
entropy

Article

On Max-Semistable Laws and Extremes for Dynamical Systems

Mark P. Holland 1,∗ and Alef E. Sterk 2

����������
�������

Citation: Holland, M.P.; Sterk, A.E.

On Max-Semistable Laws and

Extremes for Dynamical Systems.

Entropy 2021, 23, 1192. https://

doi.org/10.3390/e23091192

Academic Editors: Sandro Vaienti

and Jorge Milhazes Freitas

Received: 30 July 2021

Accepted: 6 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus,
University of Exeter, North Park Road, Exeter EX4 4QF, UK

2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands; a.e.sterk@rug.nl

* Correspondence: m.p.holland@exeter.ac.uk

Abstract: Suppose ( f ,X , µ) is a measure preserving dynamical system and φ : X → R a measurable
observable. Let Xi = φ ◦ f i−1 denote the time series of observations on the system, and consider
the maxima process Mn := max{X1, . . . , Xn}. Under linear scaling of Mn, its asymptotic statistics
are usually captured by a three-parameter generalised extreme value distribution. This assumes
certain regularity conditions on the measure density and the observable. We explore an alternative
parametric distribution that can be used to model the extreme behaviour when the observables (or
measure density) lack certain regular variation assumptions. The relevant distribution we study arises
naturally as the limit for max-semistable processes. For piecewise uniformly expanding dynamical
systems, we show that a max-semistable limit holds for the (linear) scaled maxima process.
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1. Introduction
1.1. Overview on the Theory of Extremes

Consider a stationary stochastic process (Xn) on a probability space (Ω,P,F ), where
Ω is the sample space and P is a probability measure on the sigma-algebra F . Study of the
maxima process Mn = maxk ≤ n Xk is the topic of Extreme Value Theory (EVT), and has wide
applications, e.g., in weather, climate and financial modelling [1,2]. Within EVT, a particular
problem is concerned with understanding the limiting behaviour of the process Mn as
n→ ∞, either in distribution, or almost surely. This has relevance to statistical modelling
applications and prediction of extremes [3]. In this article, we consider distributional
convergence of Mn, and consider the possible limit distributions governing the rescaled
process an(Mn − bn), for real-valued sequences an, and bn. This is a natural problem to
consider, and is in direct analogy to establishing (for example) the Central Limit Theorem
property for normalised sums of random variables. In particular, we seek the existence of
sequences an, bn ∈ R such that

P{an(Mn − bn) ≤ u} → G(u), (1)

for some non-degenerate distribution function G(u), −∞ < u < ∞.
For independent, identically distributed (i.i.d.) processes (Xn), the limit law G (when

it exists) is known to take three forms: Fréchet, Weibull and Gumbel [1–3]. Up to scale
and location changes, they can be summarised through the generalised extreme value (GEV)
distribution Gξ(u) defined as follows:

Gξ(u) =

{
exp

{
−(1 + ξu)−

1
ξ
}

if ξ 6= 0,
exp

{
−e−u} if ξ = 0.

(2)
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The parameter ξ ∈ R is referred to as the tail or shape parameter, and is of key interest
in statistical estimation and fitting of the GEV distribution. The Gumbel distribution
corresponds to ξ = 0, Fréchet to ξ > 0, and Weibull to ξ < 0. For a given probability
distribution FX(u) := P(X ≤ u), the existence of a limit Gξ(u) depends on the asymptotic
regular variation properties of FX, or in particular the ‘tail’ FX(u) := 1− FX(u) as u →
uF ≤ ∞. Here, uF = sup{v ∈ R : FX(v) < 1}. For example, suppose uF = ∞, and there
exists β > 0 such that for all ` > 0,

lim
u→∞

FX(`u)
FX(u)

= `−β. (3)

If we put an = F−1(1− 1/n) and bn = 0, then the limit for P(an(Mn − bn) < u) →
Gξ(u) can be shown to exist, with Gξ(u) = e−u−ξ

(of GEV type) and ξ = 1/β. Thus, any
probability distribution function satisfying Equation (3) belongs to the domain of attraction
of a Fréchet law with tail parameter ξ = 1/β. Formulation of general conditions on FX(u)
and existence/construction of the norming sequences an and bn to permit convergence
of (normalised) maxima to a GEV distribution are discussed in [1]. However, there are
wide classes of distributions for which there are no normalising sequences to permit
convergence in distribution of an(Mn − bn). A particular class we introduce are the max-
semistable distributions.

1.2. Max-Semistable Laws and Corresponding Evt

Here, we introduce the class of max-semistable distributions. Given a random variable
X with distribution function FX , we say that X is in the domain of (partial) attraction to a
max-semistable distribution function G(u) if there exists a strictly increasing sub-sequence
kn, such that kn+1/kn → c ≥ 1, and normalising constants an, bn with

FX

(
u
an

+ bn

)kn

→ G(u).

The distribution function G(u), when it exists, is characterised by the equivalent
property: there exists c > 1, γ > 0 and β ∈ R with

G(u) = G
(

u
γ
+ β

)c
.

If convergence takes place along the full sequence kn = n (so that c = 1), then we refer
to G as max-stable. In particular, the distribution functions represented by the classical
GEV distribution in Equation (2) are max-stable. A representative of a max-semistable
distribution G(u) := Gξ,ν(u) takes the following functional form:

Gξ,ν(u) =

{
exp

{
−(1 + ξu)−

1
ξ ν(log(1 + ξu)−

1
ξ )
}

if 1 + ξu > 0, ξ 6= 0,
exp

{
−e−uν(u)

}
if u ∈ (−∞, ∞), ξ = 0,

(4)

where ν is a positive, bounded and periodic function with period cν = log c > 0. When
ν ≡ 1, then Gξ,ν(u) takes the previous form of a (max-stable) GEV distribution described
by Equation (2). The max-semistable distributions capture the limit laws for linear scaling
sequences of Mn, especially when the probability distribution function (or measure) gov-
erning Xn has oscillation behaviour in the tails. Indeed, if Mn is the maximum for an i.i.d.
sequence (Xn), then for the sequences an, bn and kn above, we have

P(an(Mkn − bn) ≤ u)→ G(u),

for all values of u that are continuity points of G.
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In the i.i.d. case, the domain of attraction for a particular Gξ,ν is understood in terms
of regularity of the tails for FX(u) as u → uF; see [4,5]. For example, in the case ξ > 0,
the distribution function FX(u) will be in the domain of attraction for Gξ,ν if the following
holds: there exists a function F̃(u) regularly varying with index α = −1/ξ, sequences an,
bn, and x∗ ∈ R a continuity point of ν such that Θ(u) := FX(u)/F̃(u) satisfies

lim
n→∞

Θ(anu + bn)

Θ(anx∗ + bn)
=

ν(log x)
ν(log x∗)

.

Moreover, the corresponding sequence kn, with kn+1/kn → c, can be made explicit:

kn =

⌊
ν(log x∗)(x∗)−α

FX(anx∗ + bn)

⌋
.

Example 1. Consider the distribution

FX(u) = 1− u−α

(
1 + ε sin

(
2π

c
log u

))
with ε <

cα

2π + cα
.

If we put an = ecn/α, bn = 0, x∗ = 1 and F̃(u) = u−α, then

lim
n→∞

Θ(ecnx)
Θ(ec)

= 1 + ε sin
(

2π

c
log u

)
,

and so ν(u) = 1 + ε sin
( 2π

c log u
)
. We now have to consider kn. We have

P(Mkn < u/an + bn) =

(
1− (e

cn
α u)−α

(
1 + ε sin

(
2π

c
log(ecnu)

)))kn

=

(
1− e−cnu−α

(
1 + ε sin

(
2π

c
log u

)))kn

= exp{kne−cnu−αν(u)}+ O(kne−2cn).

(5)

Choosing kn = becnc, we obtain

P(Mkn < u/an + bn)→ exp{u−αν(u)}.

Thus, this example is in the domain of attraction of Gξ,ν(u), with ξ = 1/α and ν(u) =

1 + ε sin( 2π
c log u) (Notice that relative to earlier notation, the period of ν is precisely cν = c).

Clearly, kn satisfies the regularity condition kn+1/kn → ec.

The tail of the distribution FX(u) satisfies

lim sup
u→∞

uαFX(u) = 1 + ε, lim inf
u→∞

uαFX(u) = 1− ε,

and admits infinite oscillation over log-periodic windows. In particular, the function
uαFX(u) is log-periodic with period ec. (Recall that a functionM : R→ R is log-periodic
with period γ > 0 ifM(γx) =M(x) for all x ∈ R.)

Example 2. Consider the distribution function with tail FX(u) = exp{−e−u−ε sin u} for some
0 < ε < 1. Then it can be shown that this function is in the domain of attraction of Gξ,ν(u),
with ξ = 0; see [4].

However, the oscillation property of the distribution function within the domain of
attraction can be subtle as the next example illustrates.
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Example 3. Consider the distribution function with tail

FX(u) = u−α`(u) with `(u) = exp{
√

log u sin(
√

log u)}, (u→ ∞).

Then FX(u) is regularly varying with index −α. Thus, this distribution is in the domain of
attraction of a max-stable GEV distribution with limit representation Gξ(u) = e−u−α

. Note, however,
that the function `(u) is both slowly varying, and satisfies infinite oscillation in the sense that

lim sup
u→∞

`(u) = ∞, lim inf
u→∞

`(u) = 0.

We remark further that if a distribution function has slowly varying tails, such as
FX(u) = (log u)−β with β > 0, then FX(u) is not in the domain of attraction of a max-stable,
nor a max-semistable law [1,4].

The remainder of this paper is organised as follows. In Section 2, we state our main
results. This includes the statement of Theorem 1 on existence of a max-semistable law for
piecewise uniformly expanding dynamical systems. We show that the limit law obtained
depends on the regularity of the observables on the system, and on the regularity of the
invariant density. In Section 2.4, we discuss the role of the extremal index. This is a further
parameter that captures certain clustering behaviour [1,3], and is not applicable to the i.i.d.
case. The extremal index is not directly incorporated in the GEV representation, and its
computation requires analysis of the dependency structure of the process. In Section 3, we
analyse the performance of statistical estimation schemes, such as the L-moments method
for estimating the parameters of the limiting max-semistable GEV distribution. We also
compute the extremal index and compare to theoretical results.

2. Convergence to a Max-Semistable Law for Dynamical Systems

We now consider a measure preserving dynamical system f : X → X , on the prob-
ability space (X , µ,F ). Here, X ⊂ R, F a Borel σ-algebra on X , and µ is an f -invariant
probability measure supported on X . Given an observable φ : X → R, i.e., a measurable
function, we consider the stationary stochastic process X1, X2, . . . defined as

Xi = φ ◦ f i−1, i ≥ 1, (6)

and its associated maximum process Mn defined as

Mn = max{X1, . . . , Xn}. (7)

As in the i.i.d. case, much attention has been to determine the existence of sequences
an, bn ∈ R such that

ν{x ∈ X : an(Mn − bn) ≤ u} → G(u), (8)

for some non-degenerate distribution function G(u), −∞ < u < ∞. Under general
assumptions on the observable function, the measure density and the mixing properties of
the dynamical system, it is found that the sequences an, bn and limit G are determined in
much a similar way as to the i.i.d. case.

Here, the distribution function tail FX(u) takes the form F f (u) := µ{φ(x) > u}.
The regularity of F f (u) depends on the regularity of the measure µ, and on the regularity
of the observable φ. We focus on one-dimensional dynamical systems, and consider those
with an absolutely continuous invariant measure µ. For µ-a.e. x ∈ X the density ρ(x) is well
defined and takes values in (0, ∞). There may be exceptional points where ρ(x̃) ∈ {0, ∞},
or is undefined. For the observable function φ : X → R, we consider those which are
maximised at a distinguished point x̃ ∈ X . Moreover, we consider observable functions
of the form φ(x) = ψ(dist(x, x̃)), where dist(·, ·) denotes the Euclidean distance on X
and ψ : [0, ∞)→ R is a monotone decreasing function. Functions of this form have been
the main focus in the study of extremes for one-dimensional dynamical systems; see [6].
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For example, it can be shown that the max-stable GEV limit distributions are applicable
for describing the statistics of extremes in the cases (i) ψ(u) = − log u , (ii) ψ(u) = u−α,
and (iii) ψ(u) = C− uα, (with α > 0). The problem we consider is the case where F f (u) is
not regularly varying, and hence not in the domain of attraction of a classical max-stable
GEV distribution. For one-dimensional dynamical systems where the density of µ is a
smooth function (e.g., the density is µ-a.e. Hölder continuous), the regularity of F f (u) (or
lack thereof) depends on the regularity of the observable function φ (through ψ). Hence,
we seek conditions on the dynamical system process, and observable function ψ for which
a max-semistable law limit exists. We cannot use the same methods of proof as in the i.i.d.
case, since the dynamical system processes are dependent.

Going beyond one-dimensional dynamical systems, proving existence (or otherwise)
of a max-stable GEV distribution limit is non-trivial. This is a relevant problem to consider,
especially from a practical viewpoint of using dynamical systems for weather and climate
models. For non-uniformly hyperbolic systems, e.g., those giving rise to chaotic attractors
as in [7,8], the regularity considerations of the invariant measure will feature prominently
in the determination of the limit law for the extremes (if such a limit law exists). Numerical
results indicate slow or oscillatory convergence in the estimation of the tail parameter;
see [6,9–11]. Within these references, it is shown that lack of regular variation for the func-
tion F f (u) is possible. This remains the case even if the observable function is sufficiently
smooth, in the sense of φ(x) = ψ(dist(x, x̃)), and the function ψ regularly varying. The lack
of regular variation of F f (u) is due to the fractal, and (approximate) self-similar structure of
the chaotic attractor. In particular, the invariant measure µ is longer absolutely continuous
with respect to volume (Lebesgue) measure. Hence, it is natural to ask the validity of a
max-semistable GEV distribution limit description for the extremes. We discuss this further
in Section 4.

2.1. Main Results

Suppose that f : X → X is a piecewise expanding map, with finitely many pieces
of continuity. For simplicity, we take X = [0, 1]. We assume that there is a partition
P = {I1, . . . , Im} such that f is differentiable on each Ik, k ≤ m. LetPn be the corresponding
partition for f n. We distinguish between finite and countable partitions. In the case of a
finite partition P , there is a δ0 > 0 such that every partition element of P has a diameter of
at least δ0. In the case where the partition P is countable, we assume that there is a δ0 > 0
such that for all n holds | f n(I)| ≥ δ0 whenever I ∈ Pn.

We assume that f is uniformly expanding, i.e., that there is a constant λ > 1 such that
| f ′| ≥ λ. Moreover, we assume that f has bounded distortion, and that µ is an ergodic
measure µ with exponential decay of correlations for functions of bounded variation against
L1. This means that there exists a constant C > 0 such that

x, y ∈ I ∈ Pn ⇒ C−1 ≤ D f n(x)
D f n(y)

≤ C

and for functions ϕ1, ϕ2 : X → R∣∣∣∣∫ ϕ1 · ϕ2 ◦ f j dµ−
∫

ϕ1 dµ
∫

ϕ2 dµ

∣∣∣∣ ≤ Cτ
−j
1 ‖ϕ1‖BV‖ϕ2‖1

for some τ1 > 1. Here, the density of the measure µ should be a function of bounded
variation (BV) and ‖ · ‖BV denotes the BV-norm [12]. Recall that the L1-norm is defined as
‖ϕ‖1 =

∫
X |ϕ| dµ.

Examples of systems satisfying our assumption are piecewise expanding maps with
finitely many pieces and an absolutely continuous invariant measure µ, such as the β-
transformation x 7→ βx mod 1, (β > 1); the Gauss map x 7→ 1/x mod 1; or the first return
map to [ 1

2 , 1) for a Manneville–Pomeau map [13] with an absolutely continuous invariant
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measure µ. For more details about the statistical properties of these maps see [12,14]. We
consider specific case studies in Section 3. We state the following result.

Theorem 1. Suppose that f : X → X is a piecewise uniformly expanding interval map, with er-
godic measure µ. Given x̃ ∈ X , suppose that φ(x) = ψ(dist(x, x̃)), with ψ : [0, ∞) → R
monotone decreasing. Suppose that there exists F̃(u), regularly varying with index −α, a periodic
function ν and sequences an, bn such that

lim
n→∞

Θ(anu + bn)

Θ(anx∗ + bn)
=

ν(log x)
ν(log x∗)

,

where Θ(u) := F f (u)/F̃(u), and x∗ a continuity point of ν. Then for µ-a.e. x̃ ∈ X , there exists a
sequence kn with kn+1/kn → ec ≥ 1 (where c is the period of ν), and

µ
{

x ∈ X : an(Mkn(x)− bn) ≤ u
}
→ exp{−u−αν(log u)}.

We make several remarks on Theorem 1; it is proved in Section 2.2. The first remark is
that an example function Ff (u) that fits the hypothesis of Theorem 1 is given by

F f (u) = u−α

(
1 + ε sin

(
2π

c
log u

))
with ε <

αc
2π + αc

.

It is straightforward to generalise to other functional forms. Another example includes:

F f (u) = e−γβ−blog xc
, γ, β > 0,

which is connected to the St. Petersburg distribution; see [5]. In a dynamical system setting,
this type of limit distribution arises in the context of hitting time statistics to cylinder sets;
see [15]. Note that the observable φ is defined implicitly through the function Ff (u) =
µ{φ(x) > u}. In general it is not possible to give an explicit formula for φ (or ψ) even when
the density of µ is explicit. The problem is inverting Ff (u). If φ(x) = ψ(dist(x, x̃)) is made
explicit, such as specifying ψ(u) = u−αM(log u) for some periodic functionM(u), then
the problem is to determine the regularity Ff . This becomes relevant for dynamical systems,
where it is natural to specify φ first (rather than Ff ). We state the following corollary.

Corollary 1. Suppose that f : X → X is a piecewise uniformly expanding interval map, with er-
godic measure µ. Given x̃ ∈ X , suppose that φ(x) = ψ(dist(x, x̃)), where ψ : [0, ∞) → R and
satisfies ψ(u) = u−αM(log u). The functionM is assumed periodic with period c, and differ-
entiable withM′(log u) < αM(log u). Then for µ-a.e. x̃ ∈ X , there exists a sequence kn with
kn+1/kn → ec ≥ 1, and

µ
{

x ∈ X : e−cαn Mkn(x) ≤ u
}
→ exp{−2ρ(x̃)u−

1
αM0(log u)},

whereM0(u) also has period c, and ρ(x̃) is the density of µ at x̃.

The corollary is proved in Section 2.3. To keep the exposition concise, we have focused
on piecewise uniformly expanding (interval) maps. It is possible to generalise to dynamical
systems which are not uniformly expanding, such as the dynamical systems considered
in [16–18]. The main purpose of our results is to demonstrate that max-semistable laws are
the natural limits to consider for the maxima process, especially for observables that lack
regular variation properties. The results we obtain are commensurate with the i.i.d. case.
See also [19] for results in the context of certain stationary processes, building upon [20,21].

For hyperbolic systems, such as those considered in [7,8], we make further remarks in
Section 4. In the context of semistable laws for suitably normalised Birkhoff sums (rather
than extremes); see recent work of [22,23].
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2.2. Proof of Theorem 1

The proof of Theorem 1 uses the blocking method adapted from [16,21]. See also ([6]
Chapter 6), in particular Proposition 6.3.3 within. We summarise the approach as fol-
lows. Given n, consider integers p, q, t defined so that n ∼ q(p + t) as n → ∞. We take
p = q ∼

√
n and t = (log n)2, but other rates are possible. We now divide up our process

in blocks of size p, and take q such blocks. Each consecutive block will be separated by a
time scale t. Block i ≤ q consists of the time series {Xj−1+i(p+t)} for j = 1, . . . p. Using the
fact that the process is stationary, and an application of the inclusion-exclusion principle,
the maxima of each block satisfies:

1− pµ(X1 > un) ≤ µ(Mp ≤ u) ≤ 1− pµ(X1 > un) +
p

∑
i=1

p

∑
j 6=i,j=1

µ(Xj ≥ u, Xi ≥ u). (9)

Since t represents a correlation time-lag it is natural to replicate the i.i.d. argument
leading to an estimate of the form:

|µ(Mn ≤ un)− (1− pµ(X1 > un))
q| ≤ E(p, q, t),

where the error term E(p, q, t) is composed of three significant terms, which we write as

E(p, q, t) = E1 + E2 + E3.

• An error term E1 which depends on the decay of correlations associated to separating
the blocks by lag t. This is bounded by

E1 ≤ C(p, q)‖ϕ1‖BV‖ϕ2‖L1 τ−n
1

where C(p, q) is power law in n when p = q ∼
√

n and τ1 > 1 is the exponential
decay of correlation decay rate. The functions ϕ1 = ϕ2 are indicator functions of the
set {X1 > un}, and have L∞-norm of 1, bounded variation norm of 2. Hence, E1 → 0
exponentially fast as n→ ∞

• An error term E2 associated to the decomposition in (9). This is bounded as follows

E2 ≤ n
p

∑
j=2

µ(X1 > un, Xj > un).

For observables of the form φ(x) = ψ(dist(x, x̃)), it is shown that for µ-a.e. x̃ ∈ X that
E2 = O(n−γ1) for some γ1 > 0. See [18].

• A remainder error term of the form max{p, qt}µ(X1 > un) which arises from the re-
quirement that p, q, t are integers. By choice of p, q, t and un, we see that E3 = O(n−γ2)
for some γ2 > 0.

Hence, there exists γ̃ > 0 such that

(1− pµ(X1 > u/an + bn))
q = exp{−nµ(X1 > u/an + bn)}+ O(n−γ̃),

and therefore

µ(Mn ≤ u/an + bn) = (1− pµ(X1 > u/an + bn))
q + O(n−γ̃).

To complete the proof, we must relabel the sequence indexing. We choose an, bn so that

lim
n→∞

Θ(anu + bn)

Θ(anx∗ + bn)
=

ν(log x)
ν(log x∗)

,
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and for Mn, we consider instead Mkn . This means we take p = q ∼
√

kn. We obtain

µ(Mnk ≤ u/an + bn) = exp{−knF f (u/an + bb)}+ O(k−γ0
n ), (10)

for some γ0 > 0. By choice of an, and since ν(log x) is a log-periodic function of log-period
ec, we can choose kn proportional to ec as required. This concludes the proof.

2.3. Proof of Corollary 1

To prove the corollary, it suffices to analyse the regularity of ψ−1(u), such as its
periodicity and regular variation properties. The following lemma is elementary and sets
up an equivalence for log-periodicity of regular varying functions and their inverses.

Lemma 1. Suppose that ψ(u) = u−αM(log u), whereM is periodic with period c. Suppose
thatM is differentiable andM′(log u) < αM(log u). Then ψ−1(u) admits the representation
ψ−1(u) = u−1/αM](log u), whereM](log u) is also periodic with period c.

The requirementM′(log u) < αM(log u) ensures that ψ(u) is a monotone decreasing
function, and is therefore injective so that ψ−1(u) is well defined. To show the period-
icity property ofM](u), we proceed as follows. First note that ψ(ecu) = ecαψ(u), since
M(log(ecu)) =M(log u). We now compare ψ−1(ecαx) with ψ−1(u):

ψ−1(cαu) = {v : ψ(v) = ecαu},
= {v : vαM(log v) = ecαu},
= {v : (ve−c)αM(log(e−cv)) = u},
= ecψ−1(u).

Hence, ψ−1(u) = e
c
α ψ−1(u). Put ψ−1(u) = u

1
αM](log u), for some real-valued func-

tionM](u). Then we see thatM](log(ecu)) = M](log u) as required. This completes
the proof.

2.4. On the Role of the Extremal Index

For dependent processes, a further important parameter of statistical relevance is the
extremal index θ. It is defined as follows:

Definition 1. Suppose τ > 0, and let un(τ) be a sequence such that

nµ{X1 > un(τ)} → τ, n→ ∞. (11)

Then we say that an extreme value law with extremal index θ ∈ (0, 1] holds for Mn if

µ{Mn ≤ un(τ)} → e−θτ , n→ ∞. (12)

If (Xn) is an i.i.d. process, then Equation (12) holds for θ = 1. For dynamical
systems, natural examples where the extremal index is non-trivial are for observables
φ(x) = ψ(dist(x, x̃)) maximised at periodic points. Following, e.g., [15,24], versions of
Theorem 1 can be shown to hold. To see where the extremal index arises more explic-
itly, consider the following example. Take Yn = max{Xn, Xn+1}, where (Xn) is an i.i.d.
sequence with distribution function FX(u) = u−1M(log u). We assume M is differen-
tiable, periodic with period c and M′(log u) < M(log u). Defining Θ(u) = uFX(u),
we get identically Θ(u) = M(log u). Thus, along the sequence an = ecn, we have
limn→∞ θ(ecnu) = M(log u). (We can take x∗ = 1.) If MZ denotes the maximum of a
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general random variable sequence (Zn), then we see that MY
n = MX

n+1. Hence, taking
an = ecn and bn = 0, we have

P(MY
kn
≤ u/an + bn) = P(MX

kn+1 ≤ u/an + bn) =
(

1− (ecnu)−1M(log u)
)kn+1

.

Now the convergence criteria to a max-semistable law are characterised by sequences
kn satisfying the asymptotic ratio condition kn+1/kn → c′ for some c′ ≥ 1. We can take
kn = enc − 1. The limit distribution is represented by Gξ,ν with ξ = 1 and ν =M(log u).
Notice that this construction does not pick up the extremal index. This is due to the fact that
the sequence kn can be defined up to arbitrary multiplication constants. In the max-stable
case, we work precisely along the given sequence kn ≡ n, and an, bn are chosen by the
requirement nFX(u/an + bn)→ τ. If instead we tookM(log u) ≡ 1, then we would take
an = n, bn = 0, and obtain

P(MY
kn
≤ u/an + bn)→ e−τ/2,

thus picking up an extremal index of 1/2.
From a practical viewpoint, the extremal index measures ‘clustering phenomena’ and

this is a separate phenomenon associated to irregularity of the tails. We explore in the next
section whether numerical methods still pick up the non-trivial extremal index, despite
the extremal index itself not featuring directly in the limiting max-semistable GEV repre-
sentation. We note that even in the classical max-stable GEV representation the extremal
index is not formally incorporated. It is hidden within the scale and location parameters.
Regarding Equation (12), the sequence un(τ) appearing within is not required to satisfy
any particular regularity condition, i.e., as associated to a linear scaling distributional limit
for Mn (which indeed will not always exist).

3. Numerical Studies

In this section, we undertake simulation studies for dynamical system case studies, where
the observable function is in the domain of attraction of a max-semistable GEV distribution.
We estimate (numerically) the tail parameter, the extremal index, and discuss to what extent
we can determine the periodicity of the function ν in the max-semistable GEV representation.
The examples we consider are: i.i.d. random variables; uniformly expanding maps fitting
the scope of Theorem 1 and observable functions within the scope of Corollary 1; certain
non-uniformly expanding maps such as the logistic map and cusp map.

Example 4. Consider the distribution function

F(u) = 1− u−α

(
1 + ε sin

(
2π

c
log u

))
,

with α = 4, c = 1, and ε = 0.35. We draw samples from this distribution via the time series
Xi = F−1(Ui) where the Ui are i.i.d. random variables with a uniform distribution on the interval
[0, 1]. The function F−1 is computed numerically by solving the equation F(Xi) = Ui using
Newton’s method.

First, 103 block maxima are extracted from a time series (Xi) where the length of the blocks
is allowed to vary. Next, the tail index ξ is estimated by the L-moments method [25]. In addition,
an estimate for the 95% confidence interval is obtained by repeating the computations 50 times with
different realizations. See [11,26] for further details. The extremal index θ is estimated by applying
the the intervals estimator introduced in [27] to a time series of length 104.

Figure 1 shows estimates for the tail index ξ as a function of the block length (panel A) and the
extremal index θ as a function of the threshold quantile (panel B). The tail index strongly oscillates
around the value ξ = 1

4 when the block length is increased. The value ξ = 1/4 is precisely the tail
parameter in the max-semistable GEV distribution. However, the estimation scheme does not easily
pick out the period of oscillation cν for the function ν. The estimated extremal index is close to 1
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which is expected since the time series (Xn) is an i.i.d. process. Also note that the estimates of θ are
not very sensitive to the choice of the quantile threshold.
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Figure 1. Numerical estimates of the tail index ξ (A) and the extremal index θ (B) for the process (Xi)

defined in Example 4. Grey bands mark the 95% confidence intervals around the obtained estimates.

Example 5. Next, we consider the process (Yi) given by Yi = max{Xi, Xi+1}, where (Xi) is the
sequence from Example 4. Figure 2 again shows that the estimates of the tail index ξ as a function
of the block length behave in a very similar way to Example 4. However, in this case, the process
(Yi) is no longer i.i.d. and estimates for the extremal index are close to θ = 1

2 .
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Figure 2. Numerical estimates of the tail index ξ (A) and the extremal index θ (B) for the process for
the process (Yi) defined in Example 5.

Example 6. In this example, we consider the proces (Xi) defined in Equation (6) using the map
f (x) = 3x mod 1 on the interval [0, 1) and the observable φ(x) = ψ(dist(x, x̃)), where

ψ(u) = u−αM(u) and M(u) = 1 + ε sin
(

2π

c
log u

)
. (13)

For the parameter values α = 0.25, ε = 0.05, and c = 2, the condition of Lemma 1 is satisfied.
Figure 3 shows the estimates for the tail index and extremal index for the cases x̃ = 1

2

√
3 (which is a

non-periodic point of f ) and x̃ = 1
2 (which is a fixed point of f ). In both cases, the estimates for the

tail index oscillate around the value ξ = 1
4 when the block length is increased. In the case x̃ = 1

2

√
3
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the extremal index is very close to 1. In the case x̃ = 1
2 , we have θ ≈ 0.73, which compares well to

the theoretically expected value which is given by

θ = 1− 1
| f ′(x̃)| =

2
3

,

see [24].
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Figure 3. As Figure 1, but for the process (Xi) defined in Example 6 with x̃ = 1
2

√
3 (A,B) and

x̃ = 1
2 (C,D).

Example 7. As a more interesting example, we consider the process (Xi) defined in Equation (6) using
the logistic map f (x) = 4x(1− x) on the interval [0, 1]. We take the observable φ(x) = ψ(dist(x, x̃)),
where ψ is defined in Equation (13), with the same parameter values as in Example 6. Figure 4 shows
the estimates for the tail index and extremal index for the cases x̃ = 1

2

√
3 (which is a non-periodic

point of f ) and x̃ = 3
4 (which is a fixed point of f ). In both cases, the estimates for the tail index

oscillate when the block length is increased. However, contrary to Example 6, the oscillations do not
occur around a particular value but an upward (resp. downward) trend can be observed. A possible
explanation for this phenomenon might be that it takes longer for the oscillations to settle because of
the fact that f is non-uniformly expanding. Although the density of the invariant measure, given
by ρ(x) = 1

π (x(1− x))−1/2, is a smooth function, it is the log-periodic oscillation in the observable
function (via ψ) in Equation (13) that gives rise to the oscillations in the tail estimation. Corollary 1
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applies to this example. In the case x̃ = 1
2

√
3 the extremal index is very close to 1. In the case x̃ = 3

4 ,
we have θ ≈ 0.53, which compares well to the theoretically expected value which is given by

θ = 1− 1
| f ′(x̃)| =

1
2

,

see [24].
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Figure 4. As Figure 1, but for the process (Xi) defined in Example 7 with x̃ = 1
2

√
3 (A,B) and

x̃ = 3
4 (C,D).

Example 8. Finally, we consider the process (Xi) defined by Equation (6) using the cusp map
f (x) = 1− 2

√
|x| on the interval [−1, 1] and the observable φ(x) = ψ(dist(x, x̃)), where ψ is

defined in Equation (13) and the same parameter values as in Example 6 are taken. Figure 5 shows
the estimates for the tail index and extremal index for the cases x̃ = 1

2

√
3 (which is a non-periodic

point of f ) and x̃ = 3−
√

8 (which is a fixed point of f ). In both cases, the estimates for the
tail index oscillate when the block length is increased. As in Example 7 the oscillations also show
upward and downward trends. In the case x̃ = 1

2

√
3 the extremal index is very close to 1, but as

opposed to all the previous the extremal index depends rather sensitively on the chosen threshold
quantile. A possible explanation for this phenomenon could be the intermittent nature of the map
f ; iterates visit neigbourhoods of the point x = −1 much more frequently than neighbourhoods of
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points x > 0. In the case x̃ = 3−
√

8, we have θ ≈ 0.55 when the threshold quantile is 0.95. This
estimate compares well to the theoretically expected value which is given by

θ = 1− 1
| f ′(x̃)| = 1−

√
3−
√

8 ≈ 0.59,

see [24].
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Figure 5. As Figure 1, but for the process (Xi) defined in Example 8 with x̃ = 1
2

√
3 (A,B) and

x̃ = 3−
√

8 (C,D).

4. Discussion

In this article, we have shown the existence of max-semistable limit laws for certain
dynamical systems. For the systems we have considered, the existence on the type of
limit law for the maxima process depends on the regularity of the observable function.
For more general non-uniformly expanding (interval) maps, such as those that preserve
an absolutely continuous invariant measure, then we expect similar conclusions to apply
relative to Theorem 1 and Corollary 1. The corresponding results obtained would essentially
depend on the regularity of the observable φ and the measure density in the vicinity of
the maxima x̃ ∈ X . As mentioned in Section 2, for dynamical systems giving rise to
chaotic attractors, regularity considerations of the invariant measure will be important in
determining the existence (or otherwise) of a limit law for the extremes, whether that limit
law be max-stable, or max-semistable. Unless the fractal structure of the chaotic attractor is
strictly self-similar, then establishing existence of a max-semistable law would depend on
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finer (statistical) self-similar properties of the attractor, and local properties of the invariant
measure in the vicinity of the point x̃. This is the case when taking an observable function
of the form φ(x) = ψ(dist(x, x̃)). See [6,9–11]. When a max-semistable law description
is valid, an ongoing work is to explore statistical methods to capture more formally the
periodic behaviour, such as the computation of the periodicity constant for ν. In the case of
estimating the periodicity constant for i.i.d. processes; see [4].

In our studies, the numerical computation of the extremal index has conformed ac-
curately to the theoretical results. As we have pointed out in Section 2.4, the extremal
index does not appear (naturally) in the GEV representation, and therefore the oscillation
behaviour of the periodic function ν within is unlikely to affect the computation of the ex-
tremal index. Numerical accuracy in extremal index estimation has been due to dynamical
considerations, such as presence of a neutral fixed point discussed in Example 8.
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