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SUMMARY

Down syndrome (DS) is the most common genetic cause of intellectual disability
and increases the risk of other brain-related dysfunctions, like seizures, early-
onset Alzheimer’s disease, and autism. To reveal the molecular profiles of DS-
associated brain phenotypes, we performed a meta-data analysis of the develop-
mental DS brain transcriptome at cell type and co-expression module levels. In
the DS brain, astrocyte-, microglia-, and endothelial cell-associated genes show
upregulated patterns, whereas neuron- and oligodendrocyte-associated genes
show downregulated patterns. Weighted gene co-expression network analysis
identified cell type-enriched co-expressed gene modules. We present eight
representative cell-type modules for neurons, astrocytes, oligodendrocytes,
and microglia. We classified the neuron modules into glutamatergic and
GABAergic neurons and associated them with detailed subtypes. Cell type mod-
ules were interpreted by analyzing spatiotemporal expression patterns, func-
tional annotations, and co-expression networks of the modules. This study pro-
vides insight into the mechanisms underlying brain abnormalities in DS and
related disorders.
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INTRODUCTION

Down syndrome (DS) is the most common genetic disorder causing intellectual disability; it occurs in

approximately 1 per 800�1,200 live births.1,2 DS results from trisomy of human chromosome 21 (HSA21)

and affects a wide range of phenotypes in many organ systems. Representative characteristics of DS

include physical appearance, neurological symptoms, heart disease, cancer, and gastrointestinal prob-

lems.3,4 Among them, intellectual disability is themost common phenotype in individuals with DS, implying

that almost all individuals with DS have abnormal brain phenotypes.

Because of the sustained influence of the extra copy of HSA21, the prenatal brain with DS

develops abnormally.5 Its structural characteristics, such as the size of several brain regions, their connec-

tivity, and the number or morphology of specific cell populations, differ from those of the normal brain.6

These developmental and structural differences and associated changes in gene expression patterns

caused by a third copy of HSA21 affect various functions of the brain, leading to many brain-related

symptoms. Reports have shown that individuals with DS have a higher incidence of seizures than euploid

individuals and are more likely to develop early-onset Alzheimer’s disease in their 40s.7 In addition, asso-

ciations between DS and psychiatric disorders, particularly autism spectrum disorders, have been

reported.8–10

Although trisomy of HSA21 is the definitive underlying cause of DS and its associated symptoms, the mech-

anisms by which supernumerary HSA21 triggers these symptoms remain unclear. Substantial efforts have

been made to identify and elucidate the roles of candidate genes on HSA21, but further work is needed

to clarify the genotype�phenotype relationships. With the development of functional genomics, questions

about the roles of the additional HSA21-coding and-non-coding sequences on the whole transcriptome

have arisen.6 In a previous study that characterized gene expression in varied regions of postmortem hu-

man brains of DS and euploid controls ranging in age from 14 weeks post-conception to 42 years old,

approximately 5% of differentially expressed genes (DEGs) were on HSA21, and the rest were on the other

chromosomes.11 Therefore, to decipher the exact mechanisms of DS phenotypes, an investigation of the

integrated features of gene expression in all chromosomes is required.
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Tissue transcriptome data consist of aggregate gene expression data from heterogeneous cell types;

nevertheless, the gene expression signatures are quite different across various cell types.12,13 Most biolog-

ical phenomena, including brain development, function, and disease onset, are defined by the complex

interactions between different cell types.14,15 Therefore, when intact tissue transcriptome data is used to

investigate the biological mechanisms, there is a need to establish a method for clarifying the relevant

cell types of differentially expressed transcripts.

Previous co-expression network analysis of DS, which is based on the human brain transcriptome, showed

the important contributions of oligodendrocyte-lineage cells.11 Our aim in this study was to explore spe-

cific cell types associated with the abnormal brain development of DS. We first performed a co-expression

network analysis to investigate the network of genes on all chromosomes across brain development

without bias, and genes with spatiotemporally similar expression patterns were grouped together into

genemodules. Cell-type enrichment analysis on the gene co-expressionmodules made it possible to iden-

tify gene modules related to specific brain cell types. The spatiotemporal expression patterns, associated

cell types, and functional annotations of co-expression modules provided insights into the role of specific

cell types in biological processes or mechanisms related to DS.
RESULTS

Cell-type enrichment analysis on DEGs

In this study, we used DS human brain transcriptome data, GSE59630,11 from the Gene Expression

Omnibus (GEO) repository. These data include DS and matched control samples from various brain re-

gions, spanning many different developmental time points (Table S1). DEGs of these data were identified

in the dorsolateral prefrontal cortex (DFC) and cerebellar cortex (CBC) in a previous study using the paired

t-test (false discovery rate (FDR)-adjusted p-value <0.1).11 We focused on these two regions because they

have the widest range of developmental periods and are associated with cognition andmotor coordination

in DS phenotypes.16,17 Cell-type enrichment analysis on DEGs was conducted using published cell type-en-

riched gene lists.18We divided neuron-enriched genes into glutamatergic neuron- andGABAergic neuron-

enriched genes and their subtypes (Table S2). This was based on the overlaps between cell type-enriched

genes18 and genes that were co-expressed with marker genes of glutamatergic or GABAergic neurons and

their subtypes.19 DEGs in the CBC were significantly enriched with astrocyte-enriched genes (Benjami-

ni�Hochberg-adjusted (BHA) p = 1.8 3 10�14). Although the DEGs in the DFC were not significantly

enriched with any cell type-enriched genes, the most enriched cell type was endothelial cell (BHA

p = 3.0 3 10�1) (Figure S1).
Cell type-enriched genes were differentially expressed in DS

To determine the differential expression patterns of cell type-enriched genes (Table S2), we calculated the

expression differences of these genes in each region at different developmental stages using a sliding win-

dow approach. Generally, genes associated with astrocyte, microglia, and endothelial cells were upregu-

lated in DS, whereas oligodendrocyte- and neuron-enriched genes were downregulated (Figure 1). Expres-

sion differences usually increased with age, except for themicroglia- and endothelial cell-enriched genes in

the CBC data. Microglia- and endothelial cell-enriched genes were gradually more expressed in the DFC of

DS than in control samples; however, this pattern was reversed and the expression differences gradually

reduced with age in the CBC. Furthermore, microglia-enriched genes were less expressed in the CBC of

DS in the last sliding window. Overall, glutamatergic and GABAergic neuron-enriched genes showed

similar patterns. However, in the fetal and infancy stages (periods 5–9; human brain developmental periods

were previously described in Kang et al.19), the expression patterns of these neuron types were dissimilar.

Glutamatergic neuron-enriched genes were similarly expressed in DS and control DFC, but GABAergic

neuron-enriched genes were less expressed in the DS DFC than in the control DFC in this period. Genes

enriched in subtypes of glutamatergic and GABAergic neurons showed similar differential expression pat-

terns to whole glutamatergic and GABAergic neuronal genes (Figures S2 and S3).
Cell type-enriched weighted gene co-expression network analysis (WGCNA) modules were

identified

We performedWGCNA20 to compare and analyze the brain transcriptomes of DS individuals and matched

controls at the system level from an unbiased perspective. Module detection by gene clustering resulted in

57 co-expression gene modules. To establish cleaner modules, we allocated genes with a module
2 iScience 26, 105884, January 20, 2023



Figure 1. Cell type-enriched genes were differentially expressed in DS

Differential expression patterns of each cell type-related gene between DS and control are displayed on a log2 scale

across brain regions and developmental stages. A sliding window approach was used to investigate the temporal

expression pattern. Human brain developmental periods were based on the criteria presented in Kang et al.19 Genes

associated with astrocytes, microglia, and endothelial cells showed upregulated patterns in DS, whereas

oligodendrocyte- and neuron-enriched genes showed downregulated patterns in DS. Expression differences weremostly

increased in older brains. Differences in glutamatergic neuron- and GABAergic neuron-related genes appeared in fetal

and infancy stages. There were no significant expression differences in glutamatergic neuron-enriched genes; however,

GABAergic neuron-enriched genes showed significant expression differences in fetal and infancy stages. *, p< 0.05

(paired t-test).
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membership (kME) value >0.7 in each module. This gene list in each module was used in subsequent an-

alyses (Table S3). We calculated module�trait relationships using the module eigengene, which is the first

principal component of each module,21 and filtered out some modules that were more correlated with

other confounding factors (RIN, PMI, race, and sex) than main factors (brain region, developmental stage,

and disease status) (Table S4). Finally, we obtained 43 modules significantly related to specific traits, like

brain region, developmental stage, and disease status (Table S4).

Cell-type enrichment analysis was conducted on all WGCNA modules (Figure 2A) using the cell type-en-

riched genes (Table S2). Cell type-enriched modules (BHA p< 1 3 10�2) consisted of a large proportion

of genes that were mainly expressed in those cell types and they did not usually have overlap between

different cell types. Although glutamatergic and GABAergic neurons are neuron subclasses, enriched

modules for these subtypes did not overlap. Oligodendrocyte- and microglia-enriched genes were exclu-

sively enriched in one module for each cell type (module(M)14 andM41, respectively). However, there were

many enriched modules for astrocytes and neurons. By contrast, endothelial cell-enriched genes were less

enriched in modules than other cell type-enriched genes.

We performed cell-type enrichment analysis using the genes of glutamatergic and GABAergic neuron sub-

types (Figure 2B). M21 was enriched for layers (L) 2–4 and L6 glutamatergic neuronal genes. M24 and M26

were enriched for L2�4 and L4 glutamatergic neuronal genes. M24 was more enriched for L2�4 glutama-

tergic neuronal genes than for L4 glutamatergic neuronal genes; however, the opposite was the case in

M26. L1 neuronal genes were less enriched in modules than other glutamatergic neuron subtypes but

were significantly enriched in M17 and M18. M23 was mostly enriched for genes correlated with CALB1

and NOS1. Genes correlated with the pan-GABAergic markers, GAD1 and GAD2, and PVALB were mainly
iScience 26, 105884, January 20, 2023 3
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Figure 2. Cell type-enriched WGCNA modules were identified

(A and B) Cell-type enrichment analysis with cell type-enriched genes of brain cell types (A) and neuronal subtypes (B) was

conducted on 43 co-expressed gene modules constructed by WGCNA. The-log10 (p-value) value is shown (BHA p< 0.05,

Fisher’s exact test). Cell type-enriched modules (BHA p< 1 3 10�2) for each cell type hardly overlapped, even in

glutamatergic and GABAergic neurons. Oligodendrocyte- and microglia-enriched genes were exclusively enriched in

one module for each cell type, but many modules were enriched for astrocytes and neurons.
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enriched in M32. Furthermore, M32 was enriched for genes correlated with CALB1 and NOS1. No module

was significantly enriched for genes correlated with CALB2. Genes correlated with CCK and VIP were spe-

cifically enriched in M42. Next, we chose cell type-enriched modules for each cell type (astrocytes: M5 and

M29; oligodendrocytes: M14; microglia: M41; glutamatergic neurons: M24 and M26; GABAergic neurons:

M32 and M42) and characterized these modules.
Characterization of cell type-enriched modules

Cell type-enriched modules showed varied gene expression patterns

First, we identified the expression patterns of genes in cell type-enriched modules across developmental

stages, brain regions, and disease statuses (Figures 3, 4, 5, and 6). Genes in the astrocyte modules, M5 and

M29, were expressed at low levels during the fetal stages and were upregulated in DS brains, especially at

later stages (Figure 3). M5 genes were expressed at similar levels for the DFC and CBC (Figures 3A and 3C),

whereas M29 genes were more expressed in the DFC than in the CBC (Figures 3B and 3D). The expression

of genes in the oligodendrocyte module, M14, gradually increased with age and was generally downregu-

lated in DS (Figures 4A and 4C). These expression differences were more remarkable in the DFC than in the

CBC. The microglia module (M41) genes were more expressed in postnatal DFC than fetal DFC and were

specifically upregulated in the later stages of DS DFC (Figures 4B and 4D).

Genes of glutamatergic neuron modules (M24 and M26) were more expressed in the DFC than in the CBC

and, unexpectedly, were highly expressed during fetal stages. This implies that they are related to devel-

opment (Figure 5). These genes were downregulated in the brains of DS individuals. M24 genes were more

affected by disease status and developmental stage than M26 (Figure 5). Genes in M32, one of the

GABAergic modules, were repressed during fetal stages and more expressed during later stages

(Figures 6A and 6C). They were downregulated in DS individuals and showed few regional differences.

Genes in the other GABAergic module (M42) also showed low expression during the fetal stages

(Figures 6B and 6D). With the exception of the prenatal stages, they were consistently expressed across

all stages. The expression of M42 genes in the CBCwas lower than in the DFC during the fetal stages. These

genes showed few expression differences between control and DS brains. All selected cell-type modules

showed unique gene expression patterns and, therefore, could affect different phenotypes of DS.
4 iScience 26, 105884, January 20, 2023



F8
KLF15
BBOX1
CALCRL
CPT1A
FAM167A
ALDH1L1
USP53
AHNAK
TGFBR3
MTM1
ELF1
KANK1
ABCB1
RNF144B
SNTB1
FUT10
LRP10
PPARA
ACACB
RERG
RFX4
CALCOCO2
SLC18B1
PDLIM5
AXL
TNS3
ACSS1
NACC2
IL17D
EGLN3
MEGF10
BMPR1B
PBXIP1
RASSF8
DMD
TLN1
NDRG2
CST3
AHCYL1
DDAH1
GATM
SLC1A3
FAM107A
EDARADD
CD81
ATP1B2
CPE
AQP4
AGT
SLC4A4
PON2
IL6ST
ATP1A2
PLPP3
ZFP36L1
RFTN2
ALDH6A1
LIFR
TTYH1
OGFRL1
ADD3
DTNA
EPAS1
EDNRB
GPR37L1
GJB6
PGM1
S100A13
PLSCR4
HSDL2
TYW3
FGF2
CEBPD
TRPS1
SSPN
STK17B
METTL7A
STOM
GJA1
RGCC
MLC1
TIMP3
KAT2B
ITGAV
KIAA1161
PRDX6
GOLIM4
PREX2
CYBRD1
ACBD7
HEPACAM
CDH20
HLA−E
PHGDH
LRIG1
RASSF4
FGFR2
S1PR1
SDC2
HADHB
CARMIL1
APOE

−4 0 2 4
Row Z−Score

Color Key

−2

F F M F M F MMMM F M F F M F M F MMMM F M M F M F F MMMM F M F M F F MMMM F
5 6 8 9 9 10111212131314 5 6 8 9 9 10111212131314 8 9 9 9 101011121313 8 9 9 9 101011121313

Sex:
Stage:

Euploid control Euploid controlDown syndrome Down syndrome
DFC CBC

M5

GLUD1
SRI
PEA15
GPM6B
SLC1A2
RAB31
QKI
ITM2C
NTRK2
GABRG1
RNF141
SPRED1
AHCYL2
TMEM47
NCAM2
LINC01181
HTRA1
LOC100131355
CHRDL1
LOC100129171
SOX2−OT
WIF1
PPP1R3C
RANBP3L
RIDA
GLUL
SLC7A11
SLC25A18
BCAN
SFXN5
CAT
SAT1
CDR1
F3
SLC15A2
S100A16
OSBPL1A
PSAT1
IGSF11
AMOT
RIN2
RCC2
BMP2K
JPH4
MINOS1−NBL1
ADAMTS19
ZBBX
COL24A1
OTOGL
ANKRD55
FLJ33534
WDR78
NAALAD2
DNAH7
KLRC4−KLRK1
PRSS35
ENKUR
NT5E
GGTA1P
LINC01106
ATP13A4
RGS20
CTDNEP1
ATP13A4
DNAH6
EYA1
PCDH15
DBX2
SLC25A48
EOGT
RLBP1
NPHP1
PNMA5
OXTR
CDC14A
LRRC39
EFCAB6
EFHC2
FIGN
EYA2
GHR
ATP10A
NPL
NDRG2
DIO2
HGF
SLCO1C1
STOX1
SLC39A12
GPC5
MRO
PLA2G5
HSD17B6
RPL9P11
FOXO1
LYPD6
CCDC30
FBXL7
ARHGEF4
SOX6
DACT3
GPT2
ITPR2
MERTK
MAOA
ADHFE1
ACSBG1
SLC9A9
SUCLG2
EAF2
DHRS3
CEBPB
SNTA1
RGR
SLC7A10
SLC13A5
ARHGEF26
ADORA2B
P2RY14
PCTP
HHIPL1
RUNX3
DES
SPRNP1
XCL1
ID3
OAF
IL1RAP
DENND3
NHS
SWAP70
CD38
CD58
P2RY1
SGCD
RDH10
LRRC34
TAPBPL
FKBP1A−SDCBP2
SLC25A20

−2 0 2
Row Z−Score

Color Key
F F M F M F MMMM F M F F M F M F MMMM F M M F M F F MMMM F M F M F F MMMM F
5 6 8 9 9 10111212131314 5 6 8 9 9 10111212131314 8 9 9 9 101011121313 8 9 9 9 101011121313

Sex:
Stage:

Euploid control Euploid controlDown syndrome Down syndrome
DFC CBC

M29

M5 M29A B

C D

Figure 3. Gene expression patterns of astrocyte modules

(A–D) Gene expression patterns of astrocyte modules (M5 and M29) are visualized in a line graph of module eigengenes

(A and B) and a gene expression heatmap (C and D). Genes in astrocyte modules were relatively less expressed during

prenatal stages and were upregulated in DS. Gene expressions of M5 genes were similar between the DFC and CBC,

whereas M29 genes were less expressed in the CBC than in the DFC.
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Biological roles of cell type-enriched modules were disclosed

To interpret the biological function of these cell-type modules, we conducted gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (Figures 7 and 8, and

Tables S5, S6, S7, S8, S9, S10, S11, and S12). M5 genes were enriched for growth-related terms like ‘‘regu-

lation of cell proliferation’’ (BHA p = 1.13 10�3), ‘‘heart growth’’ (BHA p = 7.13 10�4), ‘‘growth factor bind-

ing’’ (p = 8.53 10�4), ‘‘fibroblast growth factor binding’’ (p = 3.03 10�4), and ‘‘signaling pathways regulating

pluripotency of stem cells’’ (p = 1.33 10�2) (Figure 7A and Table S5). They were expected to be expressed

outside of cells and be involved in cell–cell interactions, as they were enriched for the terms ‘‘extracellular

vesicle’’ (BHA p = 1.6 3 10�3) and ‘‘cell junction’’ (BHA p = 4.7 3 10�2). The other astrocyte module, M29,

was enriched for categories related to biomolecule transport andmetabolism, such as ‘‘nitrogen compound

transport’’ (p= 5.63 10�4), ‘‘organonitrogen compound catabolic process’’ (p =2.43 10�4), ‘‘carboxylic acid

transport’’ (p = 7.2 3 10�4), ‘‘carboxylic acid biosynthetic process’’ (p = 5.3 3 10�4), and ‘‘dicarboxylic acid

metabolic process’’ (p = 3.5 3 10�4) (Figure 7B and Table S6). The GO and the KEGG pathway enrichment

analysis results of M14 and M41 were consistent with the cell-type enrichment analysis results (Figures 7C

and 7D, and Tables S7 and S8). The oligodendrocyte module, M14, was enriched for ‘‘axon ensheathment’’

(BHA p=3.13 10�8), ‘‘myelin sheath’’ (p = 3.93 10�3), and ‘‘compactmyelin’’ (p = 4.03 10�3) (Figure 7C and
iScience 26, 105884, January 20, 2023 5
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Figure 4. Gene expression patterns of oligodendrocyte and microglia modules

(A–D) Gene expression patterns of oligodendrocyte and microglia modules (M14 and M41, respectively) are visualized in

a line graph of module eigengenes (A and B) and a gene-expression heatmap (C and D). M14 genes became gradually

more expressed with age and were downregulated in DS, especially in the DFC. M41 genes were highly expressed in the

older DFC of DS.
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Table S7). The microglia module, M41, was enriched for many immune response-related terms, like ‘‘im-

mune response’’ (BHA p = 9.3 3 10�30), ‘‘leukocyte activation’’ (BHA p = 1.5 3 10�17), ‘‘inflammatory

response’’ (BHA p = 1.8 3 10�13), and ‘‘myeloid leukocyte activation’’ (BHA p = 1.8 3 10�12) (Figure 7D

and Table S8).

All neuron modules were enriched for neuron-related terms, consistent with the cell-type enrichment anal-

ysis results (Figure 8 and Tables S9, S10, S11, and S12). M24 and M26 were enriched for development-

related terms, including ‘‘cell projection morphogenesis’’ (p = 1.3 3 10�4), ‘‘muscle organ development’’

(p = 4.4 3 10�3), and ‘‘growth cone’’ (p = 1.0 3 10�2) in M24 and ‘‘neuron development’’ (BHA

p = 6.0 3 10�13), ‘‘neuron projection development’’ (BHA p = 2.0 3 10�12), ‘‘central nervous system neuron

differentiation’’ (BHA p = 2.6 3 10�7), and ‘‘filopodium’’ (p = 6.1 3 10�3) in M26 (Figures 8A and 8B, and

Tables S9 and S10). These results are consistent with the expression patterns of these modules—the mod-

ules’ expressions were characteristically upregulated during the fetal stages (Figure 5). The difference be-

tween the M24 and M26 results is that M24 was enriched for ‘‘dendritic shaft’’ (p = 1.63 10�2) and M26 was

enriched for axon-related terms, like ‘‘axon’’ (BHA p = 3.9 3 10�2), ‘‘delayed rectifier potassium channel

activity’’ (BHA p = 4.6 3 10�2), ‘‘ephrin receptor activity’’ (BHA p = 1.4 3 10�2), and ‘‘axon guidance’’
6 iScience 26, 105884, January 20, 2023
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Figure 5. Gene expression patterns of glutamatergic neuron modules

(A–D) Gene expression patterns of glutamatergic neuron modules (M24 and M26) are visualized in a line graph of module

eigengenes (A and B) and a gene expression heatmap (C and D). M24 and M26 genes showed high expression levels

during fetal stages, unlike other modules. In addition, they were more expressed in the DFC than in the CBC and were

downregulated in DS. M24 was more constrained by developmental stages and disease status than M26, which was more

constrained by brain region.
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(BHA p = 7.8 3 10�7). As such, we inferred that M24 and M26 are related to neurite development and axon

guidance, respectively. M26 was also enriched for ‘‘cognition’’ (BHA p = 5.0 3 10�7), and for glutamate-

related categories like ‘‘glutamate receptor activity’’ (p = 2.2 3 10�3) and ‘‘glutamatergic synapse’’ (p =

2.8 3 10�3). GO analysis results are consistent with cell-type enrichment analysis. One of the GABAergic

modules, M32, appeared to be related to synaptic vesicle and release of neurotransmitters, because it

was enriched for ‘‘secretion by cell’’ (BHA p = 3.5 3 10�4), ‘‘regulation of neurotransmitter levels’’ (BHA

p = 3.4 3 10�5), ‘‘presynapse’’ (BHA p = 1.5 3 10�5), ‘‘syntaxin-1 binding’’ (BHA p = 2.9 3 10�2), and ‘‘syn-

aptic vesicle cycle’’ (BHA p = 5.9 3 10�4) (Figure 8C and Table S11). M32 was also enriched for ‘‘learning or

memory’’ (BHA p = 3.5 3 10�2) and ‘‘GABAergic synapse’’ (BHA p = 1.7 3 10�3). M42 was enriched for

diverse terms related to calcium-calmodulin signaling, like ‘‘cAMP metabolic process’’ (BHA p = 3.2 3

10�2), ‘‘calmodulin binding’’ (p = 2.4 3 10�3), and ‘‘calcium signaling pathway’’ (BHA p = 2.6 3 10�2) (Fig-

ure 8D and Table S12). Thus, we inferred the biological roles of co-expression gene modules through GO

and pathway enrichment analysis.
iScience 26, 105884, January 20, 2023 7
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Figure 6. Gene expression patterns of GABAergic neuron modules

(A–D) Gene expression patterns of GABAergic neuron modules (M32 and M42) are visualized by a line graph of module

eigengenes (A and B) and a gene expression heatmap (C and D). M32 and M42 genes were repressed during fetal stages

and were downregulated in DS. Genes in M32 showed similar expression patterns between the DFC and CBC, but genes

in M42 were substantially repressed in the CBC.
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Co-expression networks were visualized with hub genes of modules

We visualized the intramodular co-expression networks in each module to exhibit the relationship among

genes in the module and the position of hub genes in each network (Figures 9 and 10). In every co-expres-

sion module network, the top 10 hub genes with the highest kME value were in the center. Their expression

patterns were correlated with many other genes in the module. A large proportion of genes in the networks

of cell type-enrichedmodules was most expressed in the associated cell type (M5: 74.8%, M14: 71.4%, M24:

64.4%, M26: 54.6%, M29: 54.2%, M32: 62.3%, M41: 90.3% andM42: 44.8%) in the Brain RNA-seq database.22

This tendency was strongest within the hub genes (Figures 9 and 10).

We investigated the cell type in which the hub genes were most expressed, as well as the GO and KEGG

pathway terms that included the most hub genes. In the case of M5, seven hub genes were most expressed

in astrocytes. The hub genes were mainly enriched for the ‘‘extracellular vesicle’’ pathway (ALDH6A1,

PLPP3, ATP1A2, PLSCR4, NDRG2, and IL6ST) (Figures 7A and 9A, and Table S5). Nine hub genes in M29

were mainly expressed in astrocytes. The hub genes were most enriched for the ‘‘organonitrogen com-

pound catabolic process’’ (GPC5, GLUD1, and NT5E), ‘‘nitrogen compound transport’’ (SLC1A2,
8 iScience 26, 105884, January 20, 2023
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Figure 7. Functional annotation of glial cell type-related modules

(A–D) Functional enrichment analysis with genes related to GO terms and KEGG pathways on the astrocyte (A and B),

oligodendrocyte (C), and microglia (D) modules. The fivemost significant terms (p< 0.05) are shown in each category. GO:

gene ontology, BP: biological process, CC: cellular component, MF: molecular function, KEGG: Kyoto Encyclopedia of

Genes andGenomes pathway. M5 genes were enriched for growth-related terms (‘‘regulation of cell proliferation’’, ‘‘heart

growth’’, ‘‘growth factor binding’’, ‘‘fibroblast growth factor binding’’, and ‘‘signaling pathways regulating pluripotency of

stem cells’’) and cell–cell interaction-related terms (‘‘extracellular vesicle’’ and ‘‘cell junction’’). M29 was enriched for

biomolecule transport and metabolism-related terms (‘‘nitrogen compound transport’’, ‘‘organonitrogen compound

catabolic process’’, ‘‘carboxylic acid transport’’, ‘‘carboxylic acid biosynthetic process’’, and ‘‘dicarboxylic acid metabolic

process’’). M14 was enriched for oligodendrocyte-related terms (‘‘axon ensheathment’’, ‘‘myelin sheath’’, and ‘‘compact

myelin’’), and M41 was enriched for immune-related terms (‘‘immune response’’, ‘‘leukocyte activation’’, ‘‘inflammatory

response’’, and ‘‘myeloid leukocyte activation’’).
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SLC15A2, and GLUD1), and the ‘‘intrinsic component of plasma membrane’’ (SLC39A12, GPC5, and

SLC15A2) (Figures 7B and 9B, and Table S6). Nine of the M14 hub genes were most expressed in oligoden-

drocytes. The most relevant term was ‘‘extracellular region part’’ (TMEM63A, HSPA2, and ASPA)

(Figures 7C and 9C, and Table S7). Furthermore, nine of the M41 hub genes were mostly expressed in mi-

croglia; they weremost enriched for ‘‘immune response’’ (NCKAP1L,C3AR1, ITGB2,CYBB, PTPRC,C3, and

FYB) and the ‘‘cell surface receptor signaling pathway’’ (NCKAP1L, C3AR1, ITGB2,CYBB, PTPRC, ADORA3,

and FYB) (Figures 7D and 9D, and Table S8).
iScience 26, 105884, January 20, 2023 9
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Figure 8. Functional annotation of neuronal cell type-related modules

(A–D) Functional enrichment analysis with genes related to GO terms and KEGG pathways on the glutamatergic (A and B)

andGABAergic (C and D) neuronmodules. The fivemost significant terms (p< 0.05) are shown in each category. GO: gene

ontology, BP: biological process, CC: cellular component, MF: molecular function, KEGG: Kyoto Encyclopedia of Genes

and Genomes pathway. M24 and M26 were enriched for neurodevelopment-related terms (‘‘cell projection

morphogenesis’’, ‘‘muscle organ development’’, and ‘‘growth cone’’ in M24, and ‘‘neuron development’’, ‘‘neuron

projection development’’, ‘‘central nervous system neuron differentiation’’, and ‘‘filopodium’’ in M26). M24 was enriched

for a dendrite-related term (‘‘dendritic shaft’’), whereas M26 was enriched for axon-related terms (‘‘axon’’, ‘‘delayed

rectifier potassium channel activity’’, ‘‘ephrin receptor activity’’, and ‘‘axon guidance’’). M32 was enriched for synapse-

related terms (‘‘secretion by cell’’, ‘‘regulation of neurotransmitter levels’’, ‘‘presynapse’’, ‘‘syntaxin-1 binding’’, and

‘‘synaptic vesicle cycle’’). M42 was enriched for calcium–calmodulin signaling-related terms (‘‘cAMP metabolic process’’,

‘‘calmodulin binding’’, and ‘‘calcium signaling pathway’’).
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The network of M24 looked dispersed because it had few gene pairs whose co-expression correlation was

above the threshold, even though the threshold was identical to that of other neuron modules (Figure 10A).

Eight hub genes were chiefly expressed in neurons. The most associated terms with the hub genes were

‘‘synapse’’ and ‘‘synapse part’’, which were enriched for the same hub genes (SYT13, PRKAR2B, GABRB3,

GABRA3, andDCLK1) (Figures 8A and 10A, and Table S9). All hub genes in M26 were primarily expressed in

neurons. The terms ‘‘neuron development’’ and ‘‘neuron projection development’’ were equally enriched

for most genes (PLK2, PAK3,MEF2C, KALRN, SLIT2, and LRRC4C) (Figures 8B and 10B, and Table S10). M32

had nine hub genes principally expressed in neurons. The term enriched for the most hub genes was
10 iScience 26, 105884, January 20, 2023
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Figure 9. Co-expression networks and hub genes of glial cell type-related modules

(A–D) Intramodular co-expression networks of the astrocyte (A and B), oligodendrocyte (C), and microglia (D) modules.

Nodes indicate genes. The width and blueness of edges are proportional to the co-expression level between two genes.

The 10 genes with the highest kME values were selected as hub genes and marked with large red labels. The nodes of

genes that showed higher expression in the cell type of each module when compared with other cell types are colored

yellow.
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‘‘synapse part’’ (GABRA1, NSF, FAIM2, and SV2B) (Figures 8C and 10C, and Table S11). Six hub genes of

M42 were highly expressed in neurons. The hub genes were enriched for diverse terms as the result of

GO and KEGG pathway enrichment (Figures 8D and 10D, and Table S12). The neuronal hub genes of

M42 were most enriched for ‘‘nervous system development’’ (GDA and NGEF) and ‘‘calmodulin binding’’

(RASGRF2 and RGS4). These results agree with the GO and KEGG pathway enrichment analysis and pro-

vide a basis for future studies.
The most DS-associated module was related to endothelial cells, microglia, and astrocytes

We identified the most disease-related module, M40, using multiple linear regression (Table S4). M40 was

significantly enriched with microglia- and endothelial cell-related genes in cell-type enrichment analysis

(Figure 2). The most DS-associated M40 module was highly overexpressed in DS brain, especially in

DFC, and more expressed in postnatal periods than in fetal periods (Figures 11A and 11B). M40 was

enriched with immune-response- and vasculature-associated terms like ‘‘immune response’’ (BHA

p = 1.9 3 10�4), ‘‘leukocyte migration’’ (BHA p = 9.0 3 10�6), ‘‘positive regulation of vasculature develop-

ment’’ (BHA p = 8.9 3 10�8), ‘‘cytokine–cytokine receptor interaction’’ (p = 1.1 3 10�2), ‘‘HIF-1 signaling
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Figure 10. Co-expression networks and hub genes of neuronal cell type-related modules

(A–D) Intramodular co-expression networks of glutamatergic neuron (A and B) and GABAergic neuron (C and D) modules.

Nodes indicate genes, and the width and blueness of edges are proportional to the co-expression level between two

genes. The 10 genes with the highest kME values were selected as hub genes andmarked with large red labels. The nodes

of genes that showed higher expression in the cell type of each module when compared with other cell types are colored

yellow.
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pathway’’ (p = 6.23 10�3), and ‘‘adipocytokine signaling pathway’’ (p = 1.6 3 10�2) (Figure 11C). Most M40

genes (89.7%) were mainly expressed in three cell types: endothelial cell, microglia, and astrocyte (Fig-

ure 11D). Six of the ten hub genes were mainly expressed in endothelial cell, and two of them were mostly

expressed in astrocyte; the other two were mostly expressed in microglia.

DISCUSSION

In this study, we present a comprehensive interpretation of the human DS brain transcriptome by applying

co-expression network analysis and associating it with cell-type enrichment analysis. Co-expression gene

modules related to major brain cell types showed unique expression patterns across age, brain region, and

disease status. Through these analyses, we describe systemic changes in the DS brain at the cell type or the

biological process level that other DEG analyses have not presented.

Cell-type enrichment analysis for DEGs showed differences by brain regions (Figure S1). DEGs from DFC

and CBC tend to be rich in endothelial cell-associated genes and astrocyte-associated genes, respectively.
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Figure 11. Characterization of the most DS-associated module

(A–D) Gene expression patterns of the most DS-associated module (M40) are visualized in a line graph of module

eigengenes (A) and a gene expression heatmap (B). Functional enrichment analysis with genes related to GO terms and

KEGG pathways on M40 (C). The five most significant terms (p< 0.05) are shown in each category. GO: gene ontology, BP:

biological process, CC: cellular component, MF: molecular function, KEGG: Kyoto Encyclopedia of Genes and Genomes

pathway. Intramodular co-expression networks of M40 (D). Nodes indicate genes, and the width and darkness of edges

are proportional to the co-expression level between two genes. The 10 genes with the highest kME values were selected

as hub genes and are marked with large red labels. The nodes of genes that showed higher expression in a brain cell type

are colored (astrocyte: blue, microglia: green, endothelial cell: grey, and oligodendrocyte: yellow), and the nodes of

genes that are not related to any cell type are colored white. Genes of M40 were upregulated in DS and related to cell

signaling, immune response, vasculature, and extracellular space.
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These regional differences do not seem to be due to differences in the composition of each cell type be-

tween brain regions.23 Instead, they may be due to differences in the molecular context of function be-

tween brain regions. For example, cerebellar astrocytes are involved in the progression and onset of

ataxia;24 cerebellar ataxia is one of the causes of prevalent hypotonia in DS. On the other hand, DEG, which

is enriched in endothelial cell genes in DFC, is predicted to have an impact on the vascular pathology of

early-onset Alzheimer’s disease seen in DS; microhemorrhage, cerebral amyloid angiopathy, and inflam-

mation are observed in the DS brain in molecular and imaging studies.25–27 Although other cell types

are also associated with DS symptoms, they are not enriched in DEGs. This is likely because of the

complexity of datasets, which comprise samples of various developmental stages. Therefore, we investi-

gated differential expression patterns of cell type-related genes across the developmental stages in

each brain region (Figure 1). The differential expression patterns of cell type-related genes roughly
iScience 26, 105884, January 20, 2023 13
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demonstrated the state of each major brain cell type. In the DFC regions, genes related to astrocytes, mi-

croglia, and endothelial cells were upregulated as development progressed, whereas neuron- and oligo-

dendrocyte-related genes were downregulated. This may imply an increase in the immune reaction

throughmicroglial activation28 or alteration of the blood�brain barrier29 and a decrease in neural transmis-

sion by regulating synaptic functions30 or by reducing myelination.31 Consistent with the results, neuroin-

flammatory changes associated with Alzheimer’s disease have been detected in the DS brain,32,33 and neu-

ral transmission is slowed in the DS brain.11

Neuroinflammation in the DS brain has been actively studied in recent years.34,35 Thus, we further investi-

gated expression patterns of immune cell-related genes (Figure S4). We used an immune cell-related gene

set from a previously published study that presented immune cell gene signatures.36 Immune cell-related

genes, including myeloid and lymphoid genes, were expressed similarly to microglia and endothelial cell

genes, which suggests the possibility of their cooperation in neuroinflammation (Figures 1 and S4). Periph-

eral immune infiltration and blood–brain barrier leakage in the DS brain have not been well studied. How-

ever, Alzheimer’s disease, which frequently occurs in individuals with DS, has been verified to result in

peripheral immune cell infiltration in the brain.37 We also visualized expression patterns of more subdi-

vided immune cell type-related genes (Figures S5–S8). The features were roughly similar to the overall

expression patterns of myeloid and lymphoid genes. Nonetheless, some immune cell-type genes showed

a unique expression trajectory. For example, Type 1 helper T cell genes were mostly downregulated in the

DS brain, unlike other immune cell-type genes (Figures S7 and S8). This contradicts the peripheral immune

system of DS.38 Further studies using single-cell RNA sequencing may be needed to elucidate the precise

role of peripheral immune cells in the DS brain.

The WGCNA enabled a systematic analysis of the transcriptome by grouping co-expressed genes that

were likely involved in the same biological process. Significant enrichment of cell type-related genes in

some of the WGCNA modules indicated that cell type-related genes were highly co-expressed, especially

in microglia and oligodendrocytes. Neuron- and astrocyte-associated genes were also enriched but were

comparatively more distributed than other cell-type genes across many modules. This implies that these

cell types have more diverse roles in DS brain development. Eight cell-type modules introduced in this pa-

per were identified to be related to DS through multiple linear regression (Table S4).

The expression patterns of the two astrocyte modules, M5 and M29, were similar. Genes in these modules

were repressed in fetal DFC tissues, were relatively highly expressed in postnatal samples, and showed

decreased expression only in the late-adult brain of the control compare to DS (Figure 3), consistent

with previous findings.39–43 However, M29 was only expressed well in the DFC and was suppressed in

the CBC, whereas M5 was expressed well in both regions. Six of the 10 hub genes in M5 (ALDH6A1,

PLPP3, ATP1A2, PLSCR4, NDRG2, and IL6ST) were included in the gene list related to the GO term ‘‘extra-

cellular vesicle’’. Studies have shown that exosome secretion is increased in the DS brain and alleviates en-

dosomal pathology,44 and these exosomes include biomarkers for Alzheimer’s disease.45 The hub genes of

M29 were mostly included in nitrogen-related terms, like ‘‘organonitrogen compound catabolic process’’

(GPC5, GLUD1, andNT5E) and ‘‘nitrogen compound transport’’ (SLC1A2, SLC15A2, and GLUD1). S100B in

HSA21 and amyloid-beta can induce the generation of nitrogen species.46,47 Moreover, astrocytes detoxify

reactive nitrogen species, which is related to the pathology of Parkinson’s disease.48

The expression of M14, the oligodendrocyte module, increased gradually from the prenatal stages to mid-

dle age (Figures 4A and 4C), corresponding to the known patterns of myelination.49 In addition, the degree

of temporal variance in expression was higher in the DFC than in the CBC. Unlike astrocyte-enriched genes,

oligodendrocyte-enriched genes were downregulated in DS. A detailed investigation of the oligodendro-

cyte-enriched genes has been conducted in a previous report, and nine of the 10 hub genes in M14 were

identical to those found in previous research.11 Among the hub genes of M14, MYRF, which is downregu-

lated in theDSbrain, is important in oligodendrocyte progenitor cellmaturation andmyelination.50 Another

downregulated hub gene, ASPA, is known to cause Canavan disease, which shows some similar symptoms

toDS, like intellectual disability, lowmuscle tone, damage to neurons, and loss ofwhitematter in thebrain.51

The microglia module M41 showed increased expression in DFCs at the postnatal stage, when microglia

participate in synaptic pruning during brain development.52 Genes belonging to this module were ex-

pressed higher in the DFC of adult DS brains compared to the euploid controls (Figures 4B and 4D). Seven
14 iScience 26, 105884, January 20, 2023
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hub genes of M41 were related to immune response; this was concordant with previous research that inves-

tigated the relevance between DS and pathological hallmarks of Alzheimer’s disease, particularly inflam-

mation.32,33 Neuroinflammation in the DS brain has been discussed in the context of the early onset and

high incidence of Alzheimer’s disease in DS patients.32,33,53,54 Recently, a study has shown that resolving

inflammation in the brain of the Ts65Dn DS model mouse reverses memory loss. Therefore, inflammation

has been suggested as a novel target for DS and Alzheimer’s disease.55

Two glutamatergic neuron modules, M24 and M26, showed similar expression patterns across brain re-

gions and developmental stages. The genes of those modules showed a higher level in the DFC than in

the CBC. Of interest, they were highly expressed in the fetal brain, suggesting a role for glutamatergic neu-

rons in the early neurodevelopment of the cerebral cortex.56 In addition, the glutamatergic neuron module

genes were repressed in the DS brain, which may be related to neuronal loss and relevance to Alzheimer’s

disease.57–59 Downregulation of these modules agrees with previous studies describing neuronal develop-

ment disabilities in DS.5,57,60 M24 showed a greater difference with age and trisomy of HSA21 compared

with M26. Hub genes of M24 were mostly enriched for synapse-related terms, and dendritic shaft-related

genes were enriched for M24. M26 hub genes were mostly enriched for neuron development, and axon-

related terms were enriched in the functional annotation results in this module. Previous studies have

discovered abnormalities in DS dendrites and axons; more defects in dendrites than axons.61–67 This is

consistent with the more affected expression patterns of genes in M24 than those in M26 by disease status.

A GO term, ‘‘cognition’’, was related to M26. This is concordant with the cognitive defects of mice overex-

pressing Dyrk1a, which has been implicated in the pathology of DS and Alzheimer’s disease, in glutama-

tergic neurons.68 The neuronal subtype enrichment analysis results are also supported by previous research

that has demonstrated dendritic defects in L3 pyramidal cells in the prefrontal cortex of Ts65Dnmice.69 The

data for these two modules presented in this paper will provide a molecular genetic basis for subsequent

studies of neurodevelopmental and synaptic abnormalities in DS.

Like other neuron modules, GABAergic neuron modules (M32 and M42) were downregulated in DS but

were more expressed during the postnatal stages, unlike glutamatergic neuron modules. This is concor-

dant with the neurogenesis stage in brain development.56 M32 showed few regional differences when

compared with M42. The gap between gene expression in the control and DS brain widens from the early

postnatal stage, which insinuates a deficiency in GABA system development.70,71 This deficiency is impli-

cated in many DS symptoms and related diseases.65,72–81 According to the enriched terms of M32, these

genes are related to the release of neurotransmitters, especially GABA. Excitation–inhibition imbalance

and over-inhibition have been implicated in the cognitive impairment of DS. Moreover, inhibitory synapses

and their release of neurotransmitters, like GABA, are considered a cause of this imbalance.82 GABA

release is increased in Ts65Dn mouse brain;63 attenuating this can alleviate cognitive dysfunctions.80 A

recent study using the Ts2Cje DS model mouse has found that GABA release is increased in distal and

decreased in proximal dendrites,67 respectively. M32 was enriched for parvalbumin-positive GABAergic

neuron-related genes. Parvalbumin-positive cells are altered in DS and related neurodevelopmental disor-

ders.65,78,80,83 In addition, M42 was enriched for calcium-calmodulin-related genes, which have been

known to relate to the premature differentiation of neurons in the DS mouse model.84

We further analyzed the DS brain transcriptome using cell type-related genes from the developing brain

(Figure S9) and cerebellum (Figure S10). For this analysis, we utilized the enriched genes in replicating

and quiescent fetal neurons,12 and differentially expressed genes of cerebellum-specific cell types.13

Genes enriched in replicating fetal neurons were slightly less expressed in DS DFC than in euploid control

at early stages, whereas they were more expressed in DS DFC than in euploid control at later stages (Fig-

ure S9A). Quiescent fetal neuron genes showed the opposite patterns (i.e., more expressed in early-stage

brains of DS than euploid control and less expressed in later-stage brains of DS than euploid control).

Reduced proliferation of neural stem cells and hypocellularity in the brain of DS fetuses has been reported

in previous studies.5,85,86 Therefore, increased expression of replicating fetal neuron genes in later devel-

opmental stages of DFC was rather unexpected. This may be a counteraction of excessive neurodegener-

ation or a novel feature of the aged DS cerebral cortex. Further studies are needed to reveal the role of

replicating neuron genes upregulated in DSDFC of later developmental stages. Cell-type enrichment anal-

ysis with fetal neuron genes identified M4 as a replicating fetal neuron module, and M13 and M20 as quies-

cent fetal neuron modules (Figure S9B). M4 module was downregulated in fetal DS brains and upregulated

in old DS brains, whereas the expression patterns of M13 and M20 were not changed in DS brains
iScience 26, 105884, January 20, 2023 15
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(Figure S9C). Unlike in DFC, M4 genes were highly expressed after birth in CBC, which is concordant with

the known timing of neurogenesis in different brain regions.87 The M4 module is enriched with cell-cycle-

related terms in functional annotation (Figure S11A).

The differential expression pattern of cerebellum-specific cell-type genes in DS brain development was

downregulated in both DFC and CBC (Figure S10A). This expression pattern of cerebellum-specific cell-

type genes was similar to the expression pattern of the cortical neuron-enriched genes in the DFC of DS.

Of interest, astrocyte and OPC-enriched genes showed a tendency to increase in the DS brain, especially

in early development, and the increased expression of OPC-related genes in DS was consistent with the de-

fects of oligodendrocyte development in theDS brain.11 Cell-type enrichment analyses on 43 co-expression

modules using cerebellum-specific cell-type genes identified three modules that showed significant corre-

lation; M8was enriched in cerebellum-specificOPC,M17 was enriched in cerebellum-specific astrocyte and

granule cells, and M23 was enriched mainly in Purkinje cell genes (Figure S10B). All these modules show an

association with linear regression to DS and are highly expressed in CBC (Figure S10C and Table S4). GO

analysis showed that M8, elevated in expression at the fetal stage of DS, is associated with chromosome or-

ganization (Figure S11B). M17 and M23, downregulated in the DS brain, are associated with synaptic trans-

mission and cerebellar ataxia (Figures S11C and S11D), which is one of the causes of hypotonia.9

Themost DS-associated co-expressionmodule, M40, was upregulated in the DS brain and related to endo-

thelial cells, microglia, and astrocyte and also associated with immune response and vasculature develop-

ment in functional annotation (Figures 2 and 11). This implies that interactions between those cell typeswere

implicated in DS brain phenotype and possible dysregulation of the blood-brain barrier, which includes

blood vessels and astrocytes, and the immune system, which includes microglia, immune cells, and astro-

cytes. This was concordant with the recent review which described immune and cerebrovascular contribu-

tions to Alzheimer’s disease in DS.88 The enriched term including the largest number of hub genes in M40

was ‘‘extracellular region part’’, which implies thatM40may have a role in extracellular signaling like cell-cell

interactions. These results provide a data-based rationale for focusing on the relevance of this function in

future research about DS pathophysiology. Considering the association between Alzheimer’s and Down’s

syndrome, the hippocampus is one of the regions most implicated in Alzheimer’s disease. Although the

number of samples was too small (three for each of the control and DS) to analyze, we analyzed hippocam-

pus data to investigate whether the Alzheimer’s disease-related findings are repeated in the hippocampus

(Figure S12). DEGs in the hippocampus (p< 0.01) were also significantly enrichedwith endothelial cell genes,

and the expression patterns of cell-type genes and cell-typemodules were similar to those of DFC. In-depth

studies about the hippocampus with more biological replicates and other regions related to Alzheimer’s

disease are needed to understand the mechanisms of early-onset Alzheimer’s disease in DS.

This research provides a resource for investigating the roles of brain cell types in DS brain development,

especially in two regions of DFC and CBC. Associated gene expression patterns were described by sys-

temic network analysis using WGCNA. Each co-expressed gene module showed unique expression fea-

tures that were cell type- and biological role-specific. This study will assist researchers in elucidating the

underlying mechanisms of DS and related neurological or psychiatric disorders by providing a systemic

view into the DS brain condition. Combining this resource with other single-cell level analyses or brain or-

ganoid studies is expected to contribute to investigating the mechanisms of DS brain pathology.89–91
Limitations of the study

In this study, weused the bulk transcriptomeof theDSbrain and inferred the dysregulatedbiological roles of cell

types based on DS-associated cell type-enriched gene co-expression modules. We did not directly analyze the

DSbrain transcriptomeat the single-cell level in this study; however, thecomparisonswith the single-nucleus tran-

scriptome in the DS brain will confirm and complement the dysfunction of cell types in the DS brain. Although

there aremultiple brain regions in the published DS brain transcriptome data we used, we focused on two brain

regions because of the limitations of sample numbers in some regions. Further studies onother brain regionswill

clarify the cell type contributions and molecular mechanisms of DS brain development.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

DS brain transcriptome (Olmos-Serrano et al., 2016)11 GEO: GSE59630 https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE59630

Software and algorithms

R (version 4.0.4) The R Project https://www.r-project.org/

WGCNA package (version 1.70.3) (Zhang and Horvath, 2005)20 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

DAVID 6.8 (Huang da et al., 2009)92

DAVID 2021 (Sherman et al., 2022)93 https://david.ncifcrf.gov/

Cytoscape (version 3.8.2) (Shannon et al., 2003)94 https://cytoscape.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Hyo Jung Kang (hyokang@cau.ac.kr).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Data preprocessing

The series matrix file of GSE59630 from NCBI GEO was downloaded and used in the following analyses.

Exon IDs were converted to the official gene symbol using the gene ID conversion of Database for Anno-

tation, Visualization and Integrated Discovery (DAVID 6.8) to label the genes in figures and tables.92 De-

scriptions of developmental periods are summarized in Table S1.19
Cell-type enrichment analysis

The cell type-enriched gene list from Allen et al.18 and the gene list co-expressed with brain cell type

marker genes from Kang et al.19 were used to compose our own cell type-enriched gene list (Table S2).

Cell type-enriched gene lists for glial cell types were identical to the gene lists from Allen et al.18 Neuronal

cell type-enriched gene lists were composed of genes overlapping with the gene list of Kang et al.19 An-

alyses on neuronal cell types were implemented using parts of separate gene lists (glutamatergic and

GABAergic). Further analyses for subtypes were also performed, except for L5 glutamatergic neurons,

because there were no overlapped genes between neuron-enriched genes in Allen et al.,18 and genes

co-expressed with FEZF2, BCL11B, OTX1, and ETV1, which are markers of L5 glutamatergic neurons.

The top 20 enriched genes for replicating and quiescent fetal neurons12 were used for cell-type analysis

of fetal neuron genes and DEGs of cerebellum-specific cell types13 were used for cell-type analysis of cer-

ebellum-specific cell-type genes.
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Cell-type enrichment analyses on DEGs andWGCNAmodules were performed using our own cell type-en-

riched gene list and Fisher’s exact test. DEGs of DFC and CBC were previously defined18 using the paired

t-test (FDR-adjusted p-value <0.1). The-log10 (BHA p-value) values of Fisher’s exact test were calculated

for each regional DEG and module. Enrichment analysis with neuronal subtype-enriched genes was only

conducted on WGCNA modules because no significant enrichment for neuronal genes was found in the

cell-type enrichment analysis on DEGs. DEGs of hippocampus were defined using the paired t-test with

lower threshold (p-value <0.01) because no DEGs were defined with the same threshold of the DEGs in

DFC and CBC.

Differential expression patterns of cell type-enriched genes

To determine the expression patterns of cell type-enriched genes in control and DS brains, we visualized

expression differences of cell type-enriched genes across brain regions and developmental stages. Differ-

ences in expression values between DS andmatched control sample data of cell type-enriched genes were

calculated on a log2 scale. Data were separated by brain region. We used a sliding window approach for

the developmental stages to diminish the uniqueness of each sample and emphasize the temporal pattern.

Three developmental stages were grouped and are displayed together. A paired t-test was used to esti-

mate the significance of expression differences between DS and control samples at each sliding window.

WGCNA

We used theWGCNA package (version 1.70.3) in R (version 4.0.4) to construct a signed gene co-expression

network transcriptome from all samples, including not only DFC and CBC but also other brain regions of

GSE59630 data, and to form 57 co-expression modules. When building the signed type network and form-

ing co-expression modules, we set the soft-thresholding power to 21, according to the criteria presented in

the WGCNA paper.20 The minimum module size was set to 20 genes, and the minimum cut height of the

gene cluster dendrogram for the merging modules was set to 0.15. In accordance with the WGCNA pro-

tocol, the expression of each gene belonging to each module was summarized as the eigengene, the first

principal component of each module. The kME of each gene belonging to each module was defined by the

correlation between the module eigengene and the gene’s expression value. Genes were reassigned

based on kME. Only those with a kME >0.7 for each module were used for further analysis (Table S3).

The 10 genes with the highest kME values were defined as the hub genes of each module. Among the

57 modules, we filtered out those affected more by RIN, PMI, race, and sex than brain region, disease sta-

tus, and developmental period. Module�trait relationships were calculated by multiple linear regression,

and 43 modules were selected based on the R-squared value and used for further analyses (Table S4).

Gene and eigengene expression visualization

Gene expression patterns were visualized as line graphs and heatmaps according to the developmental

stage, brain region, and disease status of the genes belonging to the selected module. The first principal

components of the modules, the eigengenes, were represented by points according to age. A line graph

was obtained by subsequent local regression in R (version 4.0.4). The gene expression heatmap was ob-

tained by the expression value of each gene in a module, and a gene dendrogram was drawn.

GO and KEGG pathway enrichment analysis

The genes of each module were submitted to DAVID 6.8. Enrichment analysis was performed on three GO

categories and the KEGG pathway. Similar terms were excluded by clustering enriched terms with medium

stringency. The-log (p-value) of each term was calculated. The five most significantly enriched terms for

each category were plotted. In the analysis of fetal neuron and cerebellum-specific cell-type genes,

DAVID 202193 was used because the DAVID 6.8 has been retired since June 2, 2022.

Cytoscape

We exported the intramodular co-expression data for each module obtained fromWGCNA (version 1.70.3)

as an input file for Cytoscape (version 3.8.2) from R (version 4.0.4) and imported it into Cytoscape to create

co-expression networks.94 Gene symbols of the hub genes are enlarged and are colored red. The nodes of

genes corresponding to the cell type of each module were colored in yellow, while the others are colored in

grey using Brain RNA-seq database.22 The width and darkness of edges are proportional to the co-expres-

sion level between two genes. In the analysis of M40, node colors are matched with all brain cell types, and

the nodes which are not related to any cell type are colored white.
22 iScience 26, 105884, January 20, 2023
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QUANTIFICATION AND STATISTICAL ANALYSES

Fisher’s exact test and Benjamini–Hochberg adjustments were performed using R (version 4.0.4). All paired

t-tests were performed in the one-tailed mode. Correlations were calculated using the cor function in

R (version 4.0.4). Transcriptomes from 116 samples (58 pairs, all regions) were used in constructing co-

expression networks usingWGCNA (version 1.70.3). Data from 24 DFC samples (12 pairs) and 20 CBC sam-

ples (10 pairs) were used in detailed analyses.
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