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Dietary restriction (DR) is believed to be one of the most promising approaches to extend 
life span of different animal species and to delay deleterious age-related physiological 
alterations and diseases. Among others, DR was shown to ameliorate acute kidney injury 
(AKI) and chronic kidney disease (CKD). However, to date, a comprehensive analysis of 
the mechanisms of the protective effect of DR specifically in kidney pathologies has not 
been carried out. The protective properties of DR are mediated by a range of signaling 
pathways associated with adaptation to reduced nutrient intake. The adaptation is 
accompanied by a number of metabolic changes, such as autophagy activation, metabolic 
shifts toward lipid utilization and ketone bodies production, improvement of mitochondria 
functioning, and decreased oxidative stress. However, some studies indicated that with 
age, the gain of DR-mediated positive remodeling gradually decreases. This may be an 
obstacle if we seek to translate the DR approach into a clinic for the treatment of kidney 
diseases as most patients with AKI and CKD are elderly. It is well known that aging is 
accompanied by impairments in a huge variety of organs and systems, such as hormonal 
regulation, stress sensing, autophagy and proteasomal activity, gene expression, and 
epigenome profile, increased damage to macromolecules and organelles including 
mitochondria. All these age-associated changes might be the reasons for the reduced 
protective potential of the DR during aging. We summarized the available mechanisms 
of DR-mediated nephroprotection and described ways to improve the effectiveness of 
this approach for an aged kidney.
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DIETARY RESTRICTION: INTRODUCTION

Caloric or dietary restriction (DR), which is defined as reducing nutrient intake without 
malnutrition, is considered one of the most proven approaches to extend life span and to 
delay deleterious age-related physiological changes and age-related diseases in animals 
(Speakman  and Mitchell, 2011). Positive effects of DR were shown for myocardial infarction 
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(Rohrbach et al., 2014), degenerative brain diseases (Fusco and 
Pani, 2013), hypertension (Han and Ren, 2010), diabetes mellitus 
(Sathananthan et  al., 2015), cancer (Alidadi et  al., 2020), and 
others. The influence of various dietary protocols on physiological 
effects is extensively studying in patients with acute kidney 
injury (AKI) and chronic kidney disease (CKD; Lambert et al., 
2020; Müller et  al., 2020), as well as in experimental models 
(Singh and Krishan, 2019).

The effectiveness of DR in the prevention of aging and 
age-related diseases can be  explained by the effect of hormesis 
(Kouda and Iki, 2010; Shushimita et  al., 2016), since it is 
known that the induction of moderate stress activates the 
adaptive responses of cells and organs, reducing the intensity 
of damage when the organism is exposed to more severe stress. 
To date, DR has been shown to trigger a large number of 
signaling cascades that lead to changes in cellular metabolism 
to adapt to low-intake conditions. The same goes for gene 
expression in all tissues (Ma et  al., 2020), as well as the 
epigenetic profile (Gensous et  al., 2019). Along with many 
other mechanisms, adaptation to reduced nutrient intake is 
achieved through IGF-1R and mTOR complexes signaling 
(Johnson, 2018). Inhibition of the IGF-1 receptor during DR 
leads, in particular, to inhibition of cell proliferation, activation 
of autophagy but simultaneously increasing in antioxidant systems 
activity. Another involved metabolic regulator is AMPK, which 
is a fast-responding sensor of nutrients in cells, activated when 
AMP/ATP ratio is increased (Cantó and Auwerx, 2011). AMPK 
phosphorylates FoxO transcription factor, which leads to the 
activation of genes of stress response and the use of energy 
sources other than glucose (Greer et al., 2009). Another important 
nutrient sensor is NAD+-dependent deacetylases sirtuins, which 
deacetylated a large number of targets, including transcription 
factors, thereby regulating its activity (Guarente, 2013).

Based on molecular mechanisms, DR and its mimetics have 
been supposed as one of the most promising approaches to 
the treatment of various pathologies, especially those related 
to old age. The attention of this review is focused on describing 
the effects of DR on renal injury in young and old animals, 
and comparison of the effectiveness of DR in animals of different 
age. Since limiting the food intake without changing the ratio 
of nutrients content is the most common way of DR, we focused 
our attention on this type of restriction. Of note, the timing, 
duration, and composition of vitamins and minerals in food 
during DR can significantly influence the effects of this approach 
so that these parameters should be  carefully controlled.

DIETARY RESTRICTION AS A 
NEPHROPROTECTIVE APPROACH  
IN YOUNG ANIMALS

Although the protective mechanisms of DR were discovered 
as early as in 1935 (McCay et al., 1935) and have been intensively 
studied, there are quite a few studies showing the effects of 
DR on the kidneys in normal or pathological conditions. While 
ischemic injuries predominate among the causes of AKI 

(Mehta  et  al., 2004), the protective effect of short-term DR 
on the kidneys exposed to ischemia/reperfusion (I/R) was 
revealed only in 2010 (Mitchell et  al., 2010).

In this study, young mice underwent 30% DR for 4  weeks 
prior to I/R that caused an attenuation of the severity of AKI 
and reduced postoperative mortality. In the kidneys of DR-treated 
mice, alleviation of I/R-induced acute tubular necrosis and 
release of lactate dehydrogenase were observed, which was 
associated with a change in the transcriptional profile (Mitchell 
et  al., 2010). In addition, this work pointed to the importance 
of continuous DR, since the return of ad libitum feed before 
I/R significantly reduced the nephroprotective properties of 
DR. Subsequently, the protective effects of DR in ischemic 
AKI have been shown in a number of studies. We  compared 
different DR protocols (25 and 35% DR for 4  weeks and 100% 
DR for 3 days) and found that 35% DR provided the maximum 
protective effect against I/R injury (Andrianova et  al., 2020). 
Later, it was shown that reduced food intake for 6  weeks 
regardless of time or fat affords protection of young mice 
against renal I/R (Reynolds et  al., 2019).

In young animals, very short periods of DR also showed 
protective properties in various models of AKI. For example, 
fasting for 3 days before I/R injury preserved rats from damage 
to the tubules and renal functional decline by increasing 
antioxidant defense and maintaining mitochondrial structure 
and functions (Rojas-Morales et  al., 2019). Short-term 
preoperative 30% DR and 3-day fasting protected against renal 
I/R during kidney transplantation, both reducing mortality and 
improving the transcriptional profile (Jongbloed et  al., 2017). 
The protection was also found in a one-week DR in a rat 
model of kidney I/R injury, where DR improved renal function, 
suppressed tubular injury, prevented activation of ERK1/2, and 
inhibited the development of interstitial fibrosis, as well as 
reduced blood glucose, increased β-hydroxybutyrate, improved 
antioxidant protection, and DRP1-mediated mitochondrial 
fragmentation (Rojas-Morales et  al., 2020).

Studies in young rats have shown that DR has a protective 
effect not only against ischemic renal injury but also in models 
of drug-induced AKI (Perazella, 2019). Thus, DR ameliorated 
acute cisplatin- and cadmium nephrotoxicity (Shaikh et  al., 
1999; Estrela et  al., 2017). DR with different protein and fat 
content for 3 days before or after cisplatin-induced AKI reversed 
the nephrotoxic effect of cisplatin treatment and was associated 
with phosphorylation of survival kinases PI3K/Akt and ERK-1/2, 
decreased level of stress kinase JNK, and improved physiological 
outcomes (Gunebakan et  al., 2020). The protective properties 
of DR against cisplatin-induced AKI were also confirmed using 
multi-layered omics data (transcriptome, proteome, and 
N-degradome) correlated with functional parameters (Späth 
et  al., 2019). Such bioinformatic analysis revealed mRNA-
independent changes in proteome that affect the extracellular 
matrix, mitochondria, and membrane transporters associated 
with the protective properties of DR. The positive effects of 
DR are manifested not only in AKI but also in models of 
CKD (Gumprecht et al., 1993) and diabetic nephropathy (Kume 
and Koya, 2015). Thus, DR protects the kidney tissue not only 
from acute injuries but also from chronic ones.
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To date, only some molecular mechanisms of the beneficial 
DR effects in renal tissue have been proposed. Using novel 
methods of comparative analysis of microarray data, detailed 
comparisons of DR-mediated changes in various tissues were 
carried out resulting in the identification of the 28 most affected 
genes. These genes characterized common responses to DR and 
involved both activation and inhibition of stress-response pathways 
(Swindell, 2008). DR was shown to ameliorate kidney I/R injury 
through the PGC-1α-eNOS pathway, activation of SIRT1 and 
AMPK, and enhanced autophagy (Lempiäinen et al., 2013). Our 
study also revealed that the protective properties of DR are 
associated with activation of the autophagosomal-lysosomal 
system, normalization of mitochondrial functioning, and decrease 
of oxidative stress (Andrianova et  al., 2020). Kidney protection 
by DR may also be  mediated by a decrease in the level of 
mannan-binding lectin, which initiates the lectin pathway of 
complement system activation (Shushimita et  al., 2015).

While the beneficial effects of DR are partially mediated 
by above-mentioned molecular changes, there are many other 
protective mechanisms related to DR. For instance, reduced 
protein intake during DR significantly improves the prognosis 
of AKI due to normalizing intraglomerular pressure and 
glomerular hyperfiltration (Ko et  al., 2017). One more 
important factor that could interact with DR effects is the 
microbiome and its metabolites. Some studies postulate that 
gut microbiota may be  affected by DR and can mediate 
DR effects on metabolism and hormone regulation (Wang 
et  al., 2018). Moreover, fecal transplantation from mice with 
DR significantly reduced body weight and obesity in recipient 
thereby DR positively changes microbiome composition 
(Pérez-Matute et  al., 2020).

Eventually, DR has shown impressive effectiveness in the 
treatment of experimental kidney pathologies, which makes it 
possible to translate this approach into clinical practice, especially 
in conditions when the risk of AKI is increased, for example, 
during cardiac surgery (Grundmann et  al., 2018). In addition, 
DR improves transplant outcomes from young donors by 
reducing ischemic damage during transplantation (van Ginhoven 
et al., 2011; Jongbloed et al., 2020). To improve kidney function, 
a low-calorie or ketogenic diet is recommended for people 
with obesity accompanied by mild renal insufficiency (Bruci 
et  al., 2020). Dietary interventions are also recommended for 
patients with CKD and can ameliorate glomerular filtration 
rate, lower blood pressure, and serum cholesterol levels, thereby 
improving health-related quality of life (Palmer et  al., 2017).

DIETARY RESTRICTION IN OLD 
ANIMALS

While the potential of DR to reduce the severity of AKI has 
been confirmed in experiments with young animals, the largest 
and most vulnerable group of patients with AKI and CKD 
is represented by the elderly. The average age of patients 
with AKI tends to 65  years and steadily decreases every year 
due to an increase in life expectancy (Mehta et  al., 2015). 

Accordingly, experimental models should use old animals to 
consider the structural, functional, and molecular changes 
observed in kidneys during aging. Aging not only affects the 
morphology and metabolism of kidney tissue but also worsens 
ischemic tolerance and increases tissue vulnerability to injury 
(Rosner et  al., 2018), so experiments in old animals are more 
preferable for the development of therapy for AKI and CKD.

On the other hand, it has been suggested that life-long 
DR is most effective in preventing the development of age-related 
changes in the renal tissue meaning dieting should begin at 
a young age to protect the old kidney. Indeed, DR started 
at an early age substantially improved age-associated renal 
histological abnormalities and survival (Bras and Ross, 1964). 
Life-long DR prevented the development of gradually increasing 
morphological changes in the kidney, such as glomerular 
lesions, thickening of the basement membrane, and tubular 
dilatation. Moreover, long-term DR has been proved to 
significantly extend life span and to ameliorate age-related 
polycystic kidney disease and CKD (Tomobe et  al., 1994; 
Warner et  al., 2016; Yoshida et  al., 2018). In rats, DR for 
30 months with reduced total calorie intake or protein content 
retarded the severity of age-related chronic nephropathy 
(Masoro et  al., 1989) and reversed the aging-related loss of 
protein in urine (Teillet et  al., 2000).

However, some studies have demonstrated that not only 
life-long DR but also short-term DR protocols are effective 
against age-associated abnormalities in kidneys. DR initiated 
in rats of 6  months of age was as effective as food restriction 
initiated at 6 weeks of age in slowing the progression of chronic 
nephropathy (Maeda et  al., 1985). Moreover, DR initiated in 
middle-aged rats, before the onset of significant age-related 
changes, as well as long-term DR effectively reduced 
glomerulosclerosis and tubular atrophy, prevented the formation 
of interstitial fibrosis, thickening of the vascular wall, and the 
decrease of cytochrome c oxidase expression (McKiernan et al., 
2007; Podkowka-Sieczka et  al., 2009). The manifestation of 
the positive effects of DR even at the debut in adulthood 
encourages the study of short-term DR protocols due to the 
great interest in clinical practice which is faced with the 
complexity of life-long dieting in people.

To date, an active investigation of the effects of DR on 
old animals continues. Transcriptome analysis of renal tissue 
after life-long DR showed that DR modulates the expression 
of many genes in old rats and has benefits for kidney function 
(Chen et  al., 2007). It was found that the expression of 92 
genes changed during aging and was reversed by DR for 
22  months, including claudin-7, Kim-1, and MMP-7 (Chen 
et  al., 2007). In addition, the study of the single-cell 
transcriptional landscape after 9  months of DR revealed 
significant changes in the expression profile of a large number 
of genes, including those affecting the process of cellular 
senescence, stem cell depletion, chronic inflammation, and 
cell-to-cell communication (Ma et al., 2020). Adult-onset DR 
for 6  months also dramatically changed the gene profile, 
significantly reduced urinary 8-isoprostane and protein 
carbonyl in the kidney and downregulated inflammatory 
response pathway (Chen  et  al., 2008).
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The molecular mechanisms of DR in old organisms look 
similar to young animals. For instance, DR in both young and 
old rats reduced the pro-inflammatory response from NF-kB 
and AP-1 and normalized the network of these transcription 
factors in the renal tissue of old animals (Jung et  al., 2009). 
Old rats that underwent long-term DR showed higher expression 
of sirtuin 1  in kidney tissue, a higher degree of autophagy 
activation, shifted acetylation status of transcriptional growth 
factors to a more deacetylated state, and an improvement in 
the functional activity of mitochondria (Kume et  al., 2010). 
Rats exposed to DR in adulthood had lower levels of renal 
fibrosis and levels of extracellular matrix proteins type IV collagen 
and fibronectin (Jiang et al., 2005) that is believed to be achieved 
by depletion of miR-21 expression (Liu et  al., 2020). Similarly, 
DR for 8  weeks reduced renal expression of α-smooth muscle 
actin, lowered p16, p21, and SA-β-gal levels and activated AMPK/
mTOR signaling pathway (Ning et al., 2013b; Dong et al., 2017).

Unsurprisingly, DR affected energy metabolism and 
mitochondrial functions. The beneficial effects of adult-onset 
DR manifested in a decreased accumulation of abnormally folded 
proteins in the kidney mitochondria in old animals (McKiernan 
et al., 2007). DR for 3 months in old rats significantly upregulated 
arginase II activity, which normally regulates urea cycle, polyamine, 
proline, glutamate synthesis, and production of nitric oxide 
(Majaw and Sharma, 2017). Late-onset DR reversed the age-related 
decline of malate–aspartate shuttle enzymes in the kidneys 
(Goyary and Sharma, 2008). The spectrum of mitochondria-
associated effects of DR also included as follows: increase 
in  the  levels of the anti-apoptotic protein Bcl-XL, normalization 
of mitochondrial ultrastructure, diminished oxidative stress 
(Cui  et  al., 2013; Andrianova et  al., 2020), abrogation of 
age-associated expression of a pro-apoptotic Bax protein, caspase-3 
activation, and activation of PARP polymerase (Lee et al., 2004).

Note that despite a number of positive changes at the molecular 
level caused by DR, there are only a few studies that describe 
the effects of DR on kidney function in AKI. Thus, old rats that 
received 60% of normal food intake for 2 months showed decreased 
blood urea nitrogen and serum creatinine levels, reduced renal 
tubular necrosis, and lower incidence of activated caspase-3 
and  TUNEL-positive cells in kidneys after cisplatin-induced 
nephrotoxicity (Ning et  al., 2013a). However, we  showed in the 
renal model of I/R, that in old rats DR for 1 or 2  months was 
not as effective as in young and did not reduce AKI measured 
by the level of serum creatinine and urea, as well as NGAL 
level  in urine (Andrianova et  al., 2018, 2020). The loss of DR 
effectiveness during aging is more likely to have a gradual pattern 
since in 12-month-old rats DR still demonstrated some 
nephroprotective effect, but to a lesser extent than in young 
animals (Andrianova  et  al., 2020).

POSSIBLE MECHANISMS OF DIETARY 
RESTRICTION IMPAIRMENT DURING 
AGING

Most fruitful experimental studies of various DR protocols have 
been conducted in young animals (Singh and Krishan, 2019), 

while a few studies of DR protection in renal injury have shown 
a decline in beneficial effects with age (Andrianova et  al., 2018, 
2020). This raises the question of implementation of DR in 
clinical practice since elderly people predominate among patients 
with AKI, so additional studies are needed to improve the 
effectiveness of DR for the aged kidney.

The loss of protective effects of therapeutic methods with 
age is a significant problem not only for DR but also for 
other treatment approaches. Earlier, a similar loss of positive 
impact was described when applying ischemic pre- and 
postconditioning for kidney and heart of old animals (Abete 
et al., 2002; Boengler et al., 2008; Chen et al., 2014; Jankauskas 
et  al., 2017). Similarly, in elderly mice, DR did not improved 
impaired wound healing (Reed et  al., 1996). We  hypothesize 
that the loss of protective properties is a natural and common 
phenomenon for the majority of therapeutic approaches 
(Jankauskas et  al., 2018).

Thus, not all tissues and systems show improvements during 
DR with age. For instance, despite the observation that DR 
ameliorated the state of blood vessels and their response to 
the vasoconstrictive effect of endothelin-1  in young rats, such 
positive effects were absent in old rats after short-term DR 
(Amor et  al., 2017). Moreover, moderate DR stimulated 
angiogenesis to a very small extent in 24-month-old rats 
(Facchetti et  al., 2007), whereas it is angiogenesis during DR 
that is supposed to prevent vascular impairment in the heart 
and brain in younger animals (Csiszar et  al., 2013). The state 
of the immune system in old animals did not improve during 
DR either. It was found that long-term 30% DR did not reduce 
DNA damage in lymphocytes (Gedik et  al., 2005), and old 
mice maintained on life-long 40% DR were even more prone 
to influenza infection and had worse survival compared to 
old ad libitum mice (Gardner, 2005).

Insufficient efficiency of DR in old animals is also observed 
for the hormone levels. In contrast to the leptin level, which 
decreased during DR in both young and old animals, the 
adiponectin concentration increased only in young rats (Rohrbach 
et al., 2007), so DR was unable to fully improve the functioning 
of adipocytes while aging. Moreover, short-term DR had different 
effects on lipogenic enzymes in the white adipose tissue of 
young and old rats demonstrating a reduced adaptation of old 
animals to a restricted diet (Wronska et  al., 2014). Only life-
long DR increased the content of thyroid hormones of rhesus 
monkeys, whereas short-term DR did not affect the level of 
thyroid hormones in old animals (Roth et  al., 2002).

The observed loss of protective properties of therapies can 
be  partially explained by various age-dependent changes that 
accumulate in all tissues and affect the functioning and tolerance 
of organs (Rezzani et  al., 2012). Thus, in the kidney, both 
structural changes consisting of a decrease in the number of 
functioning nephrons, degenerative changes in the proximal 
tubules, glomerulosclerosis, and changes in molecular pathways 
are observed, e.g., increased expression of renal pathologies-
associated genes, claudin-7, KIM-1, and metalloproteinase (Chen 
et  al., 2007). Aging also leads to significant epigenetic changes 
at all levels of chromatin and DNA organization (López-Otín 
et  al., 2013; Kane and Sinclair, 2019).
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Significant metabolic shifts accompany aging leading to 
impaired lipid and carbohydrate metabolism and loss of nutrient-
sensing pathways (Ehrhardt et al., 2019). There are malfunctions 
in DR-mediated pathways in the elderly including those with 
IGF-1R, AMPK, sirtuins, and mTOR (Bettedi and Foukas, 
2017). Aging is also associated with cellular senescence, which 
causes such detrimental phenomena as chronic inflammation 
(Furman et  al., 2019), impaired tissue remodeling after injury, 
and contributes to a decline of regenerative potential (Di Micco 
et  al., 2021). The accumulation of senescent cells could lead 
to greater sensitivity to injury and reduced tissue repair.

Endocrine functions are also disrupted with age and the 
kidneys are no exception (Bolignano et al., 2014). In particular, 
the content of the components of the renin-angiotensin system 
and the levels of aldosterone decrease in blood plasma (Yoon 
and Choi, 2014). Although the concentration of erythropoietin 
in the blood is higher in the elderly compared to the young, 
there is no pronounced erythropoiesis in response to a drop 
in hemoglobin levels in elderly (Ferrucci et al., 2007; Garimella 
et  al., 2016). The transformation of vitamin D into the active 
form, which largely occurs in the kidneys, also suffers with 
aging (Armbrecht et  al., 1980). Despite an increase in the 
levels of adiponectin in the blood of old organisms, adiponectin-
dependent regulation is disrupted and aging is paradoxically 
associated with the loss of the functionally active isoform of 
the hormone (Gulcelik et  al., 2013).

An important age-related disorder is the deterioration of 
cellular quality control systems for proteins and organelles. With 
age, both the dysfunction of the autophagic-lysosomal system 
(Mizushima et  al., 2008) and the proteasome machinery have 
been described (Sun-Wang et  al., 2020). This inevitably leads 
to the accumulation of aggregates of misfolded proteins (Hipp 
et al., 2019) and dysfunctional organelles, particularly mitochondria 
(Payne and Chinnery, 2015). The accumulation of poorly 
functioning mitochondria is dangerous for cells as it can cause 
increased oxidative stress (Liguori et  al., 2018). Changes in the 
morphology of mitochondria with age have been described for 
many organisms (Sastre et al., 1996), as well as the accumulation 
of age-associated mitochondrial proteins (Cui et  al., 2012) and 
a decrease in the transmembrane potential (Serviddio et al., 2007).

CONCLUSION

Thus, DR is considered a promising approach for the treatment 
of various age-related diseases, including AKI and CKD. However, 
some studies reveal a gradual loss of effectiveness of DR with 
age, which is alarming given the advanced age of patients with 
AKI and CKD. The adult-onset DR leads to a number of positive 
changes, but they affect much fewer pathways, so old organisms 
after DR cannot develop such high improvements and tolerance 
as young healthy organisms do (Figure  1). We  postulate that 

FIGURE 1 | Gradual reduction of the DR protective effects from injuries and age-related changes. In young animals, DR is accompanied by many positive changes, 
such as enhanced response of nutritional and stress-sensing pathways, metabolic shifts toward lipid utilization and ketone bodies production, autophagy and 
proteasome activation, improvement in mitochondria functioning, reduced oxidative stress and inflammation, and subsequent resistance to injuries, including 
ischemic ones. In old animals, DR is associated with a smaller range of positive changes, such as delaying age-related changes and the formation of fibrosis, 
reducing the number of senescent cells, oxidative stress, and chronic inflammation. The adult-onset DR does not improve all age-related impairments in all 
organism’s systems, so old animals kept on DR do not fully reach the state of young healthy organisms.
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the loss of the nephroprotective properties of DR is part of a 
natural and general phenomenon inherent in most therapeutic 
approaches, and this may be due to the accumulation of deleterious 
changes at the physiological, cellular, and molecular levels during 
aging. These changes lead to the deterioration of a stress response 
and reduced adaptation to limited calorie intake. Thereby, the 
further studies of the DR mechanisms are required to improve 
the DR effectiveness in elderly organisms.
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