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Increased constitutive activity of mitogen-activated
protein kinase and renaturable 85 kDa kinase in human-
colorectal cancer
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Summary Protein kinases play a key role in intracellular signalling, participating at multiple levels along the transduction cascades that tnrgger
mitogenic response. Because protein kinases are involved in mitogenic pathways, they are likely to play a role in the abnormal proliferation of
malignant cells. In this study we compared activity of mitogen-activated protein (MAP) kinase and several renaturable kinases in
homogenates of 30 surgically resected colorectal cancers and their adjacent normal tissues. Using sodium dodecyl sulphate polyacrylamide
gel electrophoresis (SDS-PAGE) and membrane autophosphorylation assay on homogenates obtained from normal colon mucosa and
adenocarcinoma. we identified at least four renaturable kinases (50, 55. 85, 200 kDa). Compared with adjacent tissue, in most of the cancer
samples only the 85-kDa kinase exhibited a higher level of autophosphorylation activity than those in normal matched tissue (P < 0.001).
Moreover, the 85-kDa kinase from nearly all cancer homogenates showed faster electrophoretic mobility than the 85-kDa kinase from normal
tissue homogenates. Interestingly, the 50-kDa kinase had significantly lower autophosphorylation activity in cancer tissues than those of
normal tissue (P < 0.05). To assess p42-p44 MAP kinase activity, proteins were immunoprecipitated from adjacent colon mucosa and
adenocarcinoma with anti-extracellular signal-related kinase (ERK) 1/2 antibodies, and MAP kinase activity was measured using MBP as a
substrate. These studies revealed that MAP kinase activity in colorectal cancer was significantly higher (P < 0.001) than that in adjacent
mucosa. Thus, the constitutive activity of MAP kinase and autophosphorylation activity of 85-kDa kinase are increased. whereas the
autophosphorylation activity of another kinase, 50 kDa, is decreased in colorectal adenocarcinoma. However, although signal transduction
pathways are markedly altered in this cancer. neither p42/p44 MAP kinase activity nor 85-kDa autokinase activity could be correlated with the
established prognostic indicators.
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Protein k.inases play a pixotal role in intracellular signal trans-
duction. participating at multiple lexels along the transduction
cascades. Growth factor- and cvtokine-responsixve protein kinases
are in olx ed in cell cN cle control. cell proliferation and differenti-
ation (Hills et al. 1995.) It is thought that a X arietv of proliferatix e
disorders. such as cancer. might reflect abnormalities in sianal
transduction (Lexitzki. 19961.
We haxe previously identified an 85-kDa cytokine-inducible

serine/threomnne kinase (Rachie et al. 1993). In cell cultures. 85-
kDa kinase is induced in response to treatment with a number of
a-ents. including interleukin Ia (IL- Ia ). lipopolysaccharide (LPS)
and interferon y (WIFN-y). The 85-kDa kinase is also acti-ated in the
lung. kidnev. brain. liver and heart after systemic administration of
IL-1,B. epidermal groxth factor (EGF) and phorbol ester (PMA) in
mice (Ostrowxski et al. 1998). In HeLa cells 85-kDa kinase is exclu-
sivelx nuclear. whereas in other cell tvpes it x-as found both in
cvtosol and nuclei. The size and properties of the 85-kDa kinase are
xer- similar to the renaturable senrne/threonine kinase (RING3)
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kinase (Denis et al. 1996). suggesting that thev are the same or
related enzN-mes. Althouah the role of 85-kDaIRI,NG3 kinasel s ) is
unclear. its activation bv growth factors mirht reflect the inxolxe-
ment of this enzvme in cellular proliferation.
The extracellular sigrnal-regulated kinase (ERKI cascade is one

of the three homologous mammalian mitoren-actixated protein
kinase (MAPK) cascades found in eukarx otic cells (Pelech et al.
1992: -Nishida et al. 1993: Marshall. 1994: Hunter. 1995: Treisman.
1996). The MAPK cascade plays a prominent role in sirnallinc
pathw-avs that regulate cell proliferation and differentiation. The
MAPK pathwaN is trtroered by the surface receptor. x-hich acti-
xvates the GTP-binding protein p2l Ras. Actixvated Ras binds and
actix ates the c-Raf protein kinase. w hich in turn phosphorx lates and
actixates MAPK kinase (MEK). MIEK then phosphorxlates and
actixates MAPK. wxhich can translocate to the nucleus. >-here it
targets numerous transcription factors (NIarois et al. 1993: Hills.
1995: Denhardt. 1996: Whitmarsh et al. 1996: Hen et al. 1997:
Madden et al. 1997).

To gain insight into the potential role of 85-kDa and MAP
kinases in malionancies xwe examined the actixitv of these
enzxmes in colorectal cancer. W'e found that actixvits of WAP
kinase and autophosphornlation actixitx of 85-kDa kinase was
hioher in cancer tissue than adjacent normal tissue.
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MATERIAL AND METHODS

Colorectal cancer tissues

Thirtv surgically resected colorectal tumours and their adjacent
normal tissues xWere obtained from the Department of Colorectal
Diseases. the Maria Skkodowska-Curie Memorial Cancer Center
and Institute of Oncology. Warsawx. Fresh surgical specimens w-ere
immediately placed on ice and transported to the pathology labora-
torv. FolloW-inc rross examination. samples of adjacent mucosa

and tumour w-ere dissected and immediatels frozen at -80-C. The
presence of normal and tumour tissue w-as assessed by histologrical
evaluation of tissue adjacent to the fragment homogenized.

Tissue preparation

An aliquot of 100-200 mg of frozen tissue w-as homogenized by
three 15-s cycles using a Kinematica pol-tron PT 1200 homoge-
nizer in homogenization buffer (25 mst Tris-HCl. pH 7.5. 100 mrt
-glxycerophosphate. 25 ns\t P-nitrophenyl phosphate. 5 mm

sodium orthox-anadate. 10 mm magnesium chloride. 2 mm EDTA.
2 n-m EGTA. 5 rrvt benzamidine. 1 m\in phenvrlmethylsulphonyl
fluoride (PMISF). 10 g.t ml-' leupeptin) and after centrifuLation
116 000g. 4:C. 30 min) supematants (referred to as homogenates)
were assayed immediately or stored at -80-C for no more than a

few day s. All procedures w-ere conducted on ice or at 4W.

Protein concentration wxas measured using a M\icroBCA protein

assay. Pierce Chemical.

Patient no. 1 2

Autophosphorylation of renaturable kinase

An aliquot of 5 mg of homogenate protein was mixed xx ith 200 Lil
of DEAE Sephacel beads equilibrated in homogenization butter.
Beads were washed w-ith 2 ml of elution buffer w-ithout sodium
chloride. and proteins w ere eluted w-ith 200 mm sodium chloride in
elution buffer (20 mm Hepes-sodium hydroxide. pH 7.5. 2 mnt
EDTA. 2 mx\ EGTA. 10 mnt l-glvcerophosphate. 10 ms sodium
fluoride. 0.1 mm sodium molvbdate. S mx\ benzamidine. 1 mni
PMSF. 25 m¶\ p-nitrophenyl phosphate. 10 ,ig ml-' leupeptin and
lOk glxcerol). An aliquot of 50 itg of the partiall purified
proteins wxas boiled in 2 x loading buffer (125 mmI Tris-HCI.
pH 6.8. 4% sodium dodecyl sulphate (SDS). 20% glycerol and
10 -mercaptoethanol ( 1:1. vol/voll for 5 min. Proteins w ere
separated bx 10Cc SDS-polvacrxlamide gel electrophoresis
(PAGE). After bathing the gel in transfer buffer (192 mmx glxcine.
25 mmf Tris-HCI. pH 8.8. 20%- methanol and 0.005%- SDS) for
30 min. proteins w-ere electroblotted to an Immobilon-P PVDF
membrane in transfer buffer. Blotted proteins w-ere denaturated for
30 min at room temperature bv incubating the membrane in 10 ml
of denaturation buffer (7 m guanidine-HCl. 50 mM Tris-HCl.
pH 8.3. 30 min DTT. 3 m_st EDTA). Blotted proteins w-ere then
allow-ed to renature by incubating the membrane in renaturation
buffer (150 nm sodium chloride. 50 mM Tris-HCI. pH 7.5. 20 mM
EDTA. 2 nis\ DTT. 0.05c- Twxeen-2'0 oxemight at 4 C. After
renaturation. membranes w-ere incubated in phosphornlation buffer
(50 mnm Tris-HCl. pH 7.5. 5 mm magnesium chloride. 5 mm
manganese chloride. 5 mM\ DTT and 50 pCi [LCP]ATP) for 30 min

4 5 6

85kiakDa *-

Patientno. 7 8 9 10 11 12

85kDa-j *** 7

Patient no. 13 14 15 16 17 18

85 kDa _ 3

Patient no. 19 20 21 22 23 24

85 kDa _4W .s * _

Paent no. 25 26 27 28 29 30

Ima

85 kDa _|o- 4 . ......

Figure 1 Autoradiogram shows phosphorylation of renaturable kinases in homogenates of four normal colorectal mucosa-colorectal cancer tissue pairs.
Partially purified proteins from normal and cancer bssues were separated by SDS-PAGE electrophoresis. proteins were transferred to Immobilon-P PVDF
membrane and. after a cycle of denaturation-renaturation. autophosphoryation of renaturable kinases was camed out on the membrane. Molecular weight
markers are indicated on the left
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at 30-C. Phosphorylation w-as terminated bv washine membranes
five times in 50 mm Tris-HCl. pH 7.5. 0.05%7 Tween-20. The repro-

ducibility of the loading and electrotransfers to the membrane w-as
checked by protein staining, on the blots with 0.1% Amido Black.
Next. the membranes were autoradiographed (Rachie et al. 1993).
Autoradiograms were quantified by scanning densitometrv using a

Personal Densitometer. Molecular Dvnamics. and the results w-ere
expressed as arbitrary scanning units.
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Figure 2 Composite figure showing the individual kinase activity in 30 pairs
of adjacent colon mucosa and cancer tissue. A and B autophosphorylation
(Figure 1) of renaturable 85-kDa and 50-kDa kinases respectively. The
autophosphorylation activity was quantified by scanning densitometry of
autoradiograms and the results are expressed as arbitrary scanning units.
C p42-p44 MAP kinase actvites. ERK1 and ERK2 were immunoprecipitated
and assayed as described under Methods. using MBP as a substrate.
Results are expressed as radioactivity incorporated into MBP (c.p.m.)

p42-p44 MAP kinase assay

Homogenates containing 300 jg of total protein were immuno-

precipitated with 5 jgc of pouixclonal anti-ERK1 and 5 pcg
of anti-ERKI antibodies (Santa Cruz Biotechnology) in immuno-
precipitation (IP) buffer ( 150 mm sodium chloride. 50 mnm Tris-
HCl. pH 7.5. 5 mm EGTA. 1%7 Triton X-100. 0.5% NP-40. 25 mm
p-nitropheny l phosphate. 5 mm¶ benzamidine. 1 mnv PMISF. 20 m\
sodium fluoride. 0.2 nm sodium orthovanadate. 10 pcg ml-'
leupeptin) for 2 h at 4 C. Then. 25 jil of protein A beads. which
had been preincubated w ith IP buffer. were added and the samples
were incubated for another 1 h at 4-C on the rotator. The beads
were w,ashed tuice w-ith IP buffer and tw-ice with NIAP kinase
assav buffer (25 mnm Hepes-sodium hydroxide. pH 7.5. 10 mm
glvcerophosphate. 20 mm magnesium chloride. 2 mrm manganese

chloride. 0.1% Triton X- 100. 0.1 nm DTT and 0.1 nmm sodium
vanadate). Next. beads were mixed with 40 jl of MAP kinase
assav buffer containinc 20 jm of ATP. 0.3 of jCi [y P]ATP. 2 jg

of protein kinase (PK)A inhibitor. 2 jga of PKC inhibitor and 15 jig

of MBP peptide (APRTPGGRR). Phosphorylation reactions were
carried out for 10 min at 30-C. The reactions were terminated b\
adding 10 gl of 20% TCA. After centrifugation. the supernatants
wxere spotted on to UWhatman P-81 papers (Reuter CW"H et al.
1995). The papers were washed sexeral times in 0.5%-e phosphoric
acid. rinsed with acetone. dried and counted for radioactivitx.
Reaction blanks were prepared by usinc reaction mixture without
myelin basic protein (MBP) substrate. All assays were performed
in triplicate. The results were expressed in c.p.m. as radioactiv its
incorporated into MBP.
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Figure 3 Comparison between autophosphorylation of renal
kinase in 30 pairs of normal colorectal mucosa and colorectal
Note that in most of the studied pairs 85-kDa kinase from can
faster electrophoretic mobility

Immunoprecipitation of 85 kDa

Anti-RING3 chicken antibodies were raised against
protein (Ostrowski et al. 1998). Immunoprecipitatio
out bx mixing the preimmune or immune IgY in t
1 mc of the proteins from cancer tissue and the adj"
homogenates that A ere partially purified on DES
After 2 h at 4-C. 20 gl of agarose beads bearinn anti
antibodies u-as added and mixing uxas continued oxe
were washed four times u-ith IP buffer and protein
from agarose beads bv boiling in 2x sample buffer. E
u7ere resol ed bv SDS-PAGE and then transferred to
membrane. Blotted proteins w ere phosphon la
membrane and analysed by autoradiography as befor

Statistics

Data were analysed u-ith the Stat Vieu- 4.02 statist
package (Abacus Concepts. Berkley. CA. USA
Wilcoxon matched-pairs test. Fisher's exact probat
Pearson's correlation coefficient. Differences u-er
sicnificant u hen P uwas <0.05.

RESULTS

Autophosphorylation of renaturable protein kinases in
colorectal cancer and normal tissue samples
Using, the denaturation-renaturation method of proteins separated
by SDS-PAGE and electroblotted to Immobilon-P membrane. we
identified at least four renaturable kinases (50. 55. 85 and
200 kDa) from both adjacent colon mucosa and adenocarcinoma
that exhibit autokinase activity. To prove that radioactivity on the
blots represents autophosphorylation of the proteins. sex eral
experiments w ere performed in the pilot studies. Auto-
phosphory lation was obtained using only [yfP]ATP. but not

[ar'P]ATP. the radioactivity signals w ere progressively reduced bv
increasing concentrations of cold ATP and wxashes with 1 sm potas-
sium hydroxide did not reduce the 'P-labelled protein bands.
Moreover. phosphoamino acid analysis revealed that the 85-kDa

kinase autophosphory lates on serine and threonine residues
4- 200kDa (Rachie et al. 1993). Figure 1 illustrates the typical pattern of

autophosphornlation activities in the blotted proteins extracted
from four different colorectal cancer tissues and their matched

85 kDa normal mucosa.

In most of the cancer tissue homogenates. 85-kDa kinase exhib-
ited a hiaher level of autophosphorxlation than those in normal

55 kIDa matched tissue. although the level of autophosphorylation Xanied
4 50 kDa from sample to sample (Figure 2A). The autophosphorx lation

level in 30 cancer samples ranged from 80 to 1284 arbitrarx units
with a mean (±s.d.) of 420 ± 303 and was significantix hiaher
(P < 0.001 ) than that of matched normal colorectal mucosa. w-here
the lex els ranged from 11 to 766 arbitran units w-ith a mean (±s.d.)
of 192±165. Moreoxer. in most homogenates from cancer tissue
85-kDa kinase exhibited faster mobilitx in SDS-PAGE. even w hen
85-kDa autophosphory lation signals in cancer and matched

turable 85-kDa normal tissue were of the same intensity (Figure 3 . The reason for
cancer tissue. the faster electrophoretic mobility of the 85-kDa kinase-derived
cer tssue had

form cancer is not knoxxn.
In human cancer and adjacent colorectal mucosa homogenates.

another prominent renaturable autophosphor-lation activity was
found around 50 kDa. The level of 50 kDa kinase autophosphorx l-
ation activity in cancer homogenates ranged from 141 to 1100

GST-RING3 arbitrar- units w-ith a mean (±s.d.( of 437 ± 247. But. in contrast
n was carried to the 85-kDa kinase. the 50-kDa autokinase actix its% in cancer
P buffer w-ith was sianificanthv lower (P < 0.05) than that in normal tissue
acent mucosa homogenates. w-here it ranged from 160 to 1644 arbitrarx units
NE Sephacel. wxith a mean (+s.d.) of 598 ± 416 (P < 0.05: Finure 2B).
1-chicken I1Y
might. Beads Activation of MAP kinase (K) in human colorectal
s were eluted cancers
luted proteins
Immobilon-P The MAPK activitv in colorectal cancer homogenates ranged from
ited on the 616 to 8498 c.p.m. with a mean (±s.d.) of2261± 1821. hich was
re. sionificantlI- higher (P < 0.001) than the activity in adjacent

mucosa homogenates. w-here it ranred from 342 to 1894 c.p.m.
w-ith a mean (±s.d.) of 913 ± 354. In 14 out of 30 pairs of
cancer-normal tissues. MAPK activity in the tumour sample was

tical softu-are at least twice as high as that in adjacent mucosa. However. the
i) using the same variabilitv in MAPK actixvitv u-as obserxed (Figure 2C) as in
)ihitx test and the autophosphorx lation activities of 85- and 50-kDa kinases.
re considered

Immunoprecipitation of 85-kDa with anti-RING3
antibodies

As shown in Ficure 4. 85-kDa kinase was immunoprecipitated bv
the immune but not the preimmune anti-RING3 kinase antibodies.
These results have proved our earlier obser-ations (Ostrowski et
al. 1998). suggesting that 85-kDa kinase is either the same as or
related to RING3 kinase.

Correlation between 85-kDa and MAPK activities with
stage of colorectal cancer

To determine whether the tested kinases could be used as prog-
nostic indicators for patients w-ith colorectal cancer. we searched
for correlation betw een 85-kDa and MAPK actix ities u ith conx en-
tional clinical and pathological parameters.
No correlation u-as found betw een 85-kDa autophosphorx lation

activitx and actixvity of MAPK and patient's age. the site of the
disease or tumour size.
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'4- 85 kDa

PreimmuLe Irnune

Figure 4 Immunoprecapitation of 85-kDa. Proteins from colon cancer and
adacent mucosa were incubated with preimmune or immune anti-RING3
chicken anbbodies and, folwing binding to agarose beads bearing anti-
chicken IgY antbodies, the immunoprecptated proteins were assayed as
descibed under Methods

When patients were divided according to a modified Dukes'
staging system (Astler et al, 1954), in 12 patients with stage B2.
MAPK activity in cancer tissues compared with normal matched
mucosa increased by an average of 258±117% and was similar to

18 patients with stage C or C2 in whom MAPK activity in cancer

tissue increased by an average of 259±203% above the level in
adjacent mucosa.

85-kDa autokinase activity examined in cancer tissue from
patients with stage B2 increased by an average of 244±131%
above the activity in adjacent mucosa and did not differ signifi-
cantly (P>0.05) from those with stage Cl or C2. where 85-kDa
autokinase activity in cancer tissue increased by an average of
400±365%.

50-kDa autokinase activity in cancer tissue from patients with
stage B2 and Cl or C2 decreased below autokinase activity in

adjacent mucosa by an average of 81±34% and 97±54% respec-

tively (P > 0.05).
Thus. we were also unable to demonstrate any correlation

between MAPK activity or renaturable kinase autophosphoryl-
ation activity with conventional prognostic indicators.
Consequently. as the pathological disease staging following
surgical treatment is the most potent prognostic factor of relapse in
colorectal cancer patients. it seems that neither MAPK nor renat-
urable 85- and 50-kDa kinases can serve as predictors of prognosis
for identifying patients with an increased risk of early relapse.

DISCUSSION

Growth factor-responsive protein kinases are thought to be involved
in neoplastic processes. This notion is largely based on studies
carried out in cultured cells and the observation that tyrosine kinases
can emerge as oncogenes (Rodrigues et al. 1994; Cance et al, 1995).
Surprisingly. very few studies have examined kinase activities in
intact organs or cancer tissues. Adenocarcinoma of the colon is one
of the most common malignancies today (Boring et al, 1991) but
very little is known about the role of protein kinases in this malig-
nant disease. The only protein kinase studies in adenocarcinoma of
the colon that have been carried out to date examined activity of
PKC, which was found to be decreased in this tumour compared
with normnal tissue (Kopp et al. 1991; Kusunoki et al. 1992; Pongacz
et al. 1995). Because of the small amount of information that exists
about kinases in the adenocarcinoma of the colon. in this study we
chose to examine activities of MAP kinase and renaturable kinases
in this tumour.

Based primarily on studies performed in cultured cells, the
MAPK cascade is thought to be involved in growth factor-induced

cell proliferation (Seger et al. 1995). As such. this cascade might
also be involved in the pathogenesis of malignant processes.
Growth factor-triggered activation of MAPK is achieved through
the engagement of Ras and a serial activation of Raf kinase and
MEK. Activation of MEK allows this enzyme to phosphorylate
and activate MAPK. Activated MAPK has many targets. both in
the cytoplasm and the nucleus, including several transcription
factors that presumably mediate the MAPK-mediated mitogenic
response. Here we have demonstrated that in nearly each one of
the 30 patients MAPK activity was higher in homogenates
prepared from colon cancer tissue than the normal adjacent
mucosa. This observation is in agreement with other studies in
which MAPK activity was shown to be higher in human renal cell
carcinoma (Oka et al, 1995), prostate cancer (Magi-Galluzzi et al.
1997) and a subset of acute. but not chronic myelogenous.
leukaemia (Towatari et al. 1997). The increased constitutive
activity of MAPK found in adenocarcinoma of the colon (Figure
2) and other cancers (Magi-Galluzzi et al. 1997: Towatari et al.
1997). in conjunction with cell culture studies implicating MAPK
in the mitogenic responses (Seger et al. 1995). may reflect a role of
the MAPK cascade in the generation of the malignant process.
The 85-kDa renaturable kinase is a newly identified enzyme that

in some cell types is exclusively nuclear (Denis et al. 1996). The
85-kDa kinase is activated in response to treatment of cells with a
myriad of growth factors and cytokines. For example. the 85-kDa
autokinase activity in the nucleus is increased after treatment of
the EL4 thymoma cells or 70Z/3 the pre-B cells with IL- t. LPS
and IFN-y (Rachie et al. 1993). Systemic administration of EGF.
PMA or LL-l1, into mice increases the autophosphorylation
activity of the 85-kDa kinase in multiple organs, including lung.
kidney. liver and heart (Ostrowski et al. 1998). Importantly, the 85-
kDa autokinase activity is extremely high in leucocytes of patients
with various types of chronic and acute leukaemia. In one patient
tested the 85-kDa autokinase activity was greatly diminished
following remission of acute leukaemia.

Recently. a cDNA encoding an 83-kDa renaturable. senrne/
threonine kinase (RING3) was characterized in HeLa cells.
RING3 kinase was found to be stimulated by the treatment of cell
cultures with a number of agents. including IL- 1. serum. mitogenic
lectins (Denis et al. 1996). In HeLa cells RING3 kinase is exclu-
sively nuclear. and. like 85-kDa kinase. it reveals autophosphory-
lation activity after protein denaturation and renaturation on the
membrane. Anti-R[NG3 antibodies immunoprecipited an 85-kDa
autokinase activity from colorectal cancer and adjacent mucosa as
well as from the mice lung and brain (Ostrowski et al. 1998).
suggesting that 85-kDa and RING3 kinases are the same or related
enzymes.
Our studies showed that in nearly each one of the 30 patients the

85-kDa autokinase activity was higher than in the matched normal
tissue. However, the most consistent observation was the faster
electrophoretic mobility of the 85-kDa kinase derived from the
tumours. Both of the observations. therefore, demonstrate that this
enzyme is altered in adenocarcinoma of the colon. Because this
kinase is responsive to growth factors (Rachie et al. 1993:
Ostrowski et al. 1998). is extremely active in leukaemic cells
(Denis et al. 1996; our unpublished observations) and is constitu-
tively activated in colon cancer (Figures 1 and 3). it may be
involved in the neoplastic processes.
We also found that the autophosphorylation activity of one of

the renaturable kinases. 50-kDa kinase. in colon cancer was lower
than in the normal adjacent tissue. The significance of this obser-
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1306 J Ostrowski et al

vation is not clear but is similar to the observation that PKC
activity is lower in colorectal adenomas and adenocarcinomas
(Kopp et al, 1991; Kusunoki et al, 1992; Pongacz et al, 1995), as
well as in liver cancer compared with normal tissue in those organs
(Chang et al, 1996).

In summary, this study demonstrates that the constitutive activi-
ties of MAPK and autophosphorylation activity of 85-kDa kinase
are increased, whereas the autophosphorylation activity of another
kinase, 50 kDa, is decreased in adenocarcinoma of the colon.
These observations suggest that the signal transduction processes
in the neoplastic cells are greatly altered, although none of the
studied kinase activities could serve as prognostic indicators.
Whether the altered activity of MAPK, 85- and 50-kDa kinases
reflects involvement of these enzymes in the neoplastic process or
whether they represent associated phenomena is a key issue that
needs to be explored in order to better understand the pathogenesis
of this and other cancers.

ACKNOWLEDGEMENTS

This work was supported by grants from the Polish Committee
for Scientific Research (KBN 4 PO5A 114 10 to JO and NIH
GM42508 and GM455 134 to KB).

REFERENCES

Astler VB and Coller FA (1954) The prognostic significance of direct extension of
the carcinoma of the colon and rectum. Ann Surg 139: 846-859

Boring CC, Squires TS and Tong T (1991) Cancer statistics. CA Cancer J Clin 41:
19-36

Cance WG and Liu ET (1995) Protein kinases in human breast cancer. Breast
Cancer Res Treat 35: 105-114

Chang K-J, Lin J-K, Lee P-H, Hsieh Y-S, Cheng C-K and Lin J-Y (1996) The
altered activity of membrane-bound protein kinase C in human liver cancer.
CancerLett 105: 211-215

Denhardt DT (1996) Signal-transduction protein phosphorylation cascades mediated
by Ras/Rho proteins in the mammalian cell: the potential for multiplex
signaling. Biochem J 318: 729-747

Denis GV and Green MR (1996) A novel, mitogen-activated nuclear kinase is
related to a Drosophila developmental regulator. Genes Dev 10: 261-271

Hen J, Jiang Y, Li Z, Kravchenko VV and Uleritch RJ ( 1997) Activation of the
transcription factor for MEF2C by MAP kinase p38 in inflammation. Nature
386: 296-299

Hills CS and Treisman R (1995) Transcriptional regulation by extracellular signals:
mechanism and specificity. Cell 80: 199-211

Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein
phosphorylation and signaling. Cell 80: 225-236

Kopp R, Noelke B, Santer G, Schileberg FW, Panmagartner G and Pfeiffer A (1991)
Altered protein kinase C activity in human colonic adenoma and carcinomas.
Cancer Res 51: 205-210

Kusunoki M, Sakanone Y, Hatada T, Yanagi F, Tamamura T and Utsunomiya J
(1992) Protein kinase C activity in human colonic adenoma and colorectal
carcinoma. Cancer 69: 24-30

Levitzki A (1996) Targeting signal transduction for disease therapy. Curr Opin Cell
Biol 8: 239-242

Madden K, Shen YJ, Backz K, Andrews B and Snydr M (1997) SBF cell regulator
as a target of the yeast PKC-MAP kinase pathway. Science 275: 1781-1784

Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yoa H, Capodieci P,
Wishnow K, Kaplan I, Stork PJS and Loda M (1997) Mitogen-activated protein
kinases phosphatase 1 is overexpressed in prostate cancers and is inversely
related to apoptosis. Lab Invest 76: 37-51

Marois R, Wynne J and Treisman R (1993) The SRF accessory protein ELK- I
contains a growth factor-regulated transcriptional activation domain. Cell 73:
381-393

Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase.
Curr Opin Genes Dev 4: 82-89

Nishida E and Gotoh Y (1993) The MAP kinase cascade is essential for diverse
signal transduction pathways. Trends Biochem Sci 18: 128-131

Oka H, Chatani Y, Hoshino R, Ogawa 0, Kakehi Y, Terachi T, Okada Y, Kawaichi
M, Kohno M and Yoshida 0 (1995) Constitutive activation of mitogen-
activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res
55: 4182-4187

Ostrowski J, Florio SK, Denis GV, Suzuki H and Bomsztyk K (1998) Stimulation of
p85/RING3 kinase in multiple organs after systematic administration of
mitogens into mice. Oncogene 16: 1223-1227

Pelech SL and Sanghera JS (1992) Mitogen-activated protein kinases: versatile
transducers for cell signaling. Trends Biochem Sci 17: 233-238

Pongacz J, Clark P, Neoptolomos JP and Lord JM (I1995) Expression of protein
kinase C isoenzymes in colorectal cancer tissue and their differential activation
by different bile acids. Int J Cancer 61: 35-39

Pulverer BJ, Kyriallis JM, Avruch J, Nikolakaki E and Woodgett JR (1991)
Phosphorylation of c-jun mediated by MAP kinase. Nature 353: 670-674

Rachie NA, Seger R, Valentine MA, Ostrowski J and Bomsztyk K (1993)
Identification of an inducible 85-kDa nuclear protein kinase. J Biol Chem 268:
22143-22149

Reuter CWH, Catling AD and Weber MJ (1995) Immune complex kinase assays for
mitogen-activated protein kinase and MEK. Methods Enzymol 225: 245-256

Rodrigues GA and Park M (1994) Oncogenic activation of tyrosine kinases. Curr
Opin Genet Dev 4: 15-24

Seger R and Krebs EG (1995) The MAPK signaling cascade. FASEB J 9: 726-735
Towatari M, Lida H, Tanimoto M, Iwata H, Hamaguchi M and Saito H (1997)

Constitutive activation of mitogen-activated protein kinase pathway in acute
leukemia cells. Leukemia 11: 479-484

Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin
Cell Biol 8: 205-215

Whitmarsh AJ and Davis RJ (I1996) Transcription factor AP- 1 regulation by
mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:
589-607

British Joumal of Cancer (1998) 78(10), 1301-1306 C Cancer Research Campaign 1998


