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Abstract: A small organic molecule P was synthesized and characterized as a fluorometric and
colorimetric dual-modal probe for Hg2+. The sensing characteristics of the proposed probe for Hg2+

were studied in detail. A fluorescent enhancing property at 583 nm (>30 fold) accompanied with
a visible colorimetric change, from colorless to pink, was observed with the addition of Hg2+ to P
in an ethanol-water solution (8:2, v/v, 20 mM HEPES, pH 7.0), which would be helpful to fabricate
Hg2+-selective probes with “naked-eye” and fluorescent detection. Meanwhile, cellular experimental
results demonstrated its low cytotoxicity and good biocompatibility, and the application of P for
imaging of Hg2+ in living cells was satisfactory.

Keywords: Hg2+; fluorescent probe; rhodamine B; cell imaging

1. Introduction

Mercury can exist in elemental, inorganic, and organic forms in the environment,
among which Hg2+ is a carcinogenic and caustic material with high biological toxicity [1].
It can form methylmercury naturally by biomethylation in aquatic environments. As is
known, this form of organic mercury is much more toxic than Hg2+, which can cause brain
damage and other serious diseases [2,3]. Therefore, it is of great importance to develop
efficient analytical methods to detect Hg2+ in the environment and biosystems. Over
the past few years, different analytical methods, including electrochemical methods [4],
inductively coupled plasma-mass spectrometry [5], and UV-Vis spectrometry [6], have
been applied for the detection of Hg2+, but most of these methods are complicated, costly,
and especially not suitable for in vitro/vivo applications. In recent years, the design
of Hg2+-selective and sensitive fluorescent probes have attracted considerable interest
due to the fact of their remarkable advantages such as low cost, operational simplicity,
and non-destructiveness [7]. Though examples of “turn-on” Hg2+ probes have become
available that display high selectivity and sensitivity for Hg2+ in micellar media and neutral
aqueous samples [8,9], even imaging in zebrafish [10], most of the reported Hg2+-selective
fluorescent probes are based on fluorescence quenching (“on–off”) mechanisms due to
the spin–orbit coupling effect of Hg2+ [11–13], which is not favored over a fluorescence
enhancement signal in light of selectivity and sensitivity concerns. Therefore, the synthesis
of fluorescence enhancement (“off–on”)-type Hg2+-selective probes is still a challenge.

Rhodamine spirocyclic form derivatives are non-fluorescent and colorless, whereas
strong fluorescence emission and a visible color change can be displayed upon combination
with the targets. This recognition progress is caused by ring-opening of the corresponding
rhodamine spirolactam [14]. This structural change has been widely used as a recogni-
tion mode to construct fluorescent and colorimetric probes for many analysts [15–17]. As
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to visualizing the subcellular distribution of metal ions in physiological processes, flu-
orescence imaging techniques have become a powerful tool [18]. Some Hg2+-selective
fluorescent probes derived from rhodamine have been reported [19–27]. However, these
reported rhodamine-based Hg2+-selective fluorescent probes still have shortcomings that
need to be overcome, such as cross-sensitivities toward other metal ions and anions [27],
pH dependency [28], and non-suitability for cell imaging [22,23], which could lower the
sensitivity and limit the practical application of probes in environmentally and biologically
relative targets. Compared with some successful fluorescence “turn-on” probes for imaging
intracellular metal ions, such as Cu2+ [29], Al3+ [30], and Mg2+ [31], the development of
highly selective, sensitive, and cell membrane-penetrable Hg2+ fluorescent probes with
“off–on” signals is still a bottleneck. Therefore, ”off–on” fluorescent probes for Hg2+ based
on rhodamine derivatives in environmental water samples and living cells are still a very
active and significant challenge now and in the future. Benzoyl hydrazide derivatives have
been extensively utilized to construct fluorescent probes in view of their remarkable optical
properties. Moreover, benzoyl hydrazide derivatives are efficient selective receptors for
the recognition of metal ions due to the multiple N and O binding sites [32–34], which
effectively modulates their fluorescence. Accordingly, benzoyl hydrazide derivatives could
play dual roles both as receptor units and reporters in probes.

In light of the abovementioned reasons, a 2-hydroxybenzoyl hydrazide-modified rho-
damine derivative, P, was synthesized in this paper, and it was successfully characterized
as a highly Hg2+ selective and sensitive fluorescent probe both in aqueous media and living
cells. The synthesis route of proposed P is shown in Scheme 1.
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2. Results and Discussion

2.1. pH Effect on the Fluorescent Response of P and a P-Hg2+ System

The content of water in the testing system has a great effect on the response of the
fluorescent probes, because the addition of water can lead to the precipitation of the probe
that could cause a decrease in fluorescent intensity. In order to prevent this phenomenon,
the volume ratio 8:2 of ethanol and water was adopted, which laid a foundation for
the application of the probe P in the environmental samples. Real-time determination
was necessary, and the time evolution of the responses of P (5 µM) in the presence of
10 equivalent of Hg2+ in the same buffer solution was also investigated (Figure S1); the
recognition interaction was completed after the addition of Hg2+ within 15 min.

Subsequently, the effects of pH on the probe P and the P-Hg2+ system spectra were
investigated (Figure 1). The pH had no obvious effect on the fluorescent spectra of P, which
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meant insensitive to acidity. For the P-Hg2+ system, the fluorescent intensity at 583 nm
reached a maximum within the range 7.0–7.5, which is beneficial for use in biological
systems. Thus, the followed fluorescent measurements were all conducted in the optimized
conditions (ethanol-water, 8:2, v/v, 20 mM HEPES, pH 7.0).
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2.2. Selectivity and Sensitivity Measurement of P

A fluorescent probe with good selectivity was required for the detection of environ-
mental or biological targets with complex backgrounds. The selectivity of this proposed
probe, P, was conducted in an aqueous media (ethanol-water, 8:2, v/v, 20 mM HEPES,
pH 7.0), and the tested metal ions were alkali, alkali-earth metals, divalent transition metal
ions, including K+, Na+, Ag+, Ca2+, Mg2+, Zn2+, Pb2+, Cd2+, Ni2+, Co2+, Cu2+, Hg2+, Cr3+,
and Fe3+, and the anions were Br−, I−, NO3

−, H2PO4
−, ClO4

−, CO3
2−, and SO4

2−. The
results showed that like most of the spirocycle rhodamine derivatives [19–21], the free P
displayed a very weak fluorescence, which indicates that the spirolactam form was the
predominant species. Introduction of the Hg2+ to probe P elicited an obviously fluorescent
enhancement at 583 nm. By contrast, other metal ions and anions had almost no influence
on the fluorescent spectra of P (Figure 2). Most likely, it was the addition of Hg2+ to P
that caused the opening of the spirolactam in the structure of the rhodamine part [19–27],
inducing an enhancement in fluorescence intensity. Furthermore, for the further study
of the selectivity of P, a competition experiment was also conducted (Figure S2); all the
tested metal ions and anions did not show any obvious interference to the response of
P with Hg2+, except I− had some influence on the response of P. This revealed that this
proposed probe P could work in a complicated environment and has potential applica-
tion in real samples. All these results also demonstrate that P could be employed as an
Hg2+-selective probe.

2.3. Fluorescent and UV-Vis Titration Experiments of P to Hg2+

In order to further study the sensing properties and mechanism between P and
Hg2+, fluorescence and absorption titration experiments in aqueous media (ethanol-water,
8:2, v/v, 20 mM HEPES, pH 7.0) were recorded (Figure 3). As the sequential introduction
of Hg2+ to P (5 µM), the fluorescent intensity at 583 nm enhanced gradually, and the linear
fluorescent intensity was proportional to the concentrations of Hg2+ in the range 1.0–20 µM
with a detection limit of 0.33 µM (Figure S3). The UV-Vis spectra also gave similar results
(Figure 3b); the maximum absorption peak at 560 nm appeared with increasing intensity
upon successive addition of Hg2+, and a linear dependence of absorbance at 560 nm was
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observed as a function of Hg2+ concentration (inset of Figure 3b) in the range 2.0–20 µM.
The association constant K was determined from the slope to be 3.18 × 104 M−1 [35],
corresponding to a stronger binding capability toward Hg2+ (Figure S4). The results
showed that P was capable of detecting Hg2+, both qualitatively and quantitatively.
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2.4. Coordination Mechanism of P with Hg2+

The stoichiometry of the P-Hg2+ complex was determined by a Job’s plot experiment in
aqueous media (ethanol-water, 8:2, v/v, 20 mM HEPES, pH 7.0), and the total concentrations
of P and Hg2+ was kept at 10 µM. When the mole ratio P/Hg2+ was at 1:1, the fluorescent
intensity at 583 nm reached the maximum (Figure 4), which indicates that P coordinated
with Hg2+ in a 1:1 stoichiometric relationship. Meanwhile, an experiment with Na2S as
a competitive complexing agent could serve as experimental evidence to support this
semi-reversible spiro ring-opening mechanism (Figure S5). To further explore the binding
mode of P with Hg2+, the 1H-NMR spectra of P and P-Hg2+ in DMSO-d6 were carried
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out (Figures S6 and S7). The proton peaks of –OH and O=C–NH in P alone existed in the
form of hydrogen bonds and showed wide peaks and δ values that were somewhat larger
than normal protons in the spectra of 1H-NMR, and the addition of Hg2+ to P in DMSO-d6
solution led to a high-field shift of the signals –OH and O=C–NH at the degrees 0.0237
and 0.0069. It may be that the coordination of Hg2+ with P destroyed the formation of
hydrogen bonds, the proton peaks of –OH and O=C–NH turned sharp, and the δ values
became smaller than in P. According to the abovementioned results, P was most likely to
chelate with Hg2+ via its oxygen on phenol hydroxylation, oxygen on the carbonyl group
as well as nitrogen on the hydrazine. The proposed reaction mechanism of P with Hg2+ is
shown in Scheme 2.
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2.5. Preliminary Application of P in Cell Imaging

To further explore the biological applicability of P for Hg2+ in practical samples,
intracellular Hg2+ imaging in HeLa cells by fluorescence microscopy was performed
(Figure 5). Obvious fluorescence was not observed upon incubation with P (1.0 µM) for
30 min at 37 ◦C (Figure 5a), suggesting that autofluorescence from the cells could be
avoided. Under the same testing conditions, stronger fluorescent change was detected
after the addition of exogenous Hg2+ (1.0 µM) to the P-loaded HeLa cells (Figure 5b)
which demonstrated that P could penetrate the cell membrane and coordinate with Hg2+

inside the cells. Moreover, brightfield imaging confirmed that the cells were viable after
incubation with Hg2+ and/or P (Figure 5(a2,b2)). Meanwhile, P was also applied to the
subcellular locations of Hg2+ in the HeLa cells using confocal fluorescence microscopy.
The cells were co-treated with P (1.0 µM) and Hoechst 33342 (0.25 µg/mL) for 30 min



Molecules 2021, 26, 3385 6 of 9

with the same conditions as those used in Figure 5a,b. Our work revealed that the cellular
localization and distribution of P was located primarily in the cytoplasm of those living
HeLa cells as shown in Figure 5c. All the results indicated that the proposed P was an
effective probe for imaging changes in Hg2+ intracellularly under biological conditions.
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HeLa cells with P (1.0 µM) for 30 min and then with Hg2+ (1.0 µM) for 30 min ((a1–b1): dark field; 
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µM) for 30 min, then with Hg2+ (1.0 µM) for 30 min and Hoechst 33342 (0.25 µg/mL) for 15 min (c1: 
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rescence from P (c1) and Hoechst 3342 (c2)). 

To evaluate the cytotoxicity of the fluorescent probe P in living cells, an MTT assay 
on PC12 cells with P concentrations from 0 to 10 µM was taken (Figure S8). After treat-
ment with P for 48 h, the cellular viability was estimated at approximately 92%, which 
exhibited the low toxicity of P to cultured cells. 

Figure 5. Confocal fluorescence images of HeLa cells. (a) HeLa cells with P (1.0 µM) for 30 min;
(b) HeLa cells with P (1.0 µM) for 30 min and then with Hg2+ (1.0 µM) for 30 min ((a1–b1): dark
field; (a2–b2): bright field; (a3–b3): (a1–b1) merged with (a2–b2), respectively); (c) HeLa cells with
P (1.0 µM) for 30 min, then with Hg2+ (1.0 µM) for 30 min and Hoechst 33342 (0.25 µg/mL) for
15 min (c1: green channel with P; c2: blue channel with Hoechst 33342; c3: overlay of images
showing fluorescence from P (c1) and Hoechst 3342 (c2)).

To evaluate the cytotoxicity of the fluorescent probe P in living cells, an MTT assay on
PC12 cells with P concentrations from 0 to 10 µM was taken (Figure S8). After treatment
with P for 48 h, the cellular viability was estimated at approximately 92%, which exhibited
the low toxicity of P to cultured cells.

3. Materials and Methods
3.1. Main Reagents and Instruments

All reagents were of commercially analytical grade and used directly.
Fluorescent spectra were recorded using a Hitachi F-4600 spectrofluorometer (Tokyo,

Japan), and UV-Vis spectra were determined on a Hitachi U-2910 spectrophotometer.
1H- and 13C-NMR spectra were carried out with a Brucker AV 400 nuclear magnetic
resonance instrument (Faellanden, Switzerland), and the chemical shift is given in ppm
from tetramethylsilane (TMS). Mass spectra were obtained using a thermo TSQ Quantum
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Access Agilent 1100 mass spectrometer (Santa Clara, CA, USA). Fluorescence imaging was
performed with Olympus FluoView Fv3000 laser scanning microscope (Tokyo, Japan).

3.2. Synthesis of Probe P

Compounds RBH and RBHO were obtained according to the reported method [36].
An amount of 0.1521 g of 2-hydroxybenzoyl hydrazide (1.0 mmol) and 0.4964 g

RBHO (1.0 mmol) were dissolved in ethanol (40 mL) and added to a round-bottom flask
(100 mL). The mixture was reacted under reflux for 6 h, and then cooled to room tempera-
ture, and the yellow precipitate so obtained was filtered off and washed with cold ethanol.
Yields: 85.6%. MS m/z: 631.5 [M + H]+, 629.5 [M − H+]−. 1H-NMR (DMSO-d6, δ ppm):
11.82 (s, 1H), 11.38 (s, 1H), 7.98 (d, 1H, J = 8.16), 7.92 (d, 1H, J = 7.40), 7.88 (d, 1H, J = 8.16),
7.70 (d, 1H, J = 6.80), 7.61 (t, 1H, J = 8.00), 7.57 (t, 1H, J = 6.00), 7.40 (t, 1H, J = 8.36),
7.06 (d, 1H, J = 7.52), 6.93 (t, 1H, J = 7.20), 6.89 (s, 1H), 6.45 (s, 1H), 6.44 (d, 3H, J = 7.28),
6.36 (d, 2H, J = 8.00), 3.32 (m, 8H, J = 8.70), 1.07 (t, 12H, J = 6.98). 13C-NMR (DMSO-d6,
δ ppm): 164.88, 164.77, 158.77, 152.65, 152.53, 149.13, 147.56, 143.55, 135.02, 134.29, 129.40,
127.80, 127.42, 124.17, 123.79, 119.48, 117.57, 117.05, 108.67, 104.71, 97.93, 65.43, 56.50, 44.13,
19.04, 12.89. (Supplementary Materials Figure S6, Figure S9–S11)

3.3. General Spectroscopic Methods

The stock solution (1.0 mM) of P was obtained by dissolving P with DMSO. All the salts
solutions (1.0 mM) were obtained by dissolving in deionized water. Before fluorescent and
UV-Vis spectroscopic measurements, all the testing solutions were obtained by diluting the
stock solutions to the desired concentration. The excitation and emission monochromator
slit widths of the fluorescence spectrophotometer were 10 nm and 10 nm, respectively, and
the excitation wavelength was fixed as 530 nm.

3.4. Cell Incubation and Imaging

HeLa cells were placed on coverslips and washed with PBS (phosphate-buffered
saline). It was then incubated with 1.0 µM P (dissolved with DMSO) for 30 min at 37 ◦C,
followed by washing three times with PBS. The cells were further cultured with 1.0 µM
of HgCl2 for 30 min at 37 ◦C and washed with PBS three times again. The fluorescence
cell imaging of intracellular Hg2+ in HeLa cells was conducted by a confocal fluorescence
microscopy on an Olympus FluoView Fv1000 laser scanning microscope.

4. Conclusions

In summary, a highly selective Hg2+ probe, P, derived from rhodamine B was designed
and investigated by fluorescence and UV-Vis techniques. On the basis of the change
between spirolactam and open-cycle forms in the rhodamine unit, the sensing mechanism of
this proposed probe was studied in detail. Furthermore, confocal fluorescence microscopy
experiments demonstrated that probe P can be applied to image Hg2+ in living cells.

Supplementary Materials: The following are available online: Figure S1: Influences of time on the
fluorescence spectra of P (5 µM) with Hg2+ (50 µM) in ethanol solution; Figure S2: Fluorescence
response of 5 µM of P to 10 µM of Hg2+ and to the mixture of 10 µM of individual other metal ions
(a) and anions (b) with 10 µM of Hg2+; Figure S3: The fluorescence intensity at 583 nm of P (5 µM) as
a function of Hg2+ concentrations (1–20 µM); Figure S4: Benesi–Hildebrand plot of P, assuming a 1:1
stoichiometry for the association between P and Hg2+; Figure S5: Reversible titration response of P
to Hg2+; Figure S6: 1H-NMR spectrum of P; Figure S7: 1H-NMR titration experiment of P + Hg2+;
Figure S8: MTT assay of P in living cells; Figure S9: ESI (−)-MS of P; Figure S10: ESI (+)-MS of P;
Figure S11: 13C-NMR spectrum of P.
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