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Abstract

The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks
and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is
particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes
responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression
studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a
mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the
individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we
constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting
network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and
tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant
biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact
Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The
normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated
synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence
suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind
tissue specificity and provide new valuable insights in a less studied but valuable model species.
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grant from the Spanish Ministerio de Ciencia e Innovación (BES-2009-025417). Y. Ramayo-Caldas was funded by an FPU PhD grant from the Spanish Ministerio de
Educación (AP2008-01450). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Tony.Reverter-Gomez@csiro.au

Introduction

Cell and tissue differentiation proceeds from tightly controlled

spatial and temporal patterns of gene expression in the cell.

Moreover, differences in gene expression between cell and tissue

types are largely determined by transcripts derived from a limited

number of tissue-specific (TS) genes, rather than by combinations

of more promiscuously expressed genes [1]. Importantly, tissue

specificity of gene expression has been associated with different

rates of polymorphisms [2], evolution [3,4], disease association [5]

and gene connectivity [6]. The identification of these TS genes is

therefore likely to inform and enhance understanding of critical

factors contributing to tissue specific function, structure and

development. The list of transcriptional regulators driving this

process is composed of transcription factors (TF), signaling

molecules, co-factors, chromatin remodelers and small RNA

molecules, but identifying their role in particular biological

processes from expression data remains a challenge [7].

TF interact with each other to regulate the transcriptional

output of a gene. However, most existing studies are focused on a

limited number of TF. More often than not, it is the synergistic

activity of several TF that directs the transcriptional regulation of a

particular gene [8]. For this reason, the analysis of all TF

interactions in a whole network appears a rational approach to

better understand the complete picture of transcriptional regula-

tion. In such a scenario, tissue-specific transcription factors (TSTF)

deserve special attention, as they are the key regulators of tissue

specific function and differentiation.

Here, in the spirit of meta-analysis approaches frequently

invoked in genetic [9] and genomic studies [10], we integrate the

data from 20 gene expression studies spanning 480 Porcine

Affymetrix chips for 134 experimental conditions on 27 distinct

tissues (Table 1). Analogous approaches have been undertaken

before in humans, mice, cattle and other species [11,12]. Resulting

from this exercise, herein we compile a matrix comprising the

normalized expression of 12,320 porcine genes across 27 tissues.

We have chosen the pig, not only because of its world-wide

relevance in food production, but also because it is considered as

one of the most important biomedical animal models [13].

Notably, the latest instalment of the EBI Gene Expression Atlas

([14]; http://www.ebi.ac.uk/gxa) with over 19 species, does not

contain the pig.
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Further, we develop a new methodology for the identification of

tissue-specific genes. This methodology analyzes the tissue of the

maximum expression of each gene and maintains the distribution

of maximum expressed genes observed transcriptome-wide for

each particular tissue. Additionally, we present the application of

the PCIT algorithm [15] to construct a tissue specific regulatory

network. Finally, we describe a novel use of the regulatory impact

factor (RIF) metrics [16,17] as a promising methodology for the

search of TSTF in the whole transcriptome of an organism.

Results and Discussion

Quality Assessment of the Meta-Analysis Approach
The mixed-model used in the normalization accounted for

96.48% (goodness of fit, R2) of the total variation observed in the

gene expression data. Ranked from more to less relevance, the

main effect of gene accounted for 59.45%, followed by the

interactions of gene by tissue (23.82%), gene by experiment

(9.70%) and gene by array chip (3.51%).

The normalized mean expression of 12,320 genes across 134

experimental conditions was subjected to hierarchical cluster

analysis using the PermutMatrix software [18]. Multiple experi-

mental conditions of the same tissue clustered together, confirming

the validity of operating at the level of tissue after averaging across

the various conditions. Table S1 provides the compiled dataset

with the normalised expression of 12,320 genes across the 27

tissues. In itself, this file represents the most comprehensive atlas of

the porcine transcriptome published to date. Its content was also

used as the input for the PermutMatrix software to generate the

hierarchical cluster analysis of tissues presented in Figure 1. The

tree resulting from the hierarchical cluster analysis of 12,320 genes

across the 134 conditions is given in Figure S1. The fact that

tissues clustered in an anatomical and functionally sensible manner

(such as the clustering of the various skeletal muscles in one branch

of the hierarchical tree and tissues from the central nervous system

in another branch) was attributed to the optimality of the

normalization process used in the meta-analysis and anticipates

the confidence in the results that emerged in the subsequent

analyses.

Tissue-Specific Genes
Different methodologies for the identification of tissue-specific

(TS) genes have been proposed. By and large, existing methods are

direct functions of the ratio between the gene expression in one

tissue to the sum total expression level across tissues. Our

approach to identify TS genes combines the ratio of expressions

with the distribution of the tissue location where the maximum

expression of genes is observed (see Methods for details). A total of

1,234 (or 10%) of the genes were identified as TS.

Table 1. Description of the datasets used in this study.

Reference GEO Acc. Chips Tissue(s)* Brief description

[61] GSE26701 12 SM 4 postmortem times (20 min, 2 h, 6 h, 24 h) with 3 rep.

[62] GSE22487 12 LD 4 developmental times (0 d, 7 d, 14 d, 21 d) with 3 rep.

[63] GSE21383 12 OVA 6 high prolificacy replicates +6 low prolificacy rep.

[64] GSE19975 6 LD, SOL 2 tissues with 3 rep.

[65] GSE22165 30 BRAIN 10 conditions (3 treatments* 3/4 times) with 3 rep.

[66] GSE18641 12 UTE 6 pregnant rep. +6 non-pregnant rep.

[67] GSE14643 13 HEART 6 untreated rep. +7 treated rep.

[68] GSE15256 54 ILE 3 conditions* 3 times with 6 rep.

[69] GSE11853 12 PLA 2 breeds* 2 times with 3 rep.

[70] GSE11787 6 SPL 3 infected rep.s +3 uninfected rep.

[71] GSE9333 8 BFT 2 breeds with 4 rep.

[72] GSE11193 12 LD 6 high drip loss rep. +6 low drip loss rep.

[73] GSE7314 15 MLN 3 uninfected rep.+(3 infected rep.* 4 times)

[74] GSE7313 15 MLN 3 uninfected rep. +(3 infected rep.* 4 times)

[75] GSE10898 64 OLF, HYP, PIN, ADE, NEU,
ACO AME, THY, DIA, BIC,
BFT, AFT, STO, LIV, ILE, BLO

2 breeds* 16 tissues with 2 rep.

[76] GSE13528 48 LIV, BFT 2 conditions* 2 genotypes* 2 tissues with 6 rep.

[77] GSE18359 40 LIV, BFT 2 conditions* 2 RFI levels* 2 tissues with 5 rep.

[78] GSE21096 20 HEART 4 treatments with 5 rep.

[79] GSE23596 9 SPL 3 treatments with 3 rep.

[80] GSE14739 80 HYP, ADE, THY,
OVA, TES, BFT

4 breeds* 5 tissues with 4 rep.

TOTAL 20 480 27

Rep.: replicates.
*Tissue codes are as follows: SM: Semi-membranosus muscle; LD: Longissimus dorsi muscle; OVA: Ovaries; SOL: Soleus muscle; BRAIN: Brain; UTE: Uterus; HEART: Heart; ILE:
Ileum; PLA: Placenta; SPL: Spleen; BFT: Back fat tissue; MLN: Mesenteric lymph nodes; OLF: Olfactory bulb; HYP: Hypothalamus; PIN: Pineal gland; ADE: Adenohypophysis;
NEU: Neurhypophysis; ACO: Adrenal cortex; AME: Adrenal medulla; LIV: Liver, THY: Thyroid gland; DIA: Diaphragm; BIC: Biceps femoris muscle; AFT: Abdominal fat tissue;
STO: Stomach; BLO: Blood; TES: Testes.
doi:10.1371/journal.pone.0046159.t001
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Figure 2A shows the distribution of the percentage of genes

having its maximum expression in each tissue. By virtue of the

methodology used to identify TS genes, this distribution was

maintained when only the 1,232 TS genes were considered (see

Materials and Methods for details in the identification of TS

genes). There are noticeable differences in the proportion of genes

having their maximum expression in the various tissues. On the

one extreme, blood has by far the highest percentage of TS genes

(14.4%) and this was attributed to blood representing a highly

heterogeneous tissue with the haematopoietic cascade reported to

result in the differentiation of very specific cell types [19,20]. On

the other extreme, adrenal medulla is the tissue with the lowest

percentage of TS genes (0.3%), followed by two muscle tissues,

Longissimus dorsi (1.1%) and diaphragm (1.1%). It should be noted

that having multiple representatives of related tissues (eg. skeletal

muscle and the central nervous system (CNS), each represented by

six tissues) could affect the distribution of the tissue location of the

TS genes. To overcome this potential artefact, Figure 2A also

shows the mean of the tissue specificity value (TSV) of the TS

genes in each tissue. Although with some oscillations, it is worth

noting that this value remains similar across all tissues (overlaid

trend in Figure 2A), and ranges from 1.3 (for liver) to 2.2 (for

abdominal fat). Importantly, the distribution of the TSV for TS

genes was found to be quite different from that of the TF genes or

the remaining genes (Figure 2B).While low TSV were observed for

the entire set of 12,320 genes as well as for the 1,072 TF genes

only, higher and more spread TSV were observed for the set of

1,230 TS genes. In this respect, 90% of all genes had a TSV

ranging from 1.036 to 1.532. Similarly, 90% of all TF had a TSV

ranging from 1.043 to 1.542. However, the TSV observed for 90%

of TS genes ranged from 1.280 to 2.230.

A gene ontology (GO) enrichment analysis of the 1,232 TS

genes (target list) against all the 12,320 genes (background list)

revealed Multicellular Organismal Process (GO:0032501) as the most

enriched biological process (P-value = 8.25E-17, FDR q-

value = 8.45E-13). Moreover, the second and the third most

enriched biological processes were System Process (GO:0003008; P-

value = 9.11E-17, FDR q-value = 4.67E-13) and Developmental

Process (GO:0032502; P-value = 2.52E-16, FDR q-value = 8.60E-

13), respectively. By definition, these enriched GO terms, are

related to processes whose specific outcome is the progression of

cell, tissues or organs (Multicellular Organismal Process and Develop-

mental Process) or to processes carried out by organs or tissues in

multicellular organisms (System Process). Given that multicellular

organisms are organised into tissues, this result could be a

reflection of the optimality of the numerical strategy used to

identify TS genes. Also, there were four muscle related GO terms

in the top ten enriched processes: Muscle Filament Sliding

(GO:0030049; P-value = 2.17E-15, FDR q-value = 4.45E-12), Ac-

tin-Myosin Filament Sliding (GO:0033275; I-value = 2.17E15, FDR q-

value = 3.71E-12), Muscle System Process (GO:0003012; P-

value = 6.31E-14, FDR q-value = 8.08E-11) and Muscle Contraction

(GO:0006936; P-value = 9.86E-14, FDR q-value = 1.12E-10). This

could be reflecting the high proportions of skeletal muscle tissue

types in our data.

In the last decade, tissue specificity of gene expression has been

linked to a number of important attributes including, but not

limited to level of expression [21], ability to detect cis- and trans-

expression quantitative trait loci [22], differential rates of

polymorphism [23], imprinting [24] and evolution [3,4], as well

as disease-association [5,6] and sex biased [25]. Genomic

imprinting is a genetic phenomenon by which certain genes are

expressed in a parent-of-origin-specific manner [26]. Table 2

shows an enrichment of transcription factors, imprinted genes and

disease-associated genes among the TS genes indentified in our

study. Given this prior knowledge, the results from Table 2

provide further evidence of the optimality of the analytical

approach taken here to identify TS genes.

Tissue-Specific Regulatory Network
With the available 2,192 genes that included 1,120 TS, 960 TF

and 112 TSTF genes, we reverse engineered a co-expression

network. The overall network contained these 2,192 genes

connected by 185,132 significant edges (or 7.7% of the possible

2,401,336 connections). The image of the network built from

connections with significant correlation coefficients higher than

0.80 in absolute value is shown in Figure 3. This network

Figure 1. Clustering of tissues. Hierarchical cluster analysis of the 27
tissues based on the expression of 12,320 porcine genes.
doi:10.1371/journal.pone.0046159.g001
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comprises 1,572 nodes or genes and 20,084 edges or gene

connections. Figure S2 contains the Cytoscape file created to

access this network.

Within the whole network, several connected components could

be distinguished: one big group composed of 1,461 connected

nodes, two smaller ones formed by 21 and 8 nodes respectively (on

the left of the image), and a large number of small groups

containing 2 to 5 genes each (showed at the bottom of the image).

When the tissue where a gene had its highest expression was

mapped in the visualisation schema by assigning different colours

to different tissues, it became immediately apparent that nodes

clustered mainly by tissue. Most of the tissues, represented by

different colours in Figure 3, appeared separated from each other

as independent clusters, with the exception of the six muscle tissues

that clustered together in one large module (purple colours,

Figure 3). An identical observation can be made for the six tissues

from the central nervous system (CNS) that clustered together in

their own module (green colours, Figure 3).

Figure 2. Tissue specificity value (TSV). (A) Distribution of the percentage of genes having its maximum expression in each tissue (left y axis)
and the mean TSV of all the selected genes per tissue (right y axis). Standard errors are indicated as bars above and below the mean TSV. (B) Empirical
density distribution of the TSV for tissue-specific genes (red bars), transcription factor genes (green bars) and remaining genes (black bars).
doi:10.1371/journal.pone.0046159.g002

Table 2. Enrichment of tissue-specific genes for transcription
factors (TF), imprinted genes (IMP) and disease-associated
genes (DIS).

All genes (N = 12,320)
Tissue-Specific
(N = 1,232) P-value

N %A N %A

TF 1,072 8.70 112 9.09 3.67E-02

IMP 134 1.09 23 1.87 3.53E-03

DIS 8,807 71.48 969 78.65 3.74E-10

AThese percentages do not sum to one because not all of the 12,320 genes (or
the subset of 1,232 tissue-specific genes) belong to one of the tree categories
under scrutiny: TF, IMP and DIS.
doi:10.1371/journal.pone.0046159.t002
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The fact that each cluster represents a particular tissue was

further confirmed by GO enrichment analyses. In doing so,

biological processes enriched in the module assigned to ‘muscle’

included Muscle Development (P-value = 1.05E-26) and Muscle Con-

traction (P-value = 6.17E-24). Also, the module assigned to ‘CNS’

was enriched by Nervous System Development (P-value = 9.77E-12) and

Synaptic Transmission (P-value = 1.53E-9). Similarly, the module

formed by the mesenteric lymph nodes and the spleen was

enriched for Immune System (P-value = 7.22E-17).

Moreover, if we colour each node by the embryonic origin of

the tissue in which this gene is specific, it becomes apparent that

tissues cluster according to their embryonic origin (Figure 4). For

example, the tissues formed from the ectoderm (such as the CNS)

were positioned at the top region of the network (in blue colour,

Figure 4), the ones that originated from the mesoderm (case of the

muscle, blood, adrenal cortex and medulla, gonads, spleen,

mesenteric lymph nodes, uterus, placenta and fat) appeared in

the centre of the network (in green colour, Figure 4), with the

exception of the placenta that was located in the middle of the

endoderm group, and the endoderm derived tissues (stomach,

thyroid gland, ileum and liver) that were located in the bottom left

part of the network (in yellow colour, Figure 4). Mesodermal

tissues are overrepresented and more widespread in our network.

Importantly, among the three germ layers, the mesoderm

originated the last and its evolution is linked to the evolution of

axis formation in metazoa and the appearance of eumetazoa. It is

responsible for generating tissues specialized in protection,

locomotion and sensing the environment that characterizes

complex organisms [27].

The data and conclusions drawn from the network confirm its

reliability and agreement with previous knowledge. The classifi-

cation of tissues based on patterns of gene expression in the

network largely reproduces classifications based on anatomical and

biochemical properties [1]. Surprisingly, genes not only clustered

by tissue in the network, but also, tissues clustered together

according to their embryonic origin. This fact has already been

noted in a mouse and human TF atlas [11] and can be attributed

to these tissues being derived from transcriptional alteration of a

common precursor and therefore expected to share large sections

of expression patterns in common. The GO enrichment analysis

provides further evidence about the quality of the inferred network

and confirms that indeed it is a good representation of tissue

specific regulation. Once we have confirmed the reliability of the

results, we can be confident of their ability to allow for the

extraction of downstream novel information about gene expression

regulatory mechanisms.

Tissue-Specific Transcription Factors (TSTF)
Based on their dual classification, the 112 TSTF genes were

worthy of further analyses because these type of molecules provide

excellent targets for targeted tissue therapies without broadly

changing other tissues. However, the reader should bear in mind

that tissue specificity is a continuous variable and that not all

tissues at all time points were included in this analysis. In addition,

most samples contain more than one different cell type, for

Figure 3. Tissue specific regulatory network of the porcine transcriptome. Legend of colours assigned to each of the 27 tissues in the
network (left). The co-expression network (right). Node size was mapped to average transcript abundance, node colour was mapped to the tissue in
which each particular gene is specific and node shape was mapped to the different gene types: TS (squares), TF (triangles) and TSTF (circles).
doi:10.1371/journal.pone.0046159.g003
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example muscle contains contractile cells, adipocytes, nerve cells,

blood cells and fibroblasts amongst other cell types. A search of the

literature supported the tissue-specificity action for 71 of these 112

genes (Table S2). Importantly, they were distributed uniformly

across the entire network, as opposed to showing a preference for a

particular tissue (Figure 1 in Figure S2). When we focussed on the

sub-network spanned by the TSTF genes, we identified 457

connections (Figure 5). Many interactions involving one TSTF

gene were also confirmed in the literature and we highlight four.

Firstly, SIX4 appeared as a muscle specific TF in the network,

directly connected to other fourteen TSTF. This TF is known to

act as a regulator of MYOD1, the master regulator of the skeletal

muscle gene expression program [28]. This role would explain the

fact that SIX4 is linked to nine muscle specific TF in the network.

In addition, SIX4 appeared also linked to four TSTF located in the

CNS module of the network. Searching in the literature, we found

that this could be attributed to SIX4 playing a critical role

controlling the formation of the olfactory embryonic epithelial

layers and neuronal development [28]. Moreover, SIX4 carry out

its action in the CNS acting synergistically with SIX1 [29], to

which SIX4 was also connected in the network. Our second

example is KCNIP2, a regulator of cardiac ionic currents [30] that

appeared connected to several CNS genes in our network. Quite

notably, KCNIP2 plays a role in the regulation of neuronal

excitability in response to intracellular ions [31]. For our third

example, we emphasize LHX9, a pineal gland specific TF which in

our network appeared connected to two testis-specific genes

(TAF7L and POU4F1) and this TF has been shown to drive the

axonal trajectory of some types of neurons [32] and also to play a

role in gonadogenesis [33]. For our last example, we look at

GATA3, a blood specific TF according to our tissue-specificity

assignment and also related to brain and hypothalamus genes in

our network. Significantly, GATA3 has been shown to be required

both in the regulation of hematopoietic stem cells [34] and in

maintaining survival of the sympathetic neuron lineage [35].

All these findings support the idea that the TSTF network

represents a reliable source for the generation of novel hypotheses

regarding the key regulatory roles of these genes. One prominent

example is the case of GXS2, highlighted in soft blue in Figure 5,

with a total of 11 connections. This TF has not been previously

associated with any reproduction or gonadal process. However, it

was classified as ovary specific by our methodology, and connected

in the network with the only other ovary specific gene, BCN1.

Importantly, BCN1 is found in abundance in the germ cells of

ovaries [36]. Moreover, GSX2 was connected to 8 more genes

specific of reproductive tissues (testis and uterus). These observa-

tions support the novel hypothesis that, in addition to its known

role in neuronal development in the forebrain [37], GSX2 is a key

regulator involved in gonad or reproductive processes. Similarly,

HDX, highlighted in dark blue in Figure 5, has not been well

described to date except its location on the X chromosome. In our

network, this gene appeared as a testis specific TF connected with

POU4F1, a known regulator involved in spermatogonia and

expressed in distinct cell types in the testis [38], and joined to other

5 testis-specific TF. These findings suggest a potential role of HDX

in testis development and/or function.

Muscle and CNS Transcription Regulators
In order to gain further insights into the identity of key

regulators responsible for muscle and CNS differentiation and

development, we undertook a series of regulatory impact factor

(RIF) analyses. The aim of these analyses was to highlight those TF

which, while might not be themselves differentially expressed or

abundant, they still show differential connectivity, as measured by

a big change in their co-expression correlation with the highly

abundant highly differentially expressed genes. Figure 6 shows the

Figure 4. Embryonic origin of tissues. Tissue specific regulatory network of the porcine transcriptome, showing the embryonic origin of each
tissue. In this instance, node colour was mapped to the embryonic origin of each tissue: blue for the ectoderm-derived tissues, green for the
mesoderm ones and yellow for the tissues formed from the endoderm.
doi:10.1371/journal.pone.0046159.g004
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relationship between RIF1 and RIF2 for all 1,072 TF in the two

contrasts explored: ‘Muscle vs. Other Tissues’ (Figure 6A) and

‘CNS vs. Other Tissues’ (Figure 6B). The relevance of the RIF

analyses became immediately clear when highlighting TF accord-

ing to their tissue specificity. Muscle specific TF are highlighted in

red, CNS specific TF in green and the rest of the 112 total TSTF

are represented in yellow. In each contrast, the TF of biological

relevance appeared preferentially located on the right half and

upper-right quarter of the scatter.

Table 3 shows the results from the enrichment analysis of the

TSTF of each particular tissue (muscle or CNS) when focused on

the TF whose ranking is greater than 2 (based on |RIF1|+RIF2;

see Methods) in each of the analyses. The ranked list of TF showed

a significant enrichment of TSTF consistent with the contrast

under scrutiny and more pronounced in muscle (P-value = 0.013)

but also significant in the CNS analysis (P-value = 0.027). In the

overall dataset, muscle-specific TF represented just a 2.5% of the

total, however, when we focused on TF that showed values of

|RIF1|+RIF2.2 in the ‘Muscle vs. Other Tissues’ comparison

they represented a 5.3%. In the same way, CNS-specific TF

represented only a 2.3% of the total TF, and a 4.7% of the TF

with |RIF1|+RIF2.2 in the ‘CNS vs. Other Tissues’’ compar-

ison. This enrichment of muscle and CNS TF in each particular

analysis underscored the ability of the RIF algorithm to correctly

identify the key regulators.

To further validate the performance of the RIF analyses, we

searched for enriched GO terms in the ranked list of TF according

to their combined RIF scores. In assessing the ‘‘Muscle vs. Other

Tissues’ output we found that 8 of the top 10 most enriched

biological processes were related to muscle function or develop-

ment. Some of them include: ‘‘Cell migration involved in heart

development’’ (P-value = 5.25E-5, FDR q-value = 1.21E-1) ‘‘ven-

tricular cardiac muscle tissue development’’ (P-value = 1.21E-4,

FDR q-value = 1.85E-1), ‘‘muscle tissue development’’ (P-va-

lue = 7.04E-4, FDR q-value = 4.64E-1) and ‘‘regulation of striated

muscle cell apoptotic process (P-value = 8.5E-4, FDR q-va-

lue = 3.92E-1).

The fourteen TF contained in ‘‘muscle tissue development’’

were ranked as follows by RIF out of the 1,072 TF (rank shown in

brackets): TBX5 (1), SIX1 (9), MYF6 (24), PPP1R13L (29), MYOD1

(30), GATA4 (45), HOCXD9 (72), MYF5 (75), FOXP2 (116), ZNF238

(152), EYA2 (179), MYOG (196), TCF21 (199) and OSR1 (200).

Other TF correctly prioritised by RIF, but that were overlooked

by the GO enrichment analyses include MED12 (4) [39], MYOCD

Figure 5. TSTF Network. The colour codes are as per Figure 3 and node size was mapped to average transcript abundance.
doi:10.1371/journal.pone.0046159.g005
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(6) [40], LMO4 (7) [41] and PITX2 (20) [42]. The most outstanding

case would be the TBX5, as it is one of the most extreme TF

according to both RIF scores. In addition, ERCC3 was the second

gene according to RIF1 score, and it was neither assigned as a

muscle-specific TF by our analyses, nor has it been previously

associated to muscle function. In addition, we found that the co-

expression correlation of ERCC3 gene with MYOCD of 20.768

was found to be significant by the PCIT algorithm. Based on these

results, we could strongly suggest a novel key role of ERCC3 as a

muscle regulator.

To gain a further insight as to the reasons why ERCC3 scored so

highly according to the RIF algorithm, we explored its relationship

with the differentially expressed genes. Table 4 lists the identity of

the 10 most differentially expressed genes in the ‘Muscle vs. Other

Tissues’ contrast. The values for the differential co-expression of

ERCC3 and MYOCD with the 10 most differentially expressed

genes are also given in Table 4 (differential co-expression

measured by the difference in correlation co-expression in muscle

Figure 6. Regulatory impact factors (RIF). Scatter plot of the relationship between RIF1 and RIF2 in the two contrasts explored: (A) Muscle vs.
Other Tissues; and (B) CNS vs. Other Tissues. Notice how in each contrast, the transcription factors of biological relevance are concentrated on the
right half and upper-right quarter of the scatter.
doi:10.1371/journal.pone.0046159.g006

Table 3. Enrichment of tissue specificity in the regulatory
impact factor (RIF) analysis.

Overall |RIF1|+RIF2.2

Muscle vs
others

CNS vs
Others

N % N % N %

TF 960 89.5 151 88.3 151 88.3

TF CNS 25 2.3 3 1.7 8 4.7

TF muscle 27 2.5 9 5.3 5 3.0

TFTS 60 5.6 8 4.7 13 7.6

Total 1,072 171 177

doi:10.1371/journal.pone.0046159.t003
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as compared to other tissues). Extreme values of differential co-

expression were observed between ERCC3 and a number of highly

differentially expressed genes including MYOZ2, MYOT, MYL1

and TNNT1, with differences of equivalent magnitude to those

found for MYOCD, a well-known master regulator of cardiac and

smooth muscle [40].

With respect to the RIF analysis of CNS tissues versus others, five

out of the top ten regulators according to RIF are in fact involved

in CNS development or function. The top one, INSM1 is a

neuroendocrine differentiation regulator [43], RBL1 and

TSC22D4 are required for normal cerebellar development and

differentiation [44,45], HBP1 regulates transcription in developing

myeloid cells [46] and SIX6 acts at the hypothalamus to control

reproduction and fertility [47].

We noted that the ability of the RIF analysis to identify key

regulators is equally satisfactory when contemplating two very

different scenarios, muscle and CNS, correctly identifying five of

the top ten regulators in both cases. While the muscle cell types are

all very similar between the different muscles analysed and they all

have a similar function, the CNS comprises a much more complex

group of tissues that includes many different cell types and

functions. We could highlight, for example, the existing differences

between the pineal gland, an endocrine gland responsible for

secreting different hormones, and the brain, that acts as the main

coordinator of the entire CNS. The performance of RIF in these

two very different circumstances indicates its generality.

Concluding remarks
In conclusion, we assembled, curated and normalised a

comprehensive collection of Affymetrix-based gene expression

experiments in the pig in an attempt to better understand the

transcriptional control of tissue development. This provided

transcriptome data for 27 different tissues. Analogous approaches

have been undertaken before in other species and more tissues.

However, our study differs from these previous studies in two

critical regards.

Firstly, we apply a set of higher-order network analyses in

addition to the more conventional abundance ratio-based methods

for determining tissue-specificity and tissue regulation. Because we

do more than present a comprehensive survey of transcript

abundances across tissues, our approach is more than a ‘Gene

Atlas.’ Secondly, by focussing on the pig, we provide a new

resource for a previously unexplored and yet important biomedical

model and commercially-important livestock species.

Our meta-analysis approach was conducted according to the

preferred reporting items for systematic reviews and meta-Analysis

(PRISMA; http;//prisma-statement.org/). However, as it is the

case with all meta-analysis approaches, our study suffers from the

inability to control for experimental design effects that may

contribute to bias. The data used in the present work comes from

studies exploring different breeds of pigs at various developmental

stages. However, we advocate that optimal normalization

approaches, such as those based on mixed-model equations, allow

for the integration of seemingly disparate datasets such that the

results are richer in information than any of the studies taken

independently.

Researchers using gene expression technologies in the quest for

systems-level explanations of biological phenomena are encour-

aged to explore holistic measures of differential connectivity in

addition to differential expression [48]. Inspired by these holistic

measures, we explored a combination of strategies that allowed us

to identify not only tissue-specific genes but also their transcrip-

tional regulators. Firstly, we developed and adapted an abundance

ratio metric to assess tissue-specificity. Genes highlighted by this

measure are abundantly expressed in that tissue relative to others,

and the approach does not skew towards any particular tissue.

Then, we used both co-expression (PCIT) and differential co-

expression (RIF) approaches to prioritise regulatory molecules

predicted to drive each tissue phenotype (i.e., its mature physical

appearance), built on the numerical foundation provided by the

initial tissue-specific metric.

Through significant co-expression to tissue-specific genes, the

co-expression based approaches identified important tissue regu-

lators that may themselves be only poorly or moderately expressed

in that particular tissue. On the other hand, the RIF approach

identifies regulators whose behaviour (connectivity) changes

between two tissues, even though they may not be strongly co-

expressed in either tissue or abundantly expressed in those tissues.

The PCIT co-expression network and RIF analysis exploit the

same numerical signals in different ways, and therefore comple-

ment each other. We advocate the use of the combination of

approaches in order to gain as much regulatory information as

possible from transcriptome data.

Materials and Methods

Description of Datasets
All the datasets used in this study are publicly available

microarray gene expression experiments that have been deposited

on the Gene Expression Omnibus (GEO) database ([49]; http://

www.ncbi.nlm.nih.gov/geo/). We have selected only those using

pig tissues, that used the Affymetrix platform and that were

amenable to our purpose including those surveying anatomically

defined tissues. We tried to capture as many tissues as possible and

without any given tissue being over-represented.

Table 1 shows the GEO accession number and a brief

description of the data sets. In total, they comprise 480 Porcine

Affymetrix microarray experiments from 20 independent studies.

Combined, they surveyed 134 experimental conditions across 27

tissues. These 27 tissues included six muscles tissues (Semi-

membranosus (SM), Longissimus dorsi (LD), heart (HEART), dia-

phragm (DIA), Biceps femoris (BIC) and Soleus (SOL)), two fat tissues

(abdominal fat tissue (AFT) and back fat tissue (BFT)), three

reproductive tissues (ovaries (OVA), uterus (UTE) and testis

Table 4. Normalized mean expression (NME, base-2
logarithm scale) and differential expression (DE) for the 10
most DE genes along with their co-expression correlation with
ERCC3 and MYOCD in the skeletal muscle and other tissues.

Gene NME DE Corr. with ERCC3 in Corr. with MYOCD in

Muscle Others Muscle Others

MYL2 6.277 4.311 20.467 20.596 0.449 0.591

MYOZ2 4.447 4.187 20.579 0.402 0.638 20.422

MYOT 4.891 4.131 0.462 0.017 20.462 0.087

TTN 5.637 4.069 20.118 0.163 0.237 20.133

MB 5.086 4.061 20.471 20.374 0.585 0.129

CKM 7.126 3.994 20.155 0.128 0.146 0.018

MYL1 5.396 3.989 0.823 0.162 20.944 0.134

MYH7 7.060 3.985 20.463 20.409 0.445 0.099

ACTA1 7.103 3.914 20.394 20.611 0.555 0.651

TNNT1 5.930 3.856 0.599 0.164 20.747 20.328

doi:10.1371/journal.pone.0046159.t004
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(TES)), two kidney regions (adrenal medulla (AME) and adrenal

cortex (ACO)), two hypophysis regions (adenohypohypisis (ADE)

and neurohypophysis (NEU)), two glands (thyroid gland (THY)

and pineal gland (PIN)), brain (BRAIN), ileum (ILE), placenta

(PLA), spleen (SPL), mesenteric lymph nodes (MLN), olfactory

bulb (OLF), hypothalamus (HYP), stomach (STO), liver (LIV) and

blood (BLO).

Data Processing, Quality Edits and Annotation
We obtained the MAS5 intensity signals (based-2 log expression)

from all 480 microarray experiments (Table 1). The compiled data

set includes many different conditions, pig breeds, ages and

treatments. Therefore, a further location and scale normalization

approach that took into account these features in a hierarchical

fashion was deemed necessary [50]. To this effect, for each probe

set (n = 24,124) the average intensity signal across biological

replicates was computed resulting in 134 experimental conditions.

This was followed by the computation of the average signal across

the different conditions per tissue, ending with one expression

value of each probe for each of the 27 tissues. The file with the

normalised expression values across the 134 experimental

conditions, and the file with the normalised expression values

across the 27 tissues were processed by the PermutMatrix software

to examine the hierarchical cluster analysis results. In those

analyses we used default settings including the McQuitty’s linkage

method and the Euclidean distance calculation method.

Next, in order to adjust for possible heterogeneity of variance in

expression signals due to tissue, we performed the Z-score

normalization by tissue (ie. subtracting the tissue-specific average

signal and dividing by the standard deviation of all signals in that

tissue). Finally, to each z-score normalized signal we added the

main effect of each probe set from its average signal across all

tissues.

The original annotation of the Affymetrix Porcine chip dates

from 2006 [51]. However, for the present work we used a more

recent annotation (dated 2010) from the same authors and

available at http://www4.ncsu.edu/,stsai2/annotation/2010-01-

19_Affymetrix_Porcine_Annotation_tab_delimited.txt.

For the selection of probes, the following filtering process was

applied: Firstly, we selected only those probes that were annotated

to known genes. Secondly, for those genes represented by several

probes sets, the probe set with the highest expression value,

average across all tissues, was used as the representative of that

gene, as this is supposed to be the most accurate one (i.e., high

expression values tend to correspond to best quality signals). It is

possible that different probe sets of the same gene represent

different transcripts of that gene, but we have chosen this ‘one

probe set – one gene’ filtering to simplify the analyses. This

filtering process resulted with the z-cored normalized expression of

a total of 12,320 genes across the 27 tissues (Table S1).

Further Normalization via Mixed-Model Equations
Following previously described approaches for the normaliza-

tion of gene expression data with a view to co-expression analyses

[50], the following linear mixed-model was fitted to the data:

yijkm ~ Ai z Gj z GAij z GTjk z GSjm z eijkm,

where yijkm is the vector of MAS5 z-normalized gene expression

signal for the i-th array chip hybridization, from the j-th gene in

the k-th tissue and m-th experimental study; Ai is the fixed effect of

the i-th array chip hybridization (i = 1 to 480) and the fitting of

which aims at normalizing the data by accounting for systematic

non-genetic effects; Gj is the random component associated with

the main effect of the j-th gene (j = 1 to 12,320); GAij is the

random component associated with the interaction between the j-

th gene and the i-th array and it captures differences from overall

averages that are attributable to specific gene by array combina-

tions; GTjk is the random component associated with the

interaction between the j-th gene and the k-th tissue (k = 1, to

27) and it captures differences from overall averages that are

attributable to specific gene by tissue combinations; GSjm is the

random component associated with the interaction between the j-

th gene and the m-th experimental study (m = 1 to 20) and it

captures differences from overall averages that are attributable to

specific gene by study combinations; and eijkm is the random

residual error associated with yijkm.

Using standard statistical assumptions in mixed-model theory,

the effects of G, GA, GT, GS and e were assumed to be

independent realizations from a normal distribution with zero

mean and between-gene, between-gene within-array, between-

gene within-tissue, between-gene within-study, and within-gene

components of variance, respectively. Restricted maximum

likelihood of variance components and solutions to model effects

were obtained using the analytical gradients option of VCE6

software (ftp://ftp.tzv.fal.de/pub/vce6/).

Transcription Factors (TF), Imprinted and Disease-
Associated Genes

Next, among the genes included in our analyses, we were

interested in identifying those being TF, and/or imprinted and/or

disease associated. We resorted to the census of human TF [52] to

identify 1,072 TF included in our dataset. In order to identify

imprinting genes included in our dataset we mined the data from

the following three publicly-available gene imprinting databases:

MouseBook [53] (http://www.mousebook.org/catalog.php?catalog

= imprinting), Catalogue of Parent of Origin Effects [54,55]

(http://igc.otago.ac.nz/home.html) and Geneimprint (http://

www.geneimprint.com/site/genes-by-species). Similarly, disease-

associated genes were identified as those annotated in the online

Mendelian Inheritance in Man (OMIM) database (http://www.

ncbi.nlm.nih.gov/Omim; [56]).

Identification of Tissue-Specific Genes
Different methodologies for the identification of tissue specific

genes (TS) have been proposed. Most of these methods use a direct

function of the ratio between the gene expression in a particular

tissue to the sum total expression level across tissues [1,5].

However other tissue specificity measures that involved more

complex components as the relative entropy have been presented

[11]. Here, we describe a multi-tiered approach to identify TS

genes. The algorithm proceeded as follows:

N Step 1: For each gene, note the tissue of its maximum

expression. In formal terms, let mi be the identity of the tissue

where the i-th gene shows its maximum expression, where

i = 1, 2, …, N = 12,320.

N Step 2: For each tissue in j, compute pj = the percentage of

genes having its maximum expression in it. In formal terms,

define

pj ~ 100|
# mi ~ IDj

� �
N

where IDj indicates the identity of the j-th tissue and j = 1, 2,

…, 27.
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N Step 3: Again for each gene, define and compute its tissue

specificity value (TSVi) as the ratio between its maximum

expression and its mean expression averaged across all 27

tissues. Accordingly:

TSVi ~
xmi

1

27

X27

j~1

xij

where xmi
represents the expression of the i-th gene in tissue

mi, and xij
is the expression of the i-th gene in the j-th tissue.

N Step 4: Apply a nominal threshold of 10% by which 10% (or

1,232) of all genes in the dataset were deemed to be TS.

Identify TS genes by maintaining the distribution of maximum

expressions observed in the whole transcriptome. In formal

terms, 10% of all pj were assigned as TS genes after selecting

based on their TSVi.

For instance, if 6% of genes (or 740 out of 12,320) had their

maximum expression in a given tissue, we selected the top 10% (or

74) of these 740 based on their TSV as TS genes. After applying

this rationale to all tissues, we ended up with 10% of genes being

tissue-specific and where the distribution of the location of their

maximum expression was identical as that from the entire set of

12,320 genes.

Network Inference and Visualization
The expression of genes that were annotated as TF and/or TS

was used to reverse-engineer a gene co-expression network using

the PCIT algorithm [15]. This algorithm combines the twin

concepts of partial correlation coefficient with information theory

to identify significant gene to gene co-expressions, defining edges

in the re-construction of the network. It works by comparing the

co-expression arrangements for triplets of genes, with all triplets

being exhaustively explored, and providing the correlation

estimate for each pair of genes together with a flag as to whether

or not the estimate has been found to be significantly different

from zero. Significant correlations establish an edge in the

reconstruction of the network.

Although PCIT is a soft-thresholding method, it is possible to

construct networks with more or less depth using different cut offs

of the absolute value of the correlation co-expression among those

found to be significant. Here we present a network built with

absolute co-expression correlations greater than 0.80 among those

found significant by the PCIT algorithm. We have used Cytoscape

version 2.6.1 [57] to visualize the network and identify modules of

co-expressed genes. The organic clustering algorithm that groups

together genes with common neighbours was used to visualise the

topology of the network. An additional network containing only

the TSTF genes was built using the orthogonal Cytoscape layout.

Gene ontology (GO) enrichment analyses of modules of co-

expressed genes were performed within Cytoscape using the

BinGO plug-in [58].

Identification of Key Regulators: Case Study with Skeletal
Muscle and the CNS

We used the Regulatory Impact Factor (RIF) metrics [16,17] to

identify critical muscle and central nervous system (CNS) TF from

our gene expression data. The RIF metrics identify the regulators

with the highest evidence of contributing to differential expression

in two biological conditions. It yields two alternate measures of TF

importance, RIF1 and RIF2. The RIF1 score highlights the

transcriptional regulators most differentially connected to the most

abundant differentially expressed genes, while the RIF2 measure

highlights those TF with the most altered ability to act as

predictors of the abundance of differentially expressed genes.

While the original implementation of the RIF metrics involved

the comparison of the TF with the differentially expressed genes,

the exact same algebra can be adapted to the comparison of the

TF with the TS genes (or any other group of genes for that matter)

as long as an experimental contrast is defined (eg. Condition A vs.

Condition B). In this respect, for the RIF analyses, we explored

two contrasts: In the first one, we compared the six muscle tissues

(SOL, BIC, LD, HEART, SM and DIA) against the 21 other

tissues. In the second contrast, we compared the six CNS tissues

(ADE, NEU, BRAIN, OLF, HYP and PIN) against the others 21

tissues. Accordingly, the RIF metrics for the i-th TF (i = 1, 2, …,

1072) were computed using the following formulae:

RIF1i ~
1

nTS

Xj~nTS

j~1

aj | dj | DC2
ij ,

and

RIF2i ~
1

nTS

Xj~nTS

j~1

e1j { r1ij

� �2
{ e2j { r2ij

� �2
h i

,

where nTS is the number of TS genes (ie. nTS = 1,232); aj is the

abundance of the j-th TS gene as given by its normalised mean

expression averaged across all tissues; dj is the differential

expression of the j-th TS genes and computed from the difference

between the expression of the j-th gene in the muscle minus its

expression in the other tissues (for the first contrast), or from the

difference between the expression of the j-th gene in the CNS

minus its expression in the other tissues (for the second contrast);

DCij is the differential co-expression between the i-th TF and the j-

th TS gene, and computed from the difference between r1ij, the

correlation co-expression between the i-th TF and the j-th TS gene

in the muscle tissues (or in the CNS tissues for the second contrast),

and r2ij, the correlation co-expression between the i-th TF and the

j-th TS gene in the remaining tissues; and e1j and e2j represent the

normalised mean expression of the j-th TS gene averaged across

all muscle tissues (or across all CNS tissues for the second contrast)

and across all the remaining tissues, respectively.

Importantly, RIF1 depends on the direction of (or which

condition is used first in) the contrast, ‘‘A versus B’’ or ‘‘B versus A’’.

Instead, the sign of RIF2 is not affected by this contrast

directionality, but by the change in the ability of the TF to

predict the abundance of DE in the two conditions, regardless of

which condition is considered first in the contrast. For this reason,

we ranked TF based on their |RIF1|+RIF2 score. Finally, the

ranked list of TF was processed through the GOrilla tool [59] to

search for enriched GO terms. From this tool, we report the

enrichment P-value computed from the hypergeometric test and

the false discovery rate (FDR) q-value which corresponds to the p-

value corrected for multiple testing using the Benjamini and

Hochberg method [60].

Supporting Information

Figure S1 Hierarchical cluster analysis of the 143
experimental conditions based on the expression of the
12,320 porcine genes.

(TIF)
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Figure S2 Cytoscape formatted file to allow the visual-
ization and recreation of the networks presented in this
study.
(GZ)

Table S1 Comma delimited file with the normalized
mean expression of 12,320 genes across the 27 tissues.
(CSV)

Table S2 Word document file listing the 112 tissue
specific transcription factor genes, their expression and
their location in the network.
(DOC)
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