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Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases.
IL-33 exerts its effects via its heterodimeric receptor complex, which comprises
suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP).
Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial
roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS
diseases, including neurodegenerative diseases, cerebrovascular diseases, infection,
trauma, and ischemic stroke. In the current review, we focus on the functional roles and
cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic
and therapeutic applications.

Keywords: interleukin-33, ST2, multiple sclerosis, ischemic stroke, trauma, hemorrhage, Alzheimer’s disease,
anti-inflammatory macrophages
INTRODUCTION

Interleukin-33 (IL-33) was originally discovered in 1999 as clone DVS27 in vasospastic cerebral
arteries in a canine model of subarachnoid hemorrhage (SAH) (1) (Figure 1). Then, in 2003, IL-33
was identified as nuclear factor from high endothelial venules (NF-HEV), a nuclear factor
preferentially expressed in human high endothelial venules (2). In 2005, IL-33 was classified as a
member of the IL-1 cytokine family and named IL-1F11 (3). Remarkably, IL-33 is continuously
expressed in healthy brains and spinal cords (4), which have higher IL-33 mRNA expression than
any other tissue tested (3). In recent years, IL-33 has been found to be involved in various disorders
of the central nervous system (CNS), including multiple sclerosis (MS) (5, 6), infection (7, 8),
ischemic stroke (9, 10), traumatic brain injury (TBI) (11, 12), spinal cord injury (SCI) (4, 13), brain
tumorigenesis (14, 15), and mental disorders (16) (Figure 2). In the current review, we will focus
on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the
potential for diagnostic and therapeutic applications.
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IL-33 AND ITS RECEPTOR

Human IL-33 is located on chromosome 9p24.1 and encodes 270
amino acids, while its mouse counterpart is located on the syntenic
chromosome 19qC1 region and encodes 266 amino acids.
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At the amino acid level, human and mouse IL-33 are 55%
identical (3). IL-33 can be confined in the nucleus as a result of
binding heterochromatin with an evolutionarily conserved
homeodomain-like helix-turn-helix motif within its N-terminal
region (17). However, under pathological conditions, IL-33 is
FIGURE 1 | Timeline diagram demonstrates IL-33-related discoveries. HF-HEV: nuclear factor from high endothelial venules; IL1RL1: interleukin 1 receptor-like 1;
ST2: suppression of tumorigenicity 2.
FIGURE 2 | Schematic overview of the roles and underlying signaling mechanisms of IL-33 in CNS homeostasis and disease. CaMKII, calcium-calmodulin-
dependent kinase II; CREB, cyclic adenosine monophosphate response element-binding protein; IL-33, interleukin-33; ILC2, group 2 innate lymphoid cell; JAK2,
Janus kinase 2; JNK, c-Jun N-terminal kinase; MMP2/9, matrix metalloprotease 2/9; NF-kB, nuclear factor-kB; OPC, oligodendrocyte precursor cell; ST2,
suppression of tumorigenicity 2; STAT3, signal transducer and activator of transcription 3; Th2, T helper type 2; Treg, regulatory T cell.
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released by stressed or damaged cells as an alarmin (18–20). IL-33
is released in either a full-length or cleaved form. Unlike IL-1b,
IL-33 is not cleaved by caspase-1 (21). Instead, processing by
caspase-1, caspase-3, and caspase-7 actually leads to IL-33
inactivation (22, 23). Other proteins, such as neutrophil elastase,
cathepsin G (24), chymase and tryptase (25, 26), cleave IL-33, and
the resulting cleaved IL-33 has much higher biological activity
than full-length IL-33.

Extracellular IL-33 exerts its effects by binding to the orphan
receptor suppression of tumorigenicity 2 (ST2, also known as
IL1RL1, DER4, T1 and FIT-1) (3). Upon binding IL-33, ST2 on
the cell membranes forms a heterodimer with IL-1 receptor
accessory protein (IL-1RAP) (27, 28), which leads to the
dimerization of the Toll/interleukin-1 receptor (TIR), the
subsequent recruitment of myeloid differentiation primary
response protein 88 (MyD88) and the activation of IL-1R-
associated kinase, and ultimately activate the mitogen-activated
protein kinase (MAPK) and nuclear factor-kB (NF-kB) signaling
pathways (3, 29).

Notably, four isoforms of ST2 exist: transmembrane ST2L,
soluble ST2 (sST2), ST2V and ST2LV. ST2L and sST2 come from
a dual promoter system to drive differential mRNA expression
(30). Transmembrane ST2L contains transmembrane and
cytoplasmic domains that are absent in sST2 (31). sST2 has
been reported to be a decoy receptor that competes with ST2L for
IL-33 binding, thus inhibiting the IL-33 signaling pathway (32,
33). ST2V and ST2LV are two splice variants of ST2. ST2V gains
a hydrophobic tail instead of losing the third immunoglobulin-
like domain in the C-terminal portion of ST2L (34), while ST2LV
is produced from deletion of the transmembrane domain of
ST2L (35). To date, there have been no reports in the literature of
the interaction of IL-33 with ST2V or ST2LV.

In addition to sST2, other factors have been reported to
inhibit IL-33/ST2 signaling by regulating ST2. For example,
single immunoglobulin domain IL-1R-related molecule
(SIGIRR, also known as TIR8) forms a complex with ST2
upon IL-33 stimulation and subsequently inhibits IL-33-
mediated signaling (36, 37). Another negative regulator is F-
box and leucine-rich repeat protein 19 (FBXL19), which
mediates the ubiquitination and degradation of ST2 (38).
IL-33 IN CNS DEVELOPMENT
AND HOMEOSTASIS

IL-33 expression was first detected in the mouse CNS during late
embryogenesis, and its expression increased from postnatal day 2
(P2) to P9 then declined and became absent after P23. During
this period, astrocytes and oligodendrocyte precursor cells
(OPCs) rather than neurons are responsible for IL-33
expression (39, 40). IL-33 induces the expression of myelin
basic protein and the transcription of myelin genes via p38
MAPK activation in OPCs in vitro (41). Conversely, IL-33
deficiency disrupts OPC differentiation into oligodendrocytes
and interferes with myelin compaction in vitro and in vivo (42),
indicating a potential role of IL-33 in oligodendrocyte
Frontiers in Immunology | www.frontiersin.org 3
maturation and myelination during CNS development. During
the early period of postnatal synapse maturation, IL-33
expression increases in astrocytes but only in a subpopulation
of spinal cord and thalamic astrocytes in gray matter, where most
synapses are located. This IL-33 induction is developmentally
crucial for neural circuit function and ST2-expressing microglial
synapse engulfment in the spinal cord and thalamus. IL-33-
deficient mice have deficits in the acoustic startle response, which
is a sensorimotor reflex mediated by motor neurons in the
brainstem and spinal cord. Furthermore, in IL-33-deficient
mice, spontaneous and evoked oscillatory activity increases in
an intrathalamic circuit between the ventrobasal nucleus and
the reticular nucleus of the thalamus (40), which implies that
IL-33 is required to maintain synapse homeostasis during
CNS development.

IL-33 is constitutively expressed in the corpus callosum,
hippocampus, thalamus, and cerebellum (granular layer and
white matter) in adulthood, which was discovered using IL-33-
LacZ gene trap reporter adult mice (43). It is predominantly
expressed in astrocytes in both the brain and spinal cord in mice.
IL-33 is also expressed in oligodendrocytes, microglia, and
neurons, but at a lower level (16). ST2 expression is found in
neurons and glial cells in the brain and spinal cord in rodents.
Notably, the expression of ST2 on cerebral endothelial cells and
astrocytes close to the endothelial layer of the cortex implies a
role of IL-33/ST2 signaling in maintaining the function of the
blood brain barrier (BBB) (16, 44). Despite the fact that IL-33
protein is always localized in the nucleus of cells as an alarmin
(43), whether the nuclear IL-33 impacts CNS homeostasis
is unclear.
IL-33 IN MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is an autoimmune disease characterized
by demyelination and neurodegeneration in the CNS. IL-33 is
elevated in plasma, normal-appearing white matter, and lesions
in MS patients compared to normal controls (5, 45). In
experimental autoimmune encephalomyelitis (EAE) mice, a
widely used mouse model of MS, the expression levels of IL-33
and ST2 in the spinal cord are elevated compared to those in
naïve mice (46, 47).

The role of IL-33/ST2 signaling in MS has been intensively
investigated in mice. Although one group demonstrated that
blockade of IL-33 protected mice against EAE (46), most
literature suggests that IL-33 is a protective factor. Exogenous
IL-33 can significantly suppress EAE in mice (48–50).
Conversely, either IL-33 antibody or genetic ablation
exacerbates EAE development in mice (47, 51). In addition,
ST2-deficient mice develop aggravated EAE that cannot be
restored by exogenous IL-33 injection (48, 52). Several
mechanisms are involved in IL-33-attenuated EAE. First, IL-33
reduces the frequency of IL-17A+ and interferon gamma+

(IFNg+) cells in both draining lymph nodes (DLNs) and
spleens (48, 51, 52). This is probably due to the attenuated
inflammatory phenotype of antigen-presenting cells (APCs)
May 2021 | Volume 12 | Article 654626
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upon IL-33/ST2 activation. Transplantation of dendritic cells
(DCs) from DLNs and spleens of ST2-deficient MOG35-55-
immunized EAE mice to wild-type counterparts exacerbates
EAE development (52). Second, IL-33 protects EAE mice via
regulatory T cells (Tregs), which are ST2 positive (53). IL-33
significantly increases the frequency of Tregs in the spinal cords
of EAE mice (48). Consistent with these results, Tregs are
enriched within MS lesions but not in remyelinating lesions in
patients and produce IL-10, which facilitates the resolution of
MS (54). Third, IL-33 polarizes macrophages in DLNs and
spleens toward the anti-inflammatory M2 phenotype.
Transplantation of macrophages from lymph nodes (LNs)
and spleens of IL-33-treated mice to immunized mice
attenuates EAE development (48). Last, other cell types
educated by IL-33 exert protective roles. For example, IL-33-
treated eosinophil transplantation confers protection against
EAE in mice (50). ST2-expressing mast cells, group 2 innate
lymphoid cells (ILC2s) and basophils are also implied to produce
anti-inflammatory IL-4 and/or IL-13 to protect against EAE in
mice (49).

Furthermore, experiments using rat in vitro myelinating
coculture have suggested that IL-33 inhibits axon myelination
during MS pathogenesis (45). However, IL-33 has also been
reported by another group to promote myelin repair (41).
Therefore, the direct effect of IL-33 on myelination and the
underlying mechanisms need to be further investigated. Taken
together, these studies show that IL-33 has a protective effect in a
mouse model of EAE and might be a promising therapeutic
target for MS patients.
IL-33 IN TRAUMA

IL-33 has been reported to be increased in microdialysate
samples of patients with TBI (11). Serum sST2 levels are also
elevated in TBI patients, and the increased concentrations are
positively related to inflammation, severity and prognosis (55),
which indicates that sST2 is a potential prognostic biomarker for
TBI. In mice, IL-33 is released immediately from damaged
oligodendrocytes and astrocytes in injured CNS tissue during
TBI induced by controlled cortical impact (CCI) and
experimental SCI (4, 11, 13, 56).

After CCI or SCI, ST2- or IL-33-deficient mice exhibit
attenuated induction of chemokines in local astrocytes, such as
C-C motif chemokine ligand 2 (CCL2), which subsequently
impairs inflammatory monocyte infiltration (4, 11). Consistent
with these results, treatment with recombinant IL-33 alleviates
secondary damage by significantly decreasing tissue loss,
demyelination and astrogliosis in the contused mouse spinal
cord, which contributes to improved functional recovery (13).
IL-33 prevents TBI-induced inflammation and apoptosis in mice
(56). In addition, IL-33 augments the skew of macrophages
toward the M2 phenotype (4, 13), which is beneficial after
CNS injury. However, the underlying mechanism by which IL-
33/ST2 signaling drives the anti-inflammatory response in CNS
trauma needs to be further investigated.
Frontiers in Immunology | www.frontiersin.org 4
IL-33 IN ISCHEMIC STROKE

The concentrations of both IL-33 and sST2 increase in
circulating blood in patients with ischemic stroke (9, 10, 57,
58), and both are negatively correlated with patient outcome and
can serve as independent diagnostic and predictive prognostic
markers in ischemic stroke patients (10, 58, 59). Besides, two
ongoing clinical trials in United States (NCT03297827) and
Poland (NCT03948802) are evaluating the utility of IL-33 as a
biomarker of acute stroke. And another active clinical trial in
Croatia (NCT04607031) is determining the prognostic accuracy
of sST2 dynamics in ischemia stroke outcomes. The results from
these clinical trials will provide further evidence to determine
whether IL-33 and sST2 are the reliable biomarkers for
stroke patients.

In the mouse model of ischemic stroke induced by middle
cerebral artery occlusion (MCAO), IL-33 mRNA and protein
expression are obviously upregulated in lesions, and mature
oligodendrocytes and astrocytes are responsible for this
upregulation (9, 60–62).

ST2 or IL-33 deficiency exacerbates ischemic brain injury
after MCAO in mice (60, 61). Conversely, exogenous IL-33
treatment protects mice against experimental ischemic stroke
(9, 63–65) and neonatal hypoxic ischemic brain injury (62).
Mechanistically, IL-33 does not directly act on neurons. Instead,
similar to trauma, IL-33 reduces astrocyte activation and drives
the type 2 response (9). Two pathways might be involved in the
IL-33-driven skew of microglia/macrophages toward the M2
phenotype after MCAO. First, it has been reported that IL-33
increases peri-ischemic IL-4 secretion from T cells in the brain,
contributing to the skew toward M2 macrophages. Moreover, the
IL-4 antibody treatment abrogates IL-33-mediated protection in
mice after MCAO (9). Second, IL-33 directly potentiates M2
polarization of microglia/macrophages via an unknown signaling
pathway after MCAO (57, 60). Another mechanism involved in
IL-33-mediated protection in ischemic stroke is promotion of the
T helper type 2 (Th2) response and suppression of Th1 and Th17
responses (63, 65).

Surprisingly, blockade of CD25 on Tregs fails to abrogate IL-
33-mediated protection in mice after MCAO (9), even though
ST2+ Tregs are observed to increase in ischemic brain and spleen
in MCAO mice upon IL-33 treatment (64–67) and IL-33/ST2
signaling has been suggested to play an important role in the
expansion and function of brain Tregs (68); this result indicates
that the expanded Tregs in MCAO mice are only bystanders. In
summary, IL-33 treatment might be a promising therapeutic
method for ischemic stroke patients.
IL-33 IN HEMORRHAGE

As previously described, IL-33 was initially identified as one of
the differentially expressed genes in vasospastic cerebral arteries
after SAH in dogs (1). It was then reported that IL-33 protein and
mRNA levels increase in the brain cortex in a rat model of SAH,
and IL-33 is mainly localized in neurons (69). However, in the
May 2021 | Volume 12 | Article 654626
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rodent model of intracerebral hemorrhage (ICH), IL-33 mainly
localizes in astrocytes and microglia rather than in neurons in the
brain around the hematoma of the ipsilateral hemisphere.
Furthermore, exogenous IL-33 exerts a neuroprotective effect
against ICH via selective microglial M2 polarization and
subsequent inflammatory suppression (70, 71).
IL-33 IN INFECTION

The cerebral complications of malaria, which is caused by
Plasmodium falciparum infection, are associated with long-
term neurological sequelae in survivors. IL-33 expression in
oligodendrocytes and astrocytes is increased in the mouse
brain during Plasmodium berghei ANKA (PbA) infection-
induced experimental cerebral malaria (ECM) as well as during
other parasitic infections, including Toxoplasma gondii and
Angiostrongylus cantonensis (8, 72–75). ST2 deficiency disrupts
ECM infection, prevents recognition impairment and improves
survival in mice with PbA infection, and these effects might be
attributed to the suppression of IL-1b production by ST2-
deficient microglia and the impaired sequestration and
activation of pathogenic T cells (8, 72). Interestingly, two other
groups reported other scenarios. One group used IL-33-deficient
mice to demonstrate that IL-33 was not critical for ECM
development (76). The other group elucidated that exogenous
IL-33 protected mice from PbA infection-induced ECM by
orchestrating a protective immune response via ILC2s, M2
macrophages and Tregs (77). These results are supported in
Toxoplasma gondii-infected mice. Deletion of ST2 increases
susceptibility to Toxoplasma gondii infection in mice due to
the increased parasite burden in the brain (74, 75). Moreover,
astrocytes without ST2 fail to recruit and/or maintain adequate
antiparasitic IFNg-expressing T cells and inducible nitric oxide
synthase (iNOS)-expressing monocytes/macrophages in the CNS
to control parasites (75).

Bacterial infection may induce endotoxemia, leading to
neuroinflammation. Intracerebroventricular endotoxin (also
known as lipopolysaccharide, LPS) induces IL-33 production
by glia in the brain (20, 44). IL-33-deficient mice exhibit
attenuated neuroinflammation upon LPS challenge. Microglia
are the target cells that are stimulated by IL-33 to produce
proinflammatory cytokines during LPS stimulation (44).

Furthermore, IL-33/ST2 signaling plays a role in virus-
induced CNS diseases. In the newborn brain with Zika virus-
induced microcephaly, IL-33 is significantly upregulated
compared to that in newborn brains with microcephaly
without virus infection (78, 79). IL-33 has been found to
positively correlate with IL-1b expression (79, 80), implying
that IL-33 might play a role in the proinflammatory response
in virus infection. In addition, an in vitro study demonstrated
that HIV infection induces IL-33 release from neurons and ST2
upregulation in astrocytes. A higher IL-33 concentration is
associated with decreased synaptic plasticity due to enhanced
neuroinflammation (81), indicating a deleterious role of IL-33
in neuropathogenesis in HIV infection. However, in an
experimental mouse model of encephalitis induced by Rocio
Frontiers in Immunology | www.frontiersin.org 5
virus infection, ST2 knockout mice showed increased
susceptibility to infection and an increased mortality rate,
possibly attributable to increased iNOS production through
local IFNg modulation (7). Taken together, these data suggest
that more investigations are warranted to determine the role of
IL-33/ST2 signaling in parasitic/viral infection.
IL-33 IN TUMORS

Glioma is the most frequent intracranial tumor in adult humans.
It has been reported that IL-33 and ST2 expression in glioma
tissues is higher than that in normal brain tissues, and their
expression is positively correlated with glioma grade (15, 82).
Moreover, higher IL-33 expression is associated with poor
overall survival (OS) and recurrence-free survival (RFS) in
patients with gliomas (14, 15, 83), indicating that IL-33 might
be an independent prognostic marker for glioma.

IL-33 is highly expressed in tumor cells during glioma
development. It is believed that glioma cells are also ST2
positive. Knockdown of IL-33 or ST2 in glioma cell lines
suppresses proliferation, migration and invasion in vitro and
reduces tumor formation in vivo in both rodent models of
intracerebral glioma cell implantation and subcutaneous
xenograft (82–84). Mechanistically, IL-33/ST2 activates NF-kB
signaling to induce matrix metalloprotease 2/9 (MMP2/9) to
enhance cell migration and invasion (82) and promotes c-Jun N-
terminal kinase (JNK) signaling to induce the expression of key
transcription factors that control the process of epithelial-to-
mesenchymal transition (EMT) and stemness (83). Notably, IL-
33 prevents temozolomide (TMZ)-induced brain tumor
apoptosis, and blocking IL-33/ST2 signaling can increase the
sensitivity of tumors to TMZ (83). On the other hand, a recent
study demonstrated that glioma-derived IL-33 correlated with
increased tumor-associated macrophages/microglia in human
specimens and in mice with intracerebral xenografts. The
group reported that ST2 expression was minimal on glioma
cells and that nuclear IL-33 mediated the release of inflammatory
cytokines from glioma cells and was required for the recruitment
of M2 protumorigenic macrophages (85).

An anticancer role of ST2 has been proposed. ST2 binds to
tumor cell apoptosis factor (TCApF), a peptide naturally
expressed in the frontal lobe of the brain, to activate caspase-3-,
caspase-8-, and caspase-9-mediated apoptosis (86). However,
whether IL-33 competes with TCApF for ST2 binding in glioma
is unclear. Nevertheless, IL-33 might be a promising therapeutic
target for glioma.
IL-33 IN ALZHEIMER’S DISEASE AND
PARKINSON’S DISEASE

Although IL-33-positive cells (astrocytes and microglia) are
significantly increased in Alzheimer’s disease (AD) brains
compared to non-AD brains (87), IL-33 mRNA expression in the
brain (88) and circulating IL-33 levels (89) are lower in AD patients
May 2021 | Volume 12 | Article 654626
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than in healthy controls. The decreased circulating IL-33 levels in
AD might be attributed to the increased decoy receptor sST2 in the
blood of AD patients (89). Three single nucleotide polymorphisms
(SNPs), rs1157505, rs11792633 and rs7044343, within IL-33 have
been reported to be associated with AD risk in a large prospective
study in a Caucasian population. These polymorphisms are
associated with less cerebral amyloid angiopathy (CAA) in the
brain (88), which correlates closely with AD pathology. These SNPs
were further evaluated in two independent cohorts in the Han
Chinese population. It was reported that the IL-33 rs11792633
polymorphism was significantly associated with a reduced risk of
late onset AD (LOAD) in patients and that the T allele was a
protective factor for LOAD (90, 91).

IL-33 has been suggested to prevent AD development in in vitro
and in vivo animal studies. IL-33 overexpression in in vitro cellular
models induces a specific decrease in the secretion of amyloid b40
(Ab40) peptides, which are the main component of CAA (88). In the
APPswe, PSEN1dE9 (APP/PS1) double transgenic mouse, an AD
mouse model, IL-33 administration reduces soluble Ab levels and
amyloid plaque deposition by enhancing microglial recruitment, Ab
phagocytic activity and anti-inflammatory responses via ST2/
MAPK signaling, ultimately contributing to the amelioration of
AD development (92). Strikingly, compared to their wild-type
counterparts, IL-33-deficient aged mice (aged 65-80 weeks)
develop significant abnormal tau accumulation, which is a
biomarker for AD (93), and late-onset neurodegeneration in the
cerebral cortex and hippocampus accompanied by impaired
cognition/memory. IL-33 deficiency induces impaired repair of
DNA double-strand breaks and defective autophagic clearance of
cellular waste in neurons (94). IL-33 might also contribute to
repressing aging-associated neuroinflammation and cognitive
decline via ILC2s. The ILC2s are ST2 positive and functionally
quiescent at homeostasis but can be activated by IL-33 to produce a
vast range of type 2 cytokines to combat aging-associated
neurodegenerative disorders (95).

Increased IL-33-expressing astrocytes are detected in the
midbrain and striatum of Parkinson’s disease (PD) brains
compared with age- and sex-matched control brains (96). In
vitro studies have shown that 1-methyl-4-phenylpyridinium
(MPP+), a metabolite of the parkinsonian neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induces IL-33
release from astrocytes (97). Mast cells, a population of IL-33-
targeting cells whose activation is detected in PD brains, might
contribute to neuroinflammation during PD development (96,
97). Together, IL-33 administration could be a potential therapy
for AD. However, the role of IL-33 in PD remains elusive.
IL-33 IN PAIN

The role of IL-33/ST2 signaling in the pain response has been well
characterized in different animal models. In various rodent models,
IL-33 expression is increased in neurons, oligodendrocytes and/or
astrocytes in the spinal cord (98–101). Either blocking ST2
genetically, intrathecal administration of an ST2-neutralizing
antibody or IL-33 knockdown attenuates model-induced
mechanical hyperalgesia and heat/cold allodynia (98–102). In the
Frontiers in Immunology | www.frontiersin.org 6
spared nerve injury (SNI) neuropathic pain model, IL-33 activates
the astroglial Janus kinase 2 (JAK2)/signal transducer and activator
of transcription 3 (STAT3) cascade and the neuronal calcium-
calmodulin-dependent kinase II (CaMKII)/cyclic adenosine
monophosphate response element-binding protein (CREB)
cascade to contribute to nociceptive behaviors (98). On the other
hand, IL-33-induced hyperalgesia, which is initiated by SNI (99),
bone cancer (100), non-compressive lumbar disk herniation (101),
or complete Freund’s adjuvant (102), is inflammation dependent,
indicating the involvement of microglia.
IL-33 IN SEIZURE

In SAH patients, plasma sST2 levels are higher among patients
with new or worsening epileptiform abnormalities than those of
patients without (103), implying that IL-33, which can be
decoyed by sST2, is associated with reduced odds of
epileptiform abnormalities. In a rat model of recurrent
neonatal seizure (RNS), IL-33 administration restores the
reduced IL-33 in the cortex induced by RNS, improves RNS-
induced behavioral deficits, promotes body weight gain, and
ameliorates spatial learning and memory ability by impeding
NF-kB-mediated neuroinflammation (104, 105).
IL-33 IN MENTAL DISORDERS

Even though both IL-33 and sST2 levels in chronic schizophrenia
patient sera are comparable with those in their control
counterparts, serum IL-33 is positively correlated with
cognitive performance in patients with schizophrenia (106).
Furthermore, the IL-33 gene polymorphism (rs11792633) is
associated with the development of schizophrenia. The CT and
TT variants of rs11792633 are related with significantly reduced
risk of schizophrenia (107).

IL-33 has also been implicated in other kinds of mental
disorders. In women with a history of recurrent major
depressive disorder, circulating IL-33 is higher than that in
healthy controls (108). Another study found that IL-33
concentrations were significantly associated with increased
odds of perinatal major depressive episodes (109). However,
IL-33 levels in blood in children with autism spectrum disorder
do not differ from control counterparts (110, 111). In contrast,
elevated IL-33 expression in the brain is observed in BTBR T+tf/J
(BTBR) mice, which exhibit several symptoms of autism,
including reduced social interactions, restricted repetitive
behaviors and unusual vocalizations (112). Interestingly, IL-33-
deficient mice exhibit reduced anxiety-like behaviors and
impaired social novelty recognition via unknown signaling (113).
IL-33 IN AMYOTROPHIC
LATERAL SCLEROSIS

IL-33 levels in serum is lower in patients with amyotrophic
lateral sclerosis (ALS) than those in healthy controls (114). In the
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transgenic mice of ALS expressing G93A-superoxide dismutase 1
(SOD1-G93A), long-term IL-33 administration delays disease
onset in females but not males probably through peripheral Th2
response (115).
IL-33 IN NEURO-BEHÇET’S DISEASE

Neuro-Behçet’s disease (NBD) causes CNS complications and is
present in 5-30% of patients with Behçet’s disease (BD) (116). IL-
33 has been reported to be significantly higher in the
cerebrospinal fluid of patients of NBD compared with those of
patients with headache attributed to BD and patients with non-
inflammatory neurological diseases. And expression of IL-33
mRNA in cerebrospinal fluid cells from patients with NBD is
positively correlated with CCL2 and C-X-C motif chemokine
ligand 10 (CXCL10) expression (117). Though IL-33 is implied
to play a role in CNS inflammation in NBD patients, future
investigations are warranted to determine whether and how the
IL-33 plays a beneficial or detrimental role in CNS of patients
with NBD.
CONCLUSION

IL-33 is induced predominantly in oligodendrocytes and
astrocytes in the CNS. In addition to promoting brain
tumorigenesis, IL-33 promotes M2 macrophage skew and/or
Treg expansion and activation to establish an anti-inflammatory
Frontiers in Immunology | www.frontiersin.org 7
microenvironment against diseases, especially MS, AD, trauma,
ischemic stroke, and hemorrhage (Figure 2), which suggests that
IL-33 administration is an appropriate and desired therapeutic
treatment against CNS diseases.

Currently, most studies are linking increased IL-33 induced in
injured CNS to anti-inflammatory microenvironment in local
lesions and/or lymphatic tissues (spleen and LNs). However, IL-
33 is expressed in various organs (such as gut, lung, skin…), and
plays a critical role in tissue homeostasis, injury and
inflammation (118) as well as controlling gut microbiota (119,
120). Since targeting microbiota-gut-brain axis becomes new
therapeutic strategy for neurological diseases (121), in the
future, studies on the role of IL-33 from gut in microbiota-gut-
brain axis might be emerging. Secondly, given that IL-33 is a
powerful cytokine in a variety of organs and disease, the best
strategy to deliver IL-33 to suppress inflammation in CNS
without inducing side effect in other organs needs to be
further investigated. Thirdly, current clinical trials using IL-33/
ST2 signaling to treat CNS diseases are totally blank. There is still
a long way to go from bench to bedside for IL-33/ST2 therapy in
CNS diseases.
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