
Original Article

 J. Clin. Biochem. Nutr. | November 2020 | vol. 67 | no. 3 | 283–289doi: 10.3164/jcbn.20�46
©2020 JCBN

JCBNJournal of Clinical Biochemistry and Nutrition0912-00091880-5086the Society for Free Radical Research JapanKyoto, Japanjcbn20-4610.3164/jcbn.20-46Original ArticleEffects of dietary fiber on vascular calcification 
by repetitive diet�induced fluctuations in plasma 
phosphorus in early�stage chronic kidney 
disease rats
Mariko Tani,1 Sarasa Tanaka,1 Kana Takamiya,2 Yoji Kato,1 Gaku Harata,3 Fang He,3 Motoyoshi Sakaue,1 
and Mikiko Ito1,*

1Graduate School of Human Science and Environment and 2School of Human Science and Environment, University of Hyogo, 
1�1�12 Shinzaike�Honcho, Himeji, Hyogo 670�0092, Japan
3Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Kanagawa 241�0023, Japan

*To whom correspondence should be addressed.    
E�mail: mito@shse.u�hyogo.ac.jp

??(Received 31 March, 2020; Accepted 12 April, 2020; Published online 6 August, 2020)

Copyright © 2020 JCBN2020This is an open access article distributed under the terms of theCreative Commons Attribution License, which permits unre-stricted use, distribution, and reproduction in any medium, pro-vided the original work is properly cited.Vascular calcification progresses under hyperphosphatemia, and

represents a risk factor for cardiovascular disease in chronic kid�

ney disease (CKD) patients. We recently indicated that phospho�

rus (P) fluctuations also exacerbated vascular calcification in early�

stage CKD rats. Dietary fiber intake is reportedly associated with

cardiovascular risk. This study investigated the effects of dietary

fiber on vascular calcification by repeated P fluctuations in early�

stage CKD rats. Unilateral nephrectomy rats were used as an

early�stage CKD model. For 36 days, a P fluctuation (LH) group

was fed low�P (0.02% P) and high�P (1.2% P) diets alternating

every 2 days, and a P fluctuation with dietary fiber intake (LH + F)

group was fed low�P and high�P diets containing dietary fiber

alternating every 2 days. The effect on vascular calcification was

measured calcium content. Effects on uremic toxin were measured

levels of indoxyl sulfate (IS) and investigated gut microbiota. The

LH + F group showed significantly reduced vessel calcium content

compared to the LH group. Further, dietary fiber inhibited

increases in blood levels of IS after intake of high�P diet, and

decreased uremic toxin�producing intestinal bacteria. Dietary fiber

may help suppress progression of vascular calcification due to

repeated P fluctuations in early�stage CKD rats by decreasing ure�

mic toxin�producing intestinal bacteria.

Key Words: hyperphosphatemia, vascular calcification, indoxyl 
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IntroductionHyperphosphatemia is a trigger for vascular calcification in
chronic kidney disease (CKD).(1,2) Progression of vascular

calcification is a risk factor for cardiovascular disease (CVD), and
represents a major cause of death among CKD patients and
hemodialysis patients.(3) Prevention of hyperphosphatemia is
therefore important to limit progression of vascular calcification
among CKD patients. Recently, transient hyperphosphatemia
has also been reported to affect vessels.(4–6) Transient plasma
phosphorus (P) elevations are known to cause vascular endothelial
dysfunction in healthy men.(4) Repeated, transient elevations in P
increase inflammatory factors and oxidative stress, and cause
vascular endothelial dysfunction in normal rats.(5) Vascular endo-
thelial dysfunction has been reported to trigger atherosclerosis,
and is an important risk factor for CVD.(7,8) Furthermore, our pre-
vious study demonstrated that vascular calcification in a rat model
of early-stage CKD was exacerbated by repeated P fluctuations,
despite having the same total P intake as a group receiving a
normal P diet.(6) We therefore considered that it is important to

avoid not only chronic hyperphosphatemia, but also P fluctuations
due to diet.

P fluctuations occur in all individuals due to circadian
rhythms.(9,10) In particular, P fluctuation is considered to often
occur in CKD and dialysis patients. Many dialysis patients take
P binders on a daily basis to improve hyperphosphatemia.(11)

However, adherence to P binders is low, and many patients forget
to take these agents.(12–14) As a result, P fluctuations occur when the
patients forgets to take P binders. For these reasons, a focus on
preventing repetitive P fluctuations is important in CKD patients.

Hyperphosphatemia is reportedly suppressed by soluble dietary
fiber in 5/6 nephrectomy rats, as a model of advanced CKD.(15) In
addition, we have previously demonstrated that intake of guar
gum, as a type of soluble dietary fiber, improves vascular endo-
thelial function in healthy men.(16) In addition, increased intake of
dietary fiber retards decreases in estimated glomerular filtration
rate (eGFR) and is negatively associated with cardiovascular risk
in CKD patients.(17) Several studies have reported that dietary fiber
may reduce serum concentrations of uremic toxins.(18,19) In a state
of reduced renal function such as in CKD, excretion of the uremic
toxin indoxyl sulfate (IS) decreases and IS thus accumulates in
the body.(20–22)

IS has been reported to exacerbate production of inflammation
and oxidative stress in multiple cell types,(23–26) and has been
associated with vascular calcification.(27) In addition, IS is a
harmful vascular toxin, and triggers induction of vascular calcifi-
cation in CKD rats and patients.(28–31) IS is thus a risk factor for
the progression of CVD, and managing IS is important for CKD
patients.

Several studies have reported that unilateral nephrectomy rats
show mild renal insufficiency.(32–34) We have previously used
unilateral nephrectomy rats as an early-stage CKD model, and
demonstrated that repeated P fluctuations exacerbated vascular
calcification in these rats.(6) However, no reports appear to have
examined effective diets to prevent progression of vascular calci-
fication due to P fluctuations in early-stage CKD.

The present study investigated the effects of dietary fiber on
the exacerbation of vascular calcification caused by repeated P
fluctuations in rats with early-stage CKD.
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Materials and Methods

Animals and experimental design. All study protocols
were approved by the Ethics Committee of the University of
Hyogo, School of Human Science and Environment. As a model
of early-stage CKD, rats that had received unilateral nephrectomy
were used. Eleven-week-old male Sprague-Dawley rats receiving
unilateral nephrectomy at 10 weeks old were purchased from
Japan SLC (Shizuoka, Japan). Rats were maintained on a 12-h
light, 12-h dark cycle (09:00–21:00) and allowed free access to
extra-pure water.

The experimental design is shown in Fig. 1. The experimental
diets used were a high-P diet [1.2% P, 0.6% calcium (Ca)], a
control-P diet (0.6% P, 0.6% Ca) and a low-P diet (0.02% P, 0.6%
Ca) based on a commercial diet with casein as the protein source
(AIN93-G; Oriental Yeast, Tokyo, Japan).(5,35) Before grouping,
all rats (n = 28) were fed MF (Oriental Yeast) for 1 week to allow
acclimatization. At 12 weeks old, rats were divided into four
groups, with each group fed a specific diet for 36 days. The HP
group (n = 7) was fed the high-P diet and the CP group (n = 6) was
fed the control-P diet. The P fluctuation group (LH group) (n = 7)
was alternately fed the low-P diet and the high-P diet, swapping
every 2 days. The P fluctuation with dietary fiber intake group
(LH + F group) (n = 8) was alternately fed the low-P diet and the
high-P diet containing 3% dietary fiber, swapping every 2 days.
The dietary fiber used was partially hydrolyzed guar gum (PHGG)
(Sunfiber; Taiyo-labo, Tokyo, Japan), a soluble dietary fiber. The
amount of PHGG added to the diet was based on previous
studies.(16) During the experimental period, rats were fed each diet
under pair-feeding conditions at 11:00, and food intake was
recorded daily. Blood samples were taken from the tail vein
between 10:00 and 11:00 every 2 days until 32 days, although
blood collection after that proved difficult due to blood vessel
damage. Urine volume was recorded every 6 days. After 36 days,
rats of all groups were administered anesthetic using isoflurane
(Wako Pure Chemical Industries, Osaka, Japan) and laparotomized.
Blood samples taken from the inferior vena cava, thoracoabdominal
aorta, heart, spleen, and remaining kidney were collected for
analysis.

Biochemical parameters. Biochemical parameters were
measurement as described previously.(6) Briefly, plasma and urine
levels of P, Ca, and creatinine (Cr) were measured using test kits
(Wako Pure Chemical Industries). Plasma C-reactive protein

(CRP) levels were measured using the Rat CRP ELISA Kit
(Thermo Fisher Scientific, Tokyo, Japan). Plasma tumor necrosis
factor (TNF)-a levels were measured using the Rat TNF-a
Quantikine ELISA Kit (R&D Systems, Minneapolis, MN).
Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were
measured using the Highly Sensitive 8-OHdG Check ELISA kit
(JaICA, Shizuoka, Japan).

Measurement of vessel Ca content. Ca content was mea-
surement as previously described.(6) Briefly, the aorta was hydro-
lyzed in 6-M hydrochloric acid for 48 h. The calcium content in
supernatant was measured using the Calcium-E test kit (Wako
Pure Chemical Industries) and corrected for tissue weight.

Measurement of IS levels. IS was determined according to
a previously described method(36) with some modification. Briefly,
sample (or standard IS) solution was diluted by 10 volumes of
acetonitrile containing 0.2 mg/ml IS-d4 (Toronto Research
Chemicals, Toronto, Canada). After centrifugation, supernatant
was further diluted 10-fold with water and 5 ml of sample was then
injected using an ExionLC™ AD connected with a quadruple
time-of-flight (Q-TOF) tandem mass spectrometer (X500R; Sciex,
Framingham, MA). Separation was performed using a Hypersil
GOLD column (1.9 mm, 2.1 ´ 100 mm; Thermo Fisher Scientific)
with gradient elution at a flow rate of 0.4 ml/min. Solvent A was
0.1% formic acid in water and solvent B was acetonitrile. The
gradient program was as follows: 0 min, 20% B; 1 min, 20% B;
3 min, 95% B; 4 min, 95% B; 5 min, 20% B; 10 min, 20% B.
Quantification of IS was performed in TOF-MS mode with
negative electrospray ionization as follows. IS, [M–H]- 212.0023 ±

0.02; IS-d4, [M–H]- 216.0269 ± 0.02 (internal standard). Ion
spray voltage was set at -4,500 V, and the turbo spray temperature
was set at 350°C.

Analysis of gut microbiome. DNA extraction from 200 mg
of stool sample on day 36 was carried out using NucleoSpin®

DNA Stool kit (MACHEREY-NAGEL GmbH & Co. KG, Duren,
Germany), based on the instructions from the manufacturer. DNA
concentration and quality of purified DNA were analyzed using a
QUBit fluorometer (Thermo Fisher Scientific) and TapeStation
(Agilent, Santa Clara, CA). A 16S library was constructed
according to the 16S Metagenomic Sequencing Library Prepara-
tion protocol recommended by Illumina (San Diego, CA).
Polymerase chain reaction (PCR) on a TaKaRa Cycler Dice Touch
(TaKaRa, Kusatsu, Japan) was performed with 2 ´ KAPA HiFi
HotStart ReadyMix (Roche, Basel, Switzerland) under the

Fig. 1. Experimental design. The HP and CP groups were continuously fed the high�P (1.2%) diet and the control�P (0.6%) diet, respectively for 36
days. The LH group was alternately fed the low�P (0.02%) and high�P diet, swapping every 2 days for 36 days. The LH + F group was alternately fed
the low�P (0.02%) and high�P diets containing 3% dietary fiber, swapping every 2 days for 36 days. White triangle denote measurement points of
plasma indoxyl sulfate. Gray triangle denote measurement point of serum indoxyl sulfate.
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following conditions: initial denaturation at 95°C for 3 min,
followed by 25 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C
for 30 s, and ended with an extension step at 72°C for 5 min.
DNA concentration and size distribution of ready libraries were
analyzed with the QUBit fluorometer and TapeStation. PCR
products were purified using AMPure XP magnetic beads
(Beckman Coulter, Brea, CA) diluted into an equimolar concen-
tration and pooled according to the unique barcode sequence,
enabling multiplexing. Next, Illumina dual-index barcodes were
added to pooled PCR products with the Nextera XT Index Kit
(Illumina, San Diego, CA). Indexed PCR products were purified
and pooled into equimolar concentrations prior to paired-end
sequencing with a MiSeq Reagent Kit v3 (600-cycle; Illumina),
following the directions from the manufacturer. For microbial
sequence analysis, low-quality sequences were filtered and
chimeric sequences were removed using USEARCH software
(ver. 6.1.544). The QIIME ver. 1.9.1 pipeline was used with
default parameters for identifying representative sequences for
each operational taxonomic unit (OTU) generated from complete
linkage clustering with 97% similarity and aligned to the
GreenGenes 13_8 database. OTU tables with percentage relative
abundances were further processed at different taxonomic levels.
a-Diversity indices including Chao1, Shannon and Simpson and
b-diversity calculations were performed and visualized with
QIIME script core_diversity_analyses.py. b-Diversity calcula-
tions were visualized using principal coordinate analysis plots
(PCoA), based on unweighted UniFrac.

Statistical analysis. Data are expressed as mean ± SE, median
(interquartile range), and count (percentage) as appropriate.
Differences between HP and CP groups were analyzed using
Student’s t test or the Mann-Whitney U test, as appropriate.
Differences among CP, LH and LH + F groups were analyzed
using the Tukey-Kramer or Steel-Dwass test, as appropriate. For
all tests, two-tailed p values <0.05 were considered statistically
significant.

Results

Early�stage CKD model rat data on day of sacrifice.
Total P intake per body weight in the HP group was approximately
double that in the CP, while no significant differences were seen
between LH and CP groups, as described in our previous study

(Table 1).(6) In these three groups, plasma levels of P, Ca and Cr
were not significantly different. Urinary P excretion at 24 h before
sacrifice was significantly higher in the LH group than in the CP
group, as was the HP group. Renal weight was significantly higher
in the HP group than in the CP group, but no significant
differences were seen between the LH and CP groups. Urinary 8-
OHdG level, as a marker of oxidative stress, was significantly
higher in the LH group than in the CP group, as was the HP group.
These suggested oxidative stress level advanced in the LH group
than in the CP, despite receiving the same total P intake.

To investigate the effects of dietary fiber intake on exacerbation
of vascular calcification resulting from P fluctuations in this study,
we focused on the LH + F group, which was alternately fed

Table 1. Body weight and biochemical data at sacrifice day

HP, high�P diet group; CP, control�P diet group; LH, alternating low�P and high�P diet group; LH + F, alternating low�P and high�P contained
dietary fiber diet group. Values are mean ± SE. Sharp denote statistical significance between the HP and the CP groups using Student’s t test.
#p<0.05. Asterisks denote statistical significance between the groups with the same phosphorus intake using Turkey�Kramer test. *p<0.05 vs CP.

HP(6) CP(6) LH(6) LH + F

Total P intake (g) 12.56 ± 0.18# 6.43 ± 0.09 6.33 ± 0.16 5.84 ± 0.23

Body weight (g) 420.54 ± 7.28 427.30 ± 9.54 437.04 ± 5.78 420.59 ± 13.01

Total P intake (g)/Body weight (100 g) 2.99 ± 0.04# 1.51 ± 0.05 1.45 ± 0.03 1.39 ± 0.05

Plasma (mg/dl)

P 5.76 ± 0.45 5.26 ± 0.34 5.52 ± 0.41 5.50 ± 0.25

Ca 9.21 ± 0.43 10.02 ± 0.50 9.55 ± 0.19 10.39 ± 0.21

Cr 0.63 ± 0.04 0.62 ± 0.03 0.64 ± 0.03 0.66 ± 0.04

Urine (mg/day)

P 95.07 ± 11.70# 34.69 ± 6.41 87.13 ± 9.07* 75.91 ± 8.39*

Ca 0.84 ± 0.34 0.47 ± 0.14 0.52 ± 0.10 1.25 ± 0.60

Cr 9.76 ± 1.40 7.11 ± 1.33 8.98 ± 0.80 8.63 ± 0.88

Renal weight (g) 2.17 ± 0.12# 1.75 ± 0.03 1.74 ± 0.05 1.61 ± 0.06

Heart weight (g) 1.13 ± 0.04 1.13 ± 0.02 1.04 ± 0.03 1.06 ± 0.03

Spleen weight (g) 0.86 ± 0.04 0.88 ± 0.03 0.82 ± 0.02 0.88 ± 0.05

Plasma CRP (mg/ml) 569.56 ± 38.03 537.85 ± 23.69 496.82 ± 24.15 479.35 ± 12.08

Plasma TNF�a (pg/ml) 1.79 ± 0.19 1.09 ± 0.32 1.12 ± 0.17 1.68 ± 0.14

Urinary 8�OHdG (ng/day) 73.66 ± 12.21# 31.23 ± 5.57 84.83 ± 12.25* 60.71 ± 11.68

Fig. 2. Effects of dietary fiber on vascular calcification. Quantification
of Ca content in the thoracoabdominal aorta. HP, high�P diet group; CP,
control�P diet group; LH, alternating low�P and high�P diet group;
LH + F, alternating low�P and high�P containing dietary fiber diet
group. Values are given as mean ± SE. Sharp denotes statistical signifi�
cance between the HP and CP groups using Mann�Whitney’s U test.
Asterisks denote statistical significance among the CP, LH and LH + F
groups using the Tukey�Kramer test. #p<0.05, *p<0.05, **p<0.01.
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low- and high-P diets containing 3% dietary fiber every 2 days.
We therefore compared the LH + F group with the CP and LH
groups that had no significant difference in total P intake per body
weight. Plasma levels of P, Ca and Cr did not differ among CP, LH
and LH + F groups. Urinary P excretion 24 h before sacrifice did
not differ between LH and LH + F groups. Urinary 8-OHdG levels
tended to be lower in the LH + F group than in the LH group.

Effects of dietary fiber on vascular calcification. To in-
vestigate the effects of dietary fiber on vascular calcification,
Ca content in the aorta was measured (Fig. 2). Ca content was
significantly higher in the HP group than in the CP group, and
the LH group was also significantly higher than the CP group.(6)

Interestingly, Ca content was significantly lower in the LH + F
group than in the LH group. We therefore examined the following
to investigate the mechanisms by which intake of dietary fiber
suppressed progression of vascular calcification.

Effects of dietary fiber on indoxyl sulfate. To determine
the effects of dietary fiber on uremic toxins, IS levels were mea-
sured (Fig. 3). Serum IS on the day of sacrifice was significantly
higher in the HP group than in the CP group (Fig. 3A). Comparing

CP, LH and LH + F groups, none of which showed any difference
in total P intake, the LH group showed significantly higher serum
IS than the CP group. Interestingly, the LH + F group showed
significantly lower IS than the LH group, and similar levels to
those of the CP group. Urinary IS excretion 24 h before sacrifice
were dependent on serum IS in all groups. These results suggested
that excretory function was maintained, and dietary fiber intake
may be effective in suppressing IS production.

We examined the time course of plasma IS levels, because
differences in P concentration of the preceding diet among the
four groups could have affected IS production (Fig. 3B). From day
0 to 8, no significant differences were seen among all groups (data
not shown). At all points from day 26 to 32, plasma IS levels were
significantly higher in the HP group than in the CP group. There
was no significant change over time of plasma IS in both the HP
and CP groups, respectively. However, in the LH group, plasma IS
increased after intake of the high-P diet and decreased after intake
of the low-P diet. This indicated that plasma IS levels fluctuated
according to the amount of P in the diet. Interestingly, the LH + F
group suppressed the increase of plasma IS levels after intake of

Fig. 3. Effects of dietary fiber on indoxyl sulfate (IS). (A) Serum IS and urinary IS at 36 days. (B) Change over time in plasma IS from 26 to 32 days.
HP, high�P diet group; CP, control�P diet group; LH, alternating low�P and high�P diet group; LH + F, alternating low�P and high�P containing dietary
fiber diet group. Sharp denotes a significant difference between the HP and CP groups using Student’s t test. Asterisks denote statistical significance
among the CP, LH and LH + F groups using the Tukey�Kramer test. Dagger denotes statistical significance before 2 days in the same group using the
Tukey�Kramer test. #p<0.01, *p<0.05, **p<0.01, †p<0.01.
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high-P diet to the same extent seen after intake of control-P diet.
Influences of dietary fiber on the gut microbiome. We 

investigated the effects of dietary fiber on gut microbiota, since IS
produced by the gut microbiota (Fig. 4). The evenness and
richness of gut microbiota in the four groups on day 36 were
determined using the Chao1, Shannon and Simpson index
(Fig. 4A). Chao1 and Shannon index were significantly lower in
the LH + F group than in the CP and LH groups. Simpson index
was significantly lower in the LH + F group than in the LH group.
In addition, differences between groups were also found in

principal coordinate analysis and in the composition of gut
microbiome at the phylum level (Fig. 4B and C).

To determine the effects of dietary fiber on the gut microbiota
reportedly involved in IS production (Fig. 4D). Bacteroides genus
and Desulfovibrio genus tended to be present at high levels in the
HP and LH groups, but were present at significantly lower levels
in the LH + F group. These results suggested that continuing
intake of dietary fiber only on a high-P diet may change the
intestinal environment to reduce IS-producing gut bacteria.

Fig. 4. Effects of dietary fiber on gut microbiota. (A) The a�diversity index of Chao1, Shannon and Simpson of gut microbiota. Boxplots indicate
the smallest and largest values, 25th and 75th percentiles, medians and outliers. Asterisks denote statistical significance among the CP, LH and
LH + F groups using the Steel�Dwass method. *p<0.05, **p<0.01. (B) Principal coordinates analysis based on unweighted UniFrac distances. (C) Rela�
tive abundance of gut microbiota at the phylum level. (D) Relative abundance of Bacteroides and Desulfovibrio, as IS�producing gut bacteria.
Asterisks denote statistically significant difference among the CP, LH and LH + F groups using the Tukey�Kramer test. **p<0.01. HP, high�P diet
group; CP, control�P diet group; LH, alternating low� and high�P diet group; LH + F, alternating low� and high�P diet containing dietary fiber group.
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Discussion

We investigated the effects of dietary fiber on early-stage CKD
rats, and showed dietary fiber intake inhibited progression of
vascular calcification due to repeated P fluctuations. Further, we
indicated that intake of dietary fiber decreased uremic toxin-
producing gut microbiota, and suppressed increased levels of
blood IS after intake of high-P diets.

The source of IS production is considered to be largely the
intestinal bacteria,(37) and dietary fiber has been reported to
suppress IS production.(18,38) The dietary fiber used was PHGG, a
soluble dietary fiber. Changes in the intestinal environment are
well known to affect soluble dietary fiber intake.(39) PHGG is
easily fermented and decomposed by intestinal bacteria, and
intestinal bacteria easily produce short-chain fatty acids (SCFAs),
such as butyric acid.(40–43) SCFAs are considered to change
intestinal pH and reduce production of putrefactive products in the
intestine. The present study revealed significant reductions in
Bacteroides and Desulfovibrio at the genus level. Several studies
have reported theses bacteria as candidates for production of
uremic toxins.(44–46) Intake of dietary fiber may thus have direct
effects on production of uremic toxin-producing bacteria. From
these results, although plasma IS levels increase after intake of
high-P diet, intake of dietary fiber likely suppressed these. In
addition, the repeated suppression of IS increase was considered
to lead to inhibit the progression of vascular calcification due to P
fluctuations. Our results also support findings from previous
studies,(18,38) and suggested that intake of dietary fiber on a high-P
diet may inhibit the vascular calcification induced by P fluctua-
tions in early-stage CKD rats. Further studies are needed to clarify
the mechanisms by which dietary fiber reduces IS-producing gut
bacteria. Examination of the effects of dietary fiber intake on the
production of uremic toxins other than IS is also necessary.

IS is made from tryptophan, an amino acid present in the diet,
and is produced in the liver after conversion to indole by intestinal
bacteria.(37) In the present study, no difference in the amount of
protein in the diet was seen between groups. Nevertheless, plasma
IS levels fluctuated depending on the amount of P in the diet. From
this result, it is considered that not only amino acids, but also P
may be involved in the production of IS under conditions of
impaired renal function. Further, we considered that increases in
blood IS led to P fluctuations significantly promoting increases in
oxidative stress and progression of vascular calcification com-
pared to the group with intake of a normal P diet. Although further
researches are needed to clarify the mechanisms by which P is
involved to the production of IS under conditions of reduced renal
function, these results suggest the importance of managing P
intake as well as protein in reducing IS production among CKD
patients.

The influence of P has been also shown to difference depend on
the form of P.(47,48) P intake from the diet is classified as organic P
from natural foods, or inorganic P from food additives. The rate of
absorption of inorganic P is high than organic P,(49,50) and we have
previously reported inorganic P has a stronger influence on
vascular endothelium function than organic P in healthy men.(47) In
addition, organic P is classified as animal-derived P and plant-

derived P. In healthy subjects, the decrease in serum P levels have
been reported to be lower after the intake of the milk, an animal
product, than after the intake of the soymilk, a plant product.(48)

This result may be because the bioavailability of animal-derived P
is higher than that of plant-derived P in human. Further researches
are needed to clarify differences in effect of dietary fiber and/or
in production of IS depending on the P form.

Previous studies have shown that 5% wakame significantly
decreased plasma P levels in 5/6 nephrectomy rats.(15) The wakame
powder used in that study contained 2.66% dietary fiber.(51)

Another study that showed effects on intestinal absorption of iron
in anemic growing rats used 7.5% PHGG.(52) We therefore added
3% dietary fiber to the diet in this study. However, this amount
of dietary fiber is considered too high for humans. Further studies
are thus needed to clarify suitable dosages for CKD and dialysis
patients. In addition, investigations using not only PHGG but also
other types of dietary fiber are needed to determine fiber types
affecting the results of this study.

Our studies used diets with extreme P concentrations, to cause
clear fluctuations in plasma P levels. Further research is needed to
clarify the effects of dietary fiber on P fluctuations from normal P
to high P. Fluctuations in P often occur in CKD and dialysis
patients, and could represent a risk factor for CVD.(5,6,9) The
present results will thus likely prove useful for devising diets to
suppress progression of CVD in CKD and dialysis patients.

In conclusion, we demonstrated that intake of dietary fiber
concomitant with intake of a high-P diet may suppress progression
of vascular calcification due to repeated P fluctuations through
decreases in the intestinal bacteria that produce uremic toxins. The
present results may provide evidence for the intake of dietary
fiber on a high-P diet as a useful approach to preventing vascular
calcification due to repeated P fluctuations and may lead to pre-
vention of cardiovascular decease in early-stage CKD patients.
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