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Vibration mitigation of an MDoF 
system subjected to stochastic 
loading by means of hysteretic 
nonlinear locally resonant 
metamaterials
Francesco Basone1,2, Oreste S. Bursi2*, Fabrizio Aloschi2,3 & Günter Fischbach3

In this paper, we intend to mitigate absolute accelerations and displacements in the low-frequency 
regime of multiple-degrees-of-freedom fuel storage tanks subjected to stochastic seismic excitations. 
Therefore, we propose to optimize a finite locally resonant metafoundation equipped with massive 
resonators and fully nonlinear hysteretic devices. The optimization process takes into account the 
stochastic nature of seismic records in the stationary frequency domain; the records are modelled 
with the power spectral density S0 and modified with a Kanai–Tajimi filter. Moreover, the massive 
superstructure of a fuel storage tank is also considered in the optimization procedure. To optimize 
the nonlinear behaviour of dampers, we use a Bouc–Wen hysteretic model; the relevant nonlinear 
differential equations are reduced to a system of linear equations through the stochastic equivalent 
linearization technique. The optimized system is successively verified against natural seismic records 
by means of nonlinear transient time history analyses. Finally, we determine the dispersion relations 
for the relevant periodic metafoundation.

Within linear metamaterials, a new category of applications of phononic—or periodic—structures as alternatives 
to classic seismic isolators for earthquake mitigation has received growing interest1–4. The increasing popularity 
of these structures resides in the possibility of exploiting the advantages of locally resonant acoustic metamate-
rials (LRAMs) due to their ability to attenuate low‐frequency waves by means of unit cells much smaller than 
the seismic wavelength of the desired frequency region. The most common isolation solutions use lead‐rubber 
bearings or spherical bearing devices, which are quite effective for the horizontal components of earthquakes. 
Nonetheless, these solutions require two strong floors, exert a very high stiffness against the vertical component 
of an earthquake, and are quite ineffective for large structures subjected to rocking5. To reduce the seismic 
responses of superstructures, Cheng and Shi3 and Casablanca et al.4 studied periodic and finite locally resonant 
foundations. Although good response reduction results were obtained, neither of the proposed periodic systems 
were designed for gravity and/or seismic load combinations. Furthermore, the authors did not consider the 
feedback forces from the superstructures to the metafoundations. To overcome these drawbacks, we proposed 
a finite lattice LRAM, the so-called metafoundation, for the seismic protection of multiple-degrees-of-freedom 
(MDoF) systems, i.e., storage tanks2,6,7. The relevant coupled metafoundation-tank system is depicted in Fig. 1a.

The foundation consists of flexible steel columns and concrete slabs that define the primary load-bearing 
structure, while massive concrete masses are considered resonators. The construction site is Priolo Gargallo 
in Sicily, Italy. The site is characterized by a peak ground acceleration (PGA) of 0.56 g for a return period 
TR = 2475 years. Therefore, a linear elastic design according to the Italian code8 was carried out; the resulting 
minimal column stiffnesses allow the metafoundation to remain undamaged following safe shutdown earth-
quakes (SSEs). As a result, the columns have a total height of 4 m with hollow cross-sectional dimensions of 
300 × 300 mm and a thickness of 30 mm. A 3D sketch of the coupled metafoundation-tank system shows that 
the foundation structure is composed of a finite number of 9-unit cells. Square hollow-section steel columns 
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support the concrete slab and provide the lateral stiffness of the metafoundation. Each unit cell includes a massive 
concrete cube linked to the foundation (see Fig. 1b, c) by means of wire ropes, as depicted in Fig. 2.

Nonetheless, two basic issues remain unresolved: the optimization of structural devices, i.e., springs and/or 
dampers, operating in the nonlinear regime within finite lattices and the inclusion of the stochastic nature of the 
seismic input characterized by a large random uncertainty.

With regard to the first issue, i.e., the selection of proper hysteretic dampers, Basone et al.6 suggested the use 
of wire ropes, which are simple devices able to both effectively suspend the concrete resonators inside the foun-
dation and allow motion in all three main directions. Therefore, the behaviour of wire ropes is quite complex, 

Figure 1.   Coupled foundation—tank system: (a) 3D view, (b) layout of the unit cells and (c) cross section of the 
metafoundation. Dimensions are in m.

Figure 2.   (a) Configuration of a single unit cell equipped with steel wire ropes; (b) details of a single wire rope. 
Dimensions are in cm.
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and the characterization of their nonlinear properties is difficult9,10. More precisely, the mechanical flexibility 
of wire ropes provides good isolation properties, and the sliding friction between the intertwined cables results 
in high dissipative capabilities. As a result, these devices can achieve equivalent damping ratios of 15–20% with 
low production and maintenance costs. Their hysteretic behaviour can be reproduced with the well-known 
Bouc–Wen model9–11. This model is quite popular because it can describe the behaviour of a nonlinear hysteretic 
system with a compact first-order differential equation12.

If we consider the aforementioned devices in periodic systems, the analysis of nonlinear metamaterials is 
still very challenging13,14. For instance, from a perturbation approach specifically applied to weakly nonlinear 
periodic chains15, the following topics emerge: (1) the solutions to the nonlinear wave equations are amplitude 
dependent; (2) the wave amplitudes influence their own propagation characteristics, the so-called self-action; 
and (3) the analysis methods in the presence of self-action often do not trace all solutions when more than one 
dominant component is involved. Nonetheless, several researchers have devoted considerable effort to improv-
ing our understanding of nonlinear metamaterial-based systems. For instance, to reduce wave transmission in 
both ultralow and ultrabroad bands with band gaps and chaotic bands, Fang et al.16 developed both a theoreti-
cal approach and an experimental validation to conceive nonlinear acoustic metamaterials (NAMs). Based on 
a new mechanism for wave mitigation and control consisting of the nonlinear interaction between propagating 
and evanescent waves, Zega et al.17 recently presented experimental proof of the appearance of a subharmonic 
transmission attenuation zone due to an energy exchange induced by autoparametric resonance. In contrast, 
Gupta et al.18 explored a wide range of nonlinear mechanical behaviours that can be generated from the same 
lattice material by changing the building block into a dome-shaped structure. In particular, they proposed a 
novel hourglass-shaped lattice metastructure that takes advantage of the combination of two oppositely oriented 
coaxial domes.

With regard to the second issue, i.e., the stochastic nature of the seismic input and the subsequent stochastic 
response analysis of hysteretic systems, an abundance of literature is available12,19,20. In this respect, the equivalent 
(stochastic) linearization technique (ELT)12,19, based on a non-Gaussian probability density function, is viable 
because it can be extended (in a relatively straightforward manner) to MDoF systems. Socha and Pawleta21 
discussed the advantages and disadvantages of this technique.

In summary, to achieve the best performance of a finite locally resonant metafoundation, the following objec-
tives are pursued hereinafter: (1) the optimization of the nonlinear behaviour of wire ropes reproduced with 
hysteretic Bouc–Wen models and (2) the application of the ELT to fully nonlinear devices taking into account 
the stochastic nature of the seismic input in both the frequency domain and the time domain.

The superstructure is composed of a slender fuel storage tank and its equivalent 2D lumped mass model22 
(see Figs. 1a and 3). More precisely, the slender tank was part of an existing plant, i.e., tank #23 or #24 of Case 
Study #1, analysed in a European research project2,7. Housner’s model23 is adopted to simulate the hydrodynamic 
response of liquid containers. This model allows us to associate the inertial force of the liquid with two different 
masses: the impulsive mass and the convective mass. The tank response is reduced to the contributions of the 
two main impulsive and convective modes, and the tank wall thickness is taken into account. The tank’s liquid 
content exhibits axial symmetry, which is sufficient to analyse the dynamics in one direction. However, each 
resonator can vibrate in all three (X, Y and Z) directions.

With regard to the metafoundation, it is designed to remain undamaged for an active seismic site located in 
Priolo Gargallo, Italy. Considering a consistent seismic input for linear/nonlinear time history analyses, a set of 

Figure 3.   Metafoundation-tank coupled system model: condensed mass system (CMS).
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natural earthquakes that correspond to SSE events are selected from Italian and European databases and fitted 
on average to the uniform hazard spectrum (UHS) of Priolo Gargallo.

To take the stochastic nature of the seismic input into account, the computations are carried out in the fre-
quency domain, and because the analysis of nonlinear periodic systems entails the aforementioned difficulties15, 
the ELT is adopted for the Bouc–Wen model. Therefore, an average power spectral density (PSD) function of 
the accelerograms is evaluated. The resulting PSD function is filtered with a Kanai–Tajimi filter24 modified by 
Clough and Penzien25 and subsequently adopted in the optimization procedure. The resulting optimized meta-
foundation is then verified through nonlinear time history analyses (THAs) of the coupled system subjected to 
the aforementioned ground motions.

Methods
Nonlinear metafoundation system modelling.  To address simpler coupled systems and to benefit 
from the optimization considering different stiffness and damping values, the condensed mass system (CMS) 
shown in Fig. 3 is considered. Through an exact dynamic condensation of both the masses and stiffnesses along 
X and Y directions we can analyse the CMS as a 2D system. This dynamic condensation does not lead to errors 
since all resonators in both the X and the Y directions are assumed to be endowed with the same mass and stiff-
ness (see Fig. 1b). The CMS is depicted in Fig. 3, in which the dynamic characteristics of the system are reported 
as well. Herein, mi, ci and ki represent the mass, stiffness and damping coefficients, respectively, of the impulsive 
mass of the superstructure-tank system, while mc, cc and kc represent the mass, stiffness and damping coefficients 
of the relevant convective mass.

The following system of equations of motion (EOMs) describes the dynamics of the aforementioned meta-
foundation-tank coupled system:

 where M, C and K are the mass, damping and stiffness matrices, respectively; KNL defines the component of 
the stiffness matrix that contains the terms (1 − αn) kn introduced later; z(t) defines the vector that contains the 
components zn(t) of the nth resonator modelled in the next subsection; and uy sets the yielding displacement of 
the device. Therefore, Eq. (1) is a nonlinear system of EOMs due to the presence of uy KNL z(t). The vector u(t) 
indicates the displacement vector, whilst single and double dots represent single and double derivatives with 
respect to (w.r.t.) time, respectively. Furthermore, F(t) =  − M τ üg(t) represents the forcing vector, where τ is the 
mass influence vector and üg(t) represents the ground acceleration.

To evaluate the dynamic properties of the CMS, the system equivalent reduction expansion procedure 
(SEREP) is adopted. This method allows the modal vectors of the CMS to be reduced26; therefore, the convective 
mode and the relevant DoFs of the tank can be eliminated from the full set of ‘n’ DoFs, while the effects on the 
lower ‘a’ modes can be retained. More precisely, the SEREP technique is based on the following transformation:

 where T = Φn Φa
g is the transformation matrix, Φn is the modal matrix of the original system, and Φa

g is the 
generalized inverse of the modal matrix of the active/reduced system. More precisely, Φa

g can be evaluated as

As a result, the system matrices of the reduced system are M̃ = TTMT, K̃ = TTKT and C̃ = TTCT, while the 
forcing term becomes F̃ = -TTMτ üg . Since the optimization procedure requires an inversion of the transmission 
matrix T for each frequency interval, the SEREP technique also contributes to the reduction in the run time of 
the optimization algorithm.

Modelling of nonlinear devices.  The nonlinear devices utilized in this work are steel wire ropes, sche-
matically depicted in Fig. 2b. Steel wire ropes are a commonly used solution in seismic engineering due to their 
dissipative behaviour. Moreover, they represent an inexpensive solution in terms of both production and mainte-
nance costs. Thus, many researchers have investigated the hysteretic characteristics of wire ropes when subjected 
to shear forces9–11. In this context, steel wire ropes have already been successfully utilized in metafoundations. 
In some research works6,27, the goal was the protection of tanks against both horizontal and vertical ground 
accelerations by means of finite lattices equipped with nonlinear devices endowed with significant flexibility 
and hysteretic damping. Furthermore, steel wire ropes allow effective motion of the resonators along X, Y and Z 
directions, which can be easily deduced by Fig. 1.

To model the nonlinear dissipative behaviour of wire ropes, we employ the Bouc–Wen model. This model 
has been adopted to capture the hysteretic behaviours of many other seismic devices9,10,28.

For the sake of clarity, let us consider a single-degree-of-freedom (SDoF) system:

where R(t) defines the nonlinear restoring force:

(1)MRu(t)+ C u̇(t)+ K u(t) + uyK
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(4)mü(t)+ cPu(t)+ R(t) = F(t)

(5)R(t) = α k u(t)+ (1− α)k uy z(t)
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where k represents the yielding stiffness and uy is the yielding displacement. The z term is a dimensionless hys-
teretic component provided by the solution of the following nonlinear differential equation that contains three 
state variables:

The shape and smoothness of each hysteretic loop is controlled by the parameters A, β, γ and n. Moreover, 
the term α = kp/k0 in Eq. (5) defines the ratio of the postyielding stiffness to the preyielding stiffness, with

and zmax = [A/(β + γ)]1/n.
Suitable values of A, β, γ and n govern the hardening or softening nonlinearities in the Bouc–Wen model. 

For instance, with |γ| >|β|, γ < 0, a hardening behaviour is obtained. Moreover, the elastoplastic hysteresis case is 
approached when n → ∞, where n modulates the sharpness of the yield. A choice of n = 1 entails a closed-form 
solution of Eq. (6) with simple exponential functions28.

To identify the relevant mechanical characteristics, Paolacci and Giannini carried out an ad hoc experimental 
campaign9. On that database, we initialize the main parameters of the Bouc–Wen model. We select wire rope 
WR36-400-08, whose geometric dimensions are described in Table 1. In particular, k0 is the initial shear stiffness, 
and Rv represents the vertical load-bearing capacity. The authors9 found α = 0.254 and uy = 2.2 mm.

For the sake of clarity, two coupled wire ropes can be observed in the test rig of Fig. 4a; this arrangement 
allows cyclic simple shear tests to be reproduced by means of a central plate9. The corresponding hysteretic 
response is depicted in Fig. 4b.

A generic cycle of the Bouc–Wen model is shown in Fig. 5a with the main mechanical and kinematic param-
eters. A careful reader will notice that this model is symmetric, as can be understood from Eq. (6); nonetheless, 
this property does not limit its capability to properly trace the experimental response depicted both in Figs. 4b 
and 5b.

Note that after choosing steel wire rope, the Bouc–Wen model parameters A and (β + γ) can be functionally 
selected to be A = 1 and β + γ = 1. As shown by Constantinou and Adnane29, this choice leads to the collapse of 
the model to Ozdemir’s model, which is a rate-dependent Maxwell model with a nonlinear dashpot. By setting 
A = 1 in Eq. (7), indeed, the value of the initial stiffness k = Ry/uy = k0 is retrieved; then, by setting β + γ = 1, the 
maximum strength factor zmax in Eq. (6) becomes zmax = [A/(β + γ)]1/n = 1 with z ∈ [− 1, 1].

Seismic input model.  Given the epistemic and mainly aleatoric uncertainties of the seismic input, it is not 
feasible to optimize a system endowed with nonlinear devices on a conventional time basis. A more accurate 
probabilistic (stochastic) approach is required in which both the excitation and the response are described in 
terms of statistical parameters such as the mean square and the variance of the vibration amplitudes. As a result, 
our approach relies heavily on random vibrations treated in the frequency domain, and stochastic linearization 
carried out in the next subsection. Therefore, the input is assumed to be a weakly stationary Gaussian-filtered 

(6)ż(t) = u−1
y

[

Au̇(t) − γ |u̇(t)||z(t)|n−1z(t)− βu̇(t)|z(t)|n
]

(7)k0 =

(

∂R(u, u̇, z)

∂u

)

z=0

= αk+ (1− α)kA; kp =

(

∂R(u, u̇, z)

∂u

)

z = zmax

= αk0

Table 1.   Geometric and mechanical properties of the wire ropes.

Geometric characteristics Parameters of the Bouc–Wen model

H [mm] W [mm] L [mm] Φ [mm] k0 [kN/mm] Ry [kN] uy [mm] n [–] A [–] α [–]

178 216 520.7 26.6 1.35 2.97 2.2 1.0 1.0 0.254
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Figure 4.   (a) Two wire ropes with a central plate subjected to simple shear; (b) hysteretic response of the wire 
rope under cyclic shear loading after Paolacci and Giannini9.
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white noise random process with zero mean and spectral intensity S0. Consequently, the soil is approximately 
taken into account by means of the Kanai–Tajimi filter24, and to avoid unrealistic high values of the excitation 
in the low-frequency range, we utilize an additional filter suggested by Clough and Penzien25. The result is the 
so-called Kanai–Tajimi Clough–Penzien (KTCP) filter, and the resulting PSD function is

 where ωg = 14 rad/s is the frequency associated with the ground and ζg = 0.6 is the relevant damping ratio. The 
parameters ωf = 0.75 rad/s and ζf = 1.9 are assumed for the low pass filter25, whilst the PSD intensity S0 = 0.09 m2/
s3 for safe shutdown earthquakes (SSEs) corresponds to seismic activity with a return period of 2475 years. In 
the time domain, the KTCP filter becomes

 where some variables can be treated in a state-space formulation:

 where f(t) denotes the bedrock Gaussian zero-mean white noise process. Both the filter parameters and the PSD 
intensity S0 are chosen to fit the stationary PSD spectra of 12 natural seismic records (see Table 2) selected from 
Italian and European databases with a 2% probability of exceedance in 50 years.
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Figure 5.   (a) Typical hysteretic loop of a Bouc–Wen model; (b) comparison between experimental and 
numerical responses after Paolacci and Giannini9.

Table 2.   Selected natural accelerograms.

Event Country R, distance [km] M, magnitude

Victoria Mexico Mexico 13.8 6.33

Loma Prieta USA 3.85 6.93

Northridge‐01 USA 20.11 6.69

Montenegro Montenegro 25.00 6.90

Erzincan Turkey 13.00 6.60

South Iceland Island 7.00 6.50

L’Aquila Mainshock Italy 4.87 6.30

Loma Prieta USA 11.03 6.93

Landers USA 11.03 7.28

South Iceland Island 11.00 6.40

L’Aquila Mainshock Italy 4.63 6.30

L’Aquila Mainshock Italy 4.39 6.30
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The corresponding elastic response spectra, their mean and their mean plus one standard variation, together 
with the target uniform hazard spectrum (UHS) relevant to Priolo Gargallo, are plotted in Fig. 6. The twelve 
records collected in Table 2 are selected as follows. Let s0 be the target spectrum value vector, i.e., the mean or 
the mean plus one standard deviation, let S be the spectra matrix of the na accelerograms, and let α be the vector 
of the na × 1 selection coefficients αi. We seek for the vector α that satisfies

where 0 ≤ αi ≤ 1 and 
na
∑

i=1
αi = n.

Hence, the selection is performed with all possible combinations of the n accelerograms among a set of na 
records. Thus, we can easily take into account the dispersion of the records about the mean spectrum. The dis-
crepancy between the maximum peak of the two spectra, i.e. the UHS and the Mean Spectrum + σ should entail 
limited effects on the responses of the nonlinear coupled systems presented in the section Results.

Equivalent linearization and optimization procedure.  To model the wire ropes illustrated in Fig. 2b, 
which are not easily treated mathematically, we propose the stochastic linearization technique21. As a result, the 
treatment of the linearized metafoundation-tank coupled system allows the optimization procedure to be per-
formed in the frequency domain and bypasses several difficulties related to the determination of the dispersion 
properties of fully nonlinear periodic systems15. With regard to the parameters to be optimized, to maximize 
antiresonance or negative effects, the masses of the resonators are set as the largest masses compatible with unit 
cell dimensions. Moreover, the other parameters are derived from construction or design constraints, e.g., the 
design column size and slab thickness; therefore, mainly the stiffness and damping of wire ropes, i.e., the relevant 
dissipated energy controlled by the parameters of Eqs. (5) and (6), can be optimized.

Since the system of EOMs in Eq. (1) characterizes a coupled nonlinear system, classic linear random vibration 
theory is not applicable. Therefore, to linearize the vector uyKNLz(t), we employ the ELT. For the sake of clarity, 
for an SDoF system with N = 1, Eq. (6) becomes

where ceq and keq are linearization coefficients that are “equivalent” in a statistical sense30,31. At this stage, it is 
useful to introduce a state-space formulation of Eqs. (1) and (12):

with
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Figure 6.   Response spectra of the selected accelerograms for SSEs; the UHS of Priolo Gargallo (Italy) is 
depicted in red.
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where Y is the state-space vector, KL and KNL define the linear and nonlinear components of the stiffness matrix, 
respectively, and keq and ceq represent matrices including equivalent linear coefficients. Moreover, N defines the 
number of DoFs of the system, and r = 4 defines the number of equations of the KTCP filter introduced in the 
previous subsection. Let the covariance matrix of Y be S with Sij = E[yi yj], and assume that the seismic input is 
stationary. The solution of Eq. (13) can be derived from the following Lyapunov system of equations:

where B is a zero matrix except for the generic diagonal element corresponding to the nonzero row of the forcing 
function vector, i.e., Bij = 2πS0. Equation (15) is solved with the algorithm proposed by Bartels and Steward32. As 
expected, keq and ceq are not known a priori; in this regard, Maldonado et al.30 suggested setting the initial values 
for an iterative solution procedure ceq = 1 and keq = 0.05 (β + γ) for faster convergence. Further details about the 
whole procedure are available in Maldonado et al.30 and Spanos et al.31.

To operate in the frequency domain, we start from Eq. (4) for a SDoF system and define the transfer function 
H(ω) of the coupled system depicted in Fig. 3. However, Eq. (13) includes the KTCP filter, and the derivation is 
more burdensome for an MDoF system. Therefore, the relevant H(ω) becomes

where the details of the derivation can be found in the Supplementary Material. Its generalization is expressed as

where Keq contains zero terms except those in which the nth resonator is physically connected. More precisely, 
the nonzero terms keqij  of matrix Keq are

where αn and kn refer to the nth resonator of the metafoundation. Note that for α = 1, the transmission matrix in 
Eq. (17) degenerates into a linear transmission matrix.

To carry out the optimization, we minimize the interstorey displacement and the absolute acceleration of the 
tank’s impulsive mode, where the relevant variances σdr and σacc, respectively, are expressed as

where Himp(ω) defines the transfer function of the impulsive mass and Hres(ω) is the transfer function of the 
resonator’s layer. The dimensionless performance indices are defined as follows:

where σ 2
dr,fixed and σ 2

acc,fixed represent the variances of the interstorey drift and the absolute acceleration, respec-
tively, w.r.t. a clamped tank.

The optimization procedure relies on the design variables kk,n and βk,n collected in the parameter vector XNL:

The statement of our optimization problem is as follows:

where k = (1,…,nk) and n = (1,…,nr). The limits imposed on the design variable βk,n are

Further details about the bound of Eq. (23) were already provided in the section Modelling of nonlinear devices.

Dispersion characteristics of the linearized periodic system.  Though the system is linearized by 
means of Eq. (12), the effects of the nonlinear devices depicted in Fig. 2 on the band structure of the relevant 
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periodic system are of interest. On the one hand, we can observe the effect of equivalent damping on the disper-
sion relationships; on the other hand, we can appreciate the effects of the PSD S0.

First, let us consider Fig. 7, which shows both the finite lattice 1-layer structure (see Fig. 7a) and the relevant 
system of repetitive unit cells depicted in Fig. 7b.

The 2-DoF system associated with the unit cell, i.e., slab and resonator of Fig. 7b, can be represented as follows:

 where dots refer to time differentiation. We assume the following harmonic solution for displacements:

 where ũn and ũR are displacement amplitudes. In addition, the Floquet-Bloch theorem can be applied as

 where μ = κd defines the so-called propagation constant based on the wavenumber κ and the unit cell length 
d. Thus, the application of the ELT by means of Eqs. (12) and (18) and the conditions of Eqs. (25)–(26) to the 
system of Eq. (24) entails the following:

The substitution of uR into the first equation of Eq. (27) leads to the following dispersion relation:

in the (μ-ω) plane.
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Figure 7.   Dynamic systems: (a) coupled finite lattice metafoundation-tank system; (b) metafoundation 
modelled as a periodic system.
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Results
Optimization and time‑history analysis results.  The optimization and time history analyses based 
on the methods discussed at length in the previous section are presented and discussed herein. We set n, α 
and uy based on the properties described in Table 1, and we search for the optimal values of k, β and γ with the 
constraints29 A = 1 and β + γ = 1. The results of the optimization process based on the index PIdr introduced in 
Eq. (20) are depicted in Fig. 8 for the CMS model. The minimum value of PIdr = 0.78, i.e., the red point on the 
β − k0,opt plane, corresponds to k0,opt = 56.8 KN/mm and βopt = 0.9. β and γ quantify the dissipation characteristics 
of wire ropes, and with β + γ = 1, γopt = 0.1. Notably, k0,opt corresponds to the horizontal stiffness of a single resona-
tor of the metafoundation. Similar values can be obtained by means of the index PIacc.

To test the performance of the metafoundation-tank coupled system, THAs are carried out considering the 
hysteretic responses of the devices in agreement with Eq. (5). Figure 9 shows the hysteretic loops of a single wire 
rope when the CMS is subjected to one of the 12 accelerograms listed in Table 2. The term ures represents the 
displacement of the generic resonator w.r.t. utl, i.e., the displacement of the top of the metafoundation. Figure 9a 
refers to the optimized system where 42 wire ropes per resonator are needed. Conversely, Fig. 9b refers to the 
system provided with the minimum number of wire ropes required to support a resonator, i.e., 16 wire ropes.

To appreciate the performance of the optimized finite lattice metafoundation, Fig. 10 depicts both the maxi-
mum and the median parameter values of the nonlinear foundation-tank coupled system w.r.t. the fixed-base 
solution when subjected to the 12 seismic records listed in Table 2. The maximum values of the base shear V, 
absolute acceleration a and interstorey drift d of the impulsive mass are reported. Nonlinear devices are charac-
terized by β and γ equal to 0.9 and 0.1, respectively. The favourable performance of the metafoundation, which 
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achieves reductions of approximately 21%, 10% and 19% in V, a, and d, respectively, w.r.t. the fixed-base case, 
is evident.

Finally, Fig. 11 shows the maximum and median values of the wire rope displacements in the optimized 
nonlinear CMS relevant to each time history. The maximum displacements reach approximately 90 mm with a 
median equal to 50 mm. These demand values are compatible with the capacities of standard wire ropes.

Dispersion curves of the linearized periodic system.  For the sake of completeness, it is worthwhile to 
examine some wave propagation properties of the decoupled metafoundation depicted in Fig. 7a and modelled 
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as a periodic system in Fig. 7b. We rely on the ELT applied to nonlinear devices so that we are able to trace the 
mode shape families, i.e., the dispersion curves or band structures, defined by means of wavelengths—inversely, 
wavenumbers—and frequencies. As the linearized hysteretic system exhibits a significant amount of damping 
(see Eqs. (16) and (17)), the damped periodic materials can be characterized by means of (1) complex wavenum-
bers as a function of real frequencies and (2) complex frequencies as a function of real wavenumbers. We adopt 
the former methodology, where the dispersion relationships are obtained with Eq. (28) in terms of μ(ω). This 
condition corresponds to a harmonic wave motion where a driving frequency ω is prescribed. The values of the 
propagation constant μ(ω) are all complex due to the presence of damping. The relevant dispersion relationships 
representative of the periodic metafoundation depicted in Fig. 7b are shown in Fig. 12. The relationships are 
expressed by real values of μ corresponding to the propagative index of waves, while the imaginary components 
of μ, often called the attenuation constant, define the spatial decay of the amplitude as the wave progresses 
through the lattice.

Each dispersion curve shown in Fig. 12 is associated with a different value of keq that, due to the linearization 
process, depends on the input PSD S0. Standard ELT results30,31 show that an increase in S0 from 0.03 to 0.36 
m2/s3 entails an increase in keq—83, 177, 273 and 410—whilst ceq remains essentially unchanged and equal to 
ceq =  − 269. As shown by Spanos and Giaralis33, keq and ceq are derived from a third-order ELT whose values do 
not correspond to any particular mechanical system; hence, their physical significance is limited. Conversely, 
if we rely on a second-order statistical linearization scheme33 governed by the linearization parameters ζeq and 
ωeq, this leads to a trend where an increase in S0 corresponds to a reduction in ωeq, as understood from Fig. 12a. 
Note that for the highest value of S0, i.e., almost an undamped-like structure, the curve tends to create a band-
gap. In that area, the μi values are higher for curves with less damping. Finally, with regard to waves travelling 
at frequencies that belong to the passband of μR, higher damping values entail greater spatial wave attenuation.

Numerical investigation of the periodic system.  In contrast to the previous subsection, where we 
considered a linearized periodic system, in this section we carry out numerical simulations on the metafounda-
tion’s periodic configuration depicted in Fig. 7b; thus, we do not make any assumptions about the nonlinearities 
involved. The system is excited by a time-harmonic displacement A0 applied to the bottom layer. The output 
response A is read from the top layer. The boundary condition of the system of masses is free-free, and since the 
system is not excited by a force, rigid-body motion is avoided. The frequency response function (FRF) is then 
evaluated as

where A is the maximum amplitude of the steady-state response and A0 is the amplitude of the harmonic excita-
tion. The resulting wave transmittances are plotted in Fig. 13.

The FRFs of Fig. 13 are clearly amplitude dependent because the system is nonlinear. However, the wave 
transmittances in Fig. 13a for low frequencies show that the modal resonances do not depend strongly on the 
amplitude excitation. This is clearly confirmed by the linearized band structure observed in Fig. 12, where the 
acoustic branch appears to be identical for each S0. Nevertheless, the identification of an optical branch is simpler 
for high amplitudes, i.e., A0 = 25 cm; in fact, the presence of resonance points becomes evident.
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Figure 12.   Periodic metafoundation dispersion curves: (a) imaginary component of μ; (b) real component of μ.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9728  | https://doi.org/10.1038/s41598-021-88984-0

www.nature.com/scientificreports/

We can also identify a strong attenuation zone comparable to the band gap. The width of the band gap varies 
with the displacement amplitude. A wide and deep band gap can be observed under small-amplitude excitations, 
whereas the width and depth of the band gap are reduced by increasing the input amplitude. This leads to a worse 
wave attenuation performance of the hysteretic system under high-amplitude vibrations. The performance of the 
periodic hysteretic system can also be evaluated by means of Fig. 13b for A0 = 6 cm. It is clear that the performance 
level increases in terms of the width and depth of the band gap as the system is characterized by more layers. 
Moreover, it is worth noting that both FRFs identify an attenuation zone accurately predicted by the linearized 
dispersion curves of Fig. 12. In fact, the trend of the imaginary components of μ is centred at the resonator’s 
linearized frequency ωR = (αk0/mR)1/2 = 16,9 rad/s. Figure 13 consistently shows that for frequencies ranging from 
approximately 15 to 20 rad/sec, the FRF starts to decrease. Finally, note that the stiffness αk0 corresponds to the 
slope of the hardening branch of the Bouc–Wen model in Eq. (7).

Discussion
The objective of this work was to conceive a metafoundation bearing oil storage tanks capable of inheriting 
the filter properties of finite lattice phononic structures. More precisely, the vibrations in the frequency regime 
induced by seismic records are attenuated by the favourable properties of coupled hysteretic devices and resona-
tors embedded in the metafoundation. The metafoundation is composed of massive vibrating concrete blocks 
that are coupled to the slabs by means of fully nonlinear hysteretic devices. Moreover, to achieve cost savings, 
the foundation is constituted by a single layer of resonators.

To identify the effective properties of nonlinear hysteretic devices in terms of stiffness and equivalent damp-
ing, an optimization procedure was carried out by minimizing two dimensionless performance indices based 
on the variances of interstorey displacement of the impulsive mass and of the relevant absolute acceleration. 
Because the optimization procedure has to be carried out in the frequency domain for linear time-invariant sys-
tems subjected to stationary seismic records, we applied the stochastic linearization technique19 to the nonlinear 
hysteretic devices embedded in the metafoundation. As a result, the optimized metafoundation-tank coupled 
system performed well when subjected to natural seismic records carried out in the time domain. In addition, 
we determined the dispersion relations for the periodic linearized spring–mass chain, see Fig. 7b, which clearly 
depends on the PSD S0 amplitude. As a result, the maximum attenuation rate, based on the propagation con-
stant depicted in Fig. 12a, increases with an increase in S0 and a decrease in the equivalent damping ζeq in the 
resonators.

Furthermore, we investigated the nonlinear response of the periodic metafoundation by means of numeri-
cal FRFs. The results confirm the reliability of the dispersion analysis subsequent to applying the equivalent 
linearization technique. In fact, a strong attenuation zone in the FRF is located in the frequency range where the 
dispersion curves indicate very high values of the imaginary propagation constant μi.

The results achieved herein reveal a promising application of finite lattice metafoundations to large systems 
subjected to strong seismic excitations. In addition, this work paves some ways: (1) the application of stochastic 
linearization to a finite lattice allows the metafoundation-tank coupled nonlinear system to be optimized while 
capturing the variability of the seismic input, and (2) the use of simple hysteretic devices such as wire ropes 
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permits the 3D motion of massive resonators and reflect the great effectiveness and potential of these devices 
as vibration mitigation tools.

Ultimately, the validation of these results by means of the 3D physical characterization of hysteretic devices 
as well as the analysis of nonlinear wave mechanisms through nonlinear spatial analyses deserve further study.
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