrosis, greater intestinal 

permeability and more translocation of bacteria to the liver than in mice transplanted with 

intestinal microbiota from an alcoholic patient without AH. Interestingly, in conventional 

mice humanized with the intestinal microbiota from a severe AH patient, a second 

subsequent transfer of intestinal microbiota from patients without AH improved alcohol-

induced liver lesions. Although such a strategy cannot be used in the clinical setting due to 

the ethical concerns, humanized microbiota animal models can offer a better understanding 

of the associations between microbiota and ALD. The importance of intestinal microbiota in 

ALD is further demonstrated by fecal microbiota transplantation (FMT) between mice that 

are housed in different facilities.71 Two groups of mice were housed in two nearby facilities, 

and the mice in one facility developed ALD (alcohol-sensitive) and the mice in other facility 

did not (alcohol-resistant), despite a similar alcohol intake. Alcohol induced hepatic steatosis 

and liver inflammation, which were associated with gut dysbiosis in the alcohol-sensitive 

mice. Importantly, transplantation of intestinal microbiota from the resistant mice to the 

sensitive mice restored gut flora homeostasis and prevented the development of ALD.

3. Circulating microbiota dysbiosis and ALD

Microscopic studies using bacterial culture have demonstrated that many bacteria can 

survive in a dormant form in blood and inside of red blood cells, and these findings were 

further confirmed by next-generation sequencing techniques.72-75 Changes in blood 

microbiota profiles have been linked to liver fibrosis in obese patients.76 Recent study by 

Puri and colleagues77 determined the circulating blood bacterial microbiota by qualitative 

and quantitative analyses of bacterial DNA in human subjects with moderate AH or severe 

AH, and compared the results with those from heavy drinkers without liver disease and non-

drinkers. Multiple changes in the circulating microbiome were found in heavy alcohol 

consumers with AH and in heavy drinkers without obvious liver disease, and these changes 

are associated with a shift in the metabolic functions of bacteria. Patients with AH had 

higher levels of circulating bacterial DNA compared to non-drinkers and the drinkers 

without liver disease. All alcohol consumers had a significantly decreased Bacteroidetes, and 

an enrichment of Fusobacteria. Functional metagenomics analysis revealed that alcohol 

consumption associated with an increase of bacteria with genes related to methanogenesis 

and denitrification. Heavy alcohol consumption appears to be the primary driver of changes 

in the circulating microbiome associated with a shift in its inferred metabolic functions. 

More studies are required to elucidate the role of the circulating microbiome and its related 

metabolites in the pathogenesis of ALD. Especially, well-designed preclinical animal studies 

on the circulating microbiome will further help to gain insights into the mechanisms of the 

changes produced by alcohol consumption and liver diseases. Nevertheless, the blood 

microbiome analysis provides potential biomarkers for the detection of AH and other forms 

of liver disease.

4. Oral microbiota dysbiosis and ALD

Bacterial infection is frequently observed in patients with ALD. The oral cavity is home to 

several million bacteria that can cause periodontitis and systemic disease.78 The oral 
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microbiota plays an important role in maintaining our health by forming a protective layer in 

the mouth, which prevents colonization by pathogens. If the microbial composition is 

disturbed, the oral microbiota may promote a state of disease in the oral or even extra-oral 

tissues such as the liver. The relation between periodontopathic bacteria and liver diseases 

has been explored in several studies. Oral microbiota dysbiosis is associated with 

autoimmune liver disease,79 non-alcoholic fatty liver disease (NAFLD),80 non-alcoholic 

steatohepatitis (NASH),81 and liver cirrhosis.82 The oral cavity could be an important under-

defined source of inflammation in liver cirrhosis. The emerging role of the oral-gut axis in 

the development and progression of cirrhosis was highlighted by Bajaj et al.83 in a recent 

review article. It is possible that the link between the liver and the oral cavity could be via 

the gut through impaired intestinal integrity that, in turn, could allow direct translocation of 

bacteria and/or their products and inflammatory mediators from the oral cavity to the 

systemic circulation.

Porphyromonas gingivalis (P. gingivalis) is a major pathogen of severe periodontal disease 

(PD). It functions as a keystone pathogen that not only sets the stage for the entire cascade of 

PD by altering the local immune microenvironment, but also enters the blood circulation and 

contributes to multiple systemic diseases.84,85 P. gingivalis can also be swallowed with saliva 

and enter the intestine,86,87 causing liver disease via the gut-liver axis.88 Periodontitis is 

associated with increased hepatic fibrosis in human subjects with NAFLD and P. gingivalis 
worsens steatohepatitis in mice fed a high-fat diet. Interestingly, a program of dental hygiene 

therapy improved NAFLD in humans.80,81,89

Recent studies explored the association of oral disease and oral microbiome with alcohol 

consumption. Alcoholic patients have a pathogenic oral microbiome and worse PD than non-

alcoholic patients,90 and alcoholic patients with a smoking history have higher odds ratio of 

having PD.91 More recently, a study showed an association of P. gingivalis with acute 

alcoholic hepatitis (AAH) development/progression.88 Patients with severe AAH showed 

significantly higher plasma levels of IgG, IgA, and IgM against two P. gingivalis strains 

(W83 and 33277) compared to healthy controls. Patients with moderate AAH also had 

significantly elevated anti-P. gingivalis IgA concentrations of both strains compared to 

healthy controls. Male patients with moderate AAH showed a significant inverse association 

in lifetime drinking history (LTDH) and anti-P. gingivalis IgM. The aspartate 

aminotransferase (AST): alanine aminotransferase (ALT) ratio was positively associated 

with IgM of both P. gingivalis strains in male patients with moderate AAH. Female patients 

with severe AAH showed a significant association between MELD scores and W83 IgM. P. 
gingivalis may be associated with ALD and may function as a confounding factor in AAH. 

This study supports the concept that infection with oral P. gingivalis is associated with both 

progression and severity of AAH, and this association was modestly impacted by sex. 

Further studies are indicated to determine whether treatment of PD may help to prevent or 

attenuate ALD in humans and to understand the cause-effect relation between oral P. 
gingivalis and ALD.
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5. Fungal dysbiosis and ALD

Although intestinal microbiome consists of bacteria, fungi and viruses, almost all the studies 

on ALD and the microbiome focus exclusively on gut bacteria. Dysbiosis of intestinal fungi, 

or mycobiota, has been associated with diseases such as colitis.92-94 A recent study 

demonstrated that intestinal fungi contribute to the development of ALD.95 There are 

significant changes in abundance and composition of intestinal fungi between alcohol-

dependent patients and healthy controls. Fungal diversity was lower in alcoholics than 

controls. A dramatic overgrowth of Candida, with concomitant decreases in Epicoccum, 

Galactomyces and Debaryomyces was observed in alcoholics. Interestingly, the degree of 

exposure to fungal products correlates with mortality of patients with cirrhosis from alcohol 

abuse but not viral hepatitis. Although this study supports the importance of the mycobiota 

for patients with ALD, a larger, prospective study is required to confirm data from this 

retrospective analysis of human subjects.

Chronic alcohol feeding increased fungi populations and translocation of β-glucan, a fungi 

cell wall component, into systemic circulation in mice. Once relocated inside the liver, β-

glucan binds certain immune cells and triggers inflammation, which ultimately promotes 

ALD. Treatment of alcohol-fed mice with an antifungal compound, amphotericin B, protects 

mice from alcohol-induced liver disease.95 This study demonstrated a potential important 

role of fungal dysbiosis in the development of ALD. Manipulation of the intestinal 

mycobiome might be an effective strategy for treatment of alcohol-related liver disease.

6. Treatments targeting microbiome in ALD

Restoration of gut eubiosis is the major aim of gut-microbiota based therapies in ALD. 

Several approaches including diet modulation, probiotics, prebiotics, antibiotics, antifungals 

intervention, engineered-bacteria therapy, fecal bacteria transplantation and oral hygiene 

have proven to be effective in alleviating alcohol-induced liver injury through positively 

modifying gut microbiota.

Dietary supplements have received increasing interest in ALD management. It has been 

shown that unsaturated fat together with alcohol consumption is harmful in ALD. 

Supplementation of saturated fat (medium chain triglycerides enriched) in mice with chronic 

alcohol feeding restored gut microbiota profiles and reduced alcohol-induced gut barrier 

dysfunction.45 Alcohol consumption is often associated with micronutrient deficiency, such 

as vitamins and zinc. Zinc deficiency occurs as early as after two weeks of alcohol feeding 

in mice, and alcohol-induced zinc deficiency could also be detected in the small intestine, 

and this exacerbates gut barrier dysfunction caused by alcohol. Supplementation with zinc 

restored microbiota and gut barrier function.96,97

Many other dietary supplements have been studied for the prevention/treatment of ALD in 

animal models. Dietary flaxseed oil was shown to protect the liver from alcohol-induced 

injury, likely through gut microbiota modulation.98 Herbal supplements have also been used 

to target gut microbiota in ALD.99
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It is logical that antibiotic use may restrict pathogenic bacteria in ALD management. 

Intestinal sterilization was used as a prevention strategy for alcohol-induced liver injury in 

rats as early in 1995.100 Fecal culture of stool samples from ethanol-fed rats treated with 

antibiotics showed virtually no growth of Gram-negative bacteria, and rats receiving 

antibiotics had reduced endotoxin levels and liver injury.100 Non-absorbable antibiotics have 

been used to reduce ALD in mice.19 In patients with ALD, treatment with antibiotics led to 

an improvement in the Child-Pugh score and cirrhosis index.101,102 These findings might be 

related to the reduction of endotoxemia resulting from intestinal decontamination, and 

highlighted the therapeutic potential of antibiotics in treating ALD. However, antibiotic 

treatment frequently induces diverse off-target side-effects by killing a wide set of microbes 

outside of the desired target, including increased susceptibility to pathogenic bacteria, such 

as Clostridium difficile.103

Another approach targeting microbiome dysbiosis in ALD is the use of probiotics. A variety 

of probiotic strains have been administrated to rodents for the prevention/treatment of 

experimental ALD.104 Among those, Lactobaciilus rhamnosus GG (LGG) is the most 

frequently used strain. LGG administration to rodents on chronic alcohol exposure reduced 

liver injury and steatosis.105 The beneficial effects of LGG were associated with gut 

microbiota modification, improved intestinal tight junction protein expression, and reduced 

serum endotoxin levels. VSL#3 was demonstrated to be effective in modulating gut 

microbiota and protecting against alcohol-induced intestinal barrier dysfunction.106 A 

combination treatment using Lactobacillus acidophilus, Lactobacillus helveticus and 

Bifidobacterium in rats with alcoholic pancreatitis-related liver damage effectively protected 

against endotoxin/bacteria translocation, as well as liver damage in the course of acute 

pancreatitis and concomitant heavy alcohol consumption.107

While many reports have studied the effects of probiotics in experimental ALD, clinical data 

are limited. Effectiveness of the probiotic Lactobacillus casei Shirota on the alcoholic 

cirrhosis patients was evaluated in a small open-labeled study (N = 12).108 Compared to the 

control group, cirrhotic patients who received the probiotics for 4 weeks had a significantly 

lower TLR4 expression as well as soluble tumor necrosis factor receptor 1 (sTNFR1) and 

sTNFR2 levels, along with a restored neutrophil phagocytic activity, suggesting that the 

probiotic is safe and may be effective in the treatment of patients with defective immunity. 

Administration of a synbiotic mixture of different bacteria strains improved liver damage 

and function in 10 alcoholic liver cirrhosis patients.109 Notably, the effects seemed to be 

partially persistent. In humans, Kirpich et al.31 demonstrated that after 5 days of treatment 

with Bifidobacterium bifdum and Lactobacillus plantarum 8PA3, mild AH patients had a 

significant end-of-treatment reduction of ALT, AST, lactate dehydrogenase and total 

bilirubin. These improvements were associated with changes in the fecal commensal 

bacteria Bifidobacteria and Lactobacilli.

Probiotic treatments on multiple pathological disorders are not always effective due to the 

viability of these beneficial bacteria.110,111 Colonization of the gut is essential for live 

bacteria in order to confer their beneficial effects. However, in many disease conditions 

including ALD, there is an augmentation of pathogenic bacteria, which could dampen the 

ability of probiotics to colonize the gut. Drugs, in particular antibiotics, used by patients may 
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be harmful to live probiotics. Therefore, an unstable and variable effect of live probiotics 

may occur. Moreover, the clinically recommended dose of probiotics usually consists of 

billions of live bacteria, and ingesting such large amounts of bacteria raises safety concerns, 

especially for patients with compromised intestinal function and immune response.112,113

In fact, soluble factors secreted from probiotics and dead probiotics have been shown to be 

effective in treating several diseases conditions such as inflammatory bowel disease, colitis, 

and arthritis.114-116 Yan et al.117 demonstrated that soluble proteins produced by probiotic 

bacteria regulate intestinal epithelial cell survival and growth. Oral administration of heat-

killed Lactobacillus brevis SBC8803 has also been shown to ameliorate ALD in mice by 

inducing the expression of cytoprotective heat shock proteins and improving intestinal 

barrier function.118 The effectiveness of LGG culture supernatant in the prevention of acute 

and chronic alcohol-induced hepatic steatosis and liver injury has been investigated by our 

group.50,119,120 Pretreatment with LGG supernatant (LGG-s) reduced hepatic fat 

accumulation in mice in an acute-binge alcohol model.50 We also demonstrated that co-

administration of LGG-s with alcohol using the Lieber DeCarli liquid diet for 4 weeks 

significantly prevented alcohol-induced intestinal barrier dysfunction, endotoxemia, fatty 

liver and inflammation in mice.119,120 The use of probiotic culture supernatant opens a new 

avenue for probiotic application. Further characterization of the LGG-s active components 

will enhance our understanding of the protective effects of probiotics in ALD and advance 

the development of new therapeutic strategies for ALD.

Genetically modified-bacteria have also been evaluated for the treatment of ALD. 

Administration of engineered Lactobacillus reuteri to produce interleukin-22 (IL-22) (L. 
reuteri/IL-22) in mice on chronic alcohol exposure reduced liver damage, inflammation and 

bacterial translocation to the liver compared with mice fed an isogenic control strain. The 

beneficial effects were associated with up-regulated intestinal expression of Reg3G, which 

plays a pivotal role in gut microbiota homeostasis.121

FMT as a therapeutic strategy has been used in disease treatment involving intestinal 

bacterial infection.122 Preclinical studies showed that transplanting feces from alcohol-

resistant donor mice to alcohol-sensitive recipient mice resulted in prevention of alcohol-

induced gut dysbiosis and hepatic steatohepatitis.71,123,124 There also have been small 

studies suggesting beneficial effects of fecal transplantation in AH and in patients with 

hepatic encephalopathy.125,126 Nevertheless, this approach should be cautiously applied to 

the therapy of ALD patients in the future. Recent reports of one patient's death and another 

patient suffering an invasive infection caused by extended-spectrum β-Lactamase-producing 

Escherichia Coli after receiving fecal microbiota transplants from the same donor has raised 

an alert on FMT. The Food and Drug Administration (FDA) has therefore halted clinical 

trials on fecal microbial transplantation due to this occurrence.

7. Summary

Increasing evidence suggests that the bacterial microbiome has a major role in ALD. 

Alcohol-induced bacterial microbiome alterations are associated with changes of bacterial 

pathogen-derived molecules, intestinal immune defenses, Paneth and Goblet cell secretion, 
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intestinal tight junction protein expression, and integrity of gut barrier. All of these factors 

appear to play an integrated role in the development/progression of ALD. On the other hand, 

liver metabolism and immune regulation in ALD seem to affect intestinal bacterial 

microbiome. Although we have some understanding of the interactions between the 

intestinal bacterial microbiome and the host, further studies to better characterize 

microbiome changes and the interactions between these components are needed in additional 

to animal models to mimic different stages of ALD and in larger cohorts of patients. Routine 

monitoring of the changes in the bacterial microbiome may help to develop more 

personalized approach targeting microbiome for the prevention/treatment of ALD in 

different stages. In addition, the intestinal fungal microbiome and oral bacterial microbiome 

seem to also play an important role in ALD. Although we are still in the early stages in 

understanding the role of fungal microbiome and oral bacterial microbiome in ALD, 

targeting these microbiome communities provides additional opportunities to develop 

approaches for ALD treatment (Fig. 1).
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Fig. 1. Bacterial and fungal microbiome in ALD.
Alcohol consumption causes intestinal and oral microbiome (bacterial and fungal) dysbiosis 

and alterations in the products of these microorganisms. Alcohol-caused damages in 

intestinal and oral barrier dysfunction allows the translocation of bacteria and fungi and the 

harmful metabolites to the liver and causes liver injury. Circulating microbiome could serve 

as biomarker of ALD development/progression. Targeting intestinal and oral microbiome 

provides a potential strategy for prevention/treatment of ALD. Abbreviations: LPS, 

lipopolysaccharide; SCFAs, short chain fatty acids; BAs, bile acids; FMT, fecal microbiota 

transplantation.
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