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Abstract

The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region
containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3,
when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the
pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the
mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3,
and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate.
Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in
that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-
oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed
two additional bands at 1604 and 1656 cm21 in FTIR spectroscopy. Although these were previously observed in other
aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show
for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of
irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding
preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone
geometry.
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Introduction

Ataxin-3 (AT3) is a 42 kDa intracellular protein that is

responsible for the polyglutamine (polyQ) disease spinocerebellar

ataxia type 3, when the length of its polyQ tract exceeds about 50

consecutive residues [1–3]. It consists of the N-terminal Josephin

domain (JD), whose structure has recently been solved by NMR

[4] and of a disordered C-terminal domain, wherein the polyQ

stretch is close to the C-terminus [5]. The JD is structurally similar

to some members of the cysteine protease family, and also has the

catalytic triad found in these enzymes [4], sustaining ubiquitin

hydrolase activity in AT3 [6,7].

Plenty of work has been carried out in recent years to elucidate

the mechanisms underlying the aggregation of AT3 and other

polyQ-containing proteins, which has highlighted the complexity

of the process, showing in particular that the protein context and

the polyQ-flanking regions critically affect the mode and outcome

of aggregation [8,9]. As far as AT3 is concerned, it has been shown

that the JD also has an intrinsic amyloidogenic potential, which

results in the wild-type protein’s capability to aggregate, a feature

also shared by truncated variants, including the JD in isolation

[10,11]. This implies that the aggregation pathway consists of two

steps: the first, only requiring the JD, gives rise to SDS-soluble

protofibrils, whereas the second is solely accessible to variants

carrying expanded polyQs and results in the formation of mature,

SDS-insoluble fibrils [12,13]. Nevertheless, these variants display

the fastest aggregation kinetics, which suggests that the polyQ tract

also affects the mode of JD aggregation [14]. It is noteworthy that

other proteins, in particular ataxin-1 and huntingtin exon-1, also

have polyQ-flanking regions that participate in the process and

substantially affect the features of the resulting aggregates [15,16].

Interestingly, Robertson and coworkers recently showed that the

small heat-shock protein alphaB-crystallin retards or prevents

aggregation of both JD and AT3 by selectively interacting with an

extensive region of the JD [17]. This finding further highlights the

key role of the latter in the first step of the aggregation process.

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18789



Based on x-ray diagrams of a short polyQ peptide (D2Q15K2)

and on theoretical considerations, Perutz and coworkers proposed

that amyloid fibers generated by expanded polyQs would consist

of at least two b-helical turns each containing 20 residues, and that

residues in successive turns would be linked by hydrogen bonds

between both main chain and side chain amides [18]. Although

Sikorski and Atkins suggested an alternative model wherein the

peptide adopts a hairpin conformation, they also surmise that the

glutamine residues are hydrogen bonded via both main- and side-

chain amides [19]. Nevertheless, experimental data available to

date do not adequately depict the changes taking place at the

molecular level at different stages of aggregation in both normal

and expanded polyQs. In particular, as far as the latter are

concerned, the molecular events that lead to the conversion of

reversibly aggregated oligomers into stably aggregated fibrils are

still largely obscure.

Taking advantage of several analytical methods, especially

FTIR spectroscopy, we provide here an in-depth analysis of such

changes in a normal and an expanded AT3 variant, as well as in

the JD in isolation. In particular, our results provide the first

experimental evidence that side-chain hydrogen bonding of

polyQs is responsible for irreversible aggregation and SDS-

insolubility of the expanded form.

Results

Different truncated, normal full length and expanded
AT3 variants undergo aggregation as detected by
Thioflavin T (ThT) fluorimetry

To achieve a deeper understanding of the structural changes

associated with AT3 fibrillogenesis, we investigated different forms

of AT3, i.e.: AT3/182D (truncated at the residue 182 and

consisting of the sole JD); AT3Q24 and AT3Q55 (full-length

normal and pathogenic, carrying 24 and 55 consecutive

glutamines, respectively).

By ThT fluorimetry, we first assessed the propensity of the

different variants to aggregate at 37uC over a time span of 68 h,

which showed that all of them were capable of doing so, although

at different rates (Fig. 1A). As a control, b-lactoglobulin did not

undergo any fluorescence increase under the same conditions (data

not shown). The AT3/182D variant also underwent aggregation

as expected [11], although at a much slower rate than the others.

The polyQ-carrying variants, AT3Q24 and AT3Q55, aggregated

much more rapidly than the truncated ones, AT3Q55 displaying a

somewhat higher rate than AT3Q24. In particular, they attained a

plateau at about 10 h and 30 h, respectively. No lag phase was

detectable for these two variants. This, however, might be due to

the high rate of the process.

Dot-blot assays show a different aggregation pattern of
AT3Q55 compared to the other variants

We also analyzed the aggregation products generated by the

different AT3 variants by assessing the appearance of oligomeric

forms in dot-blot assays performed at different incubation times.

To this end, we used an antibody that is capable of selectively

recognizing the earliest aggregation products but not mature fibrils

[20]. We thus observed that the AT3Q55 oligomers progressively

decreased from the beginning and disappeared completely at 30 h,

whereas the two other variants displayed an approximately

constant level of oligomers over the entire incubation time

(Fig. 1B). This is strongly suggestive of the unique capability of

the expanded form to evolve towards mature fibrils, as also

confirmed by FTIR spectroscopy, filter trap assays and AFM

(reported below). The reactivity detected at zero-time suggests that

oligomeric forms are present from the very beginning of the

incubation. It should be stressed, however, that the initial amount

of aggregated protein, quantified on the basis of FTIR bands at

1630–1624 and 1695 cm21 as outlined below, was hardly

detectable in all AT3 variants.

The secondary structures of AT3 variants are identified by
FTIR spectroscopy

FTIR spectroscopy can very precisely discriminate between

closely related but different protein secondary structures for

instance, b-intermolecular versus b-intramolecular sheets [21],

which is relevant to the subject of the present work. We thus

monitored the time-dependent structural changes of the different

AT3 variants under investigation. However, we first assessed the

secondary structure content of freshly purified proteins. In Fig. 2A,

Figure 1. Progress of the aggregation of AT3 variants. (A) Aggregation was monitored by measuring changes in ThT fluorescence of proteins
incubated at 37uC at a 25 mM concentration in PBS, pH 7.2, and in the presence of 20 mM ThT. Fluorescence was recorded using a plate reader with
values read every 30 min. Individual values are the mean of three independent determinations, with standard deviations never exceeding 5% of the
mean value. Fluorescence is relative to the highest value, achieved at a 60 h-incubation. (B) Time course of oligomeric AT3 form appearance, as
detected by dot blot. AT3 variants were incubated at 37uC in PBS, pH 7.2, for the times indicated. Samples were withdrawn, applied to an Immobilon
membrane, immunodecorated using anti-oligomer, conformation-specific antibodies (19) and revealed using ECL Western blotting reagent.
doi:10.1371/journal.pone.0018789.g001

Ataxin-3 Side-Chain Polyglutamine Hydrogen Bonding
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the absorption spectrum of the JD in the amide I band region is

presented. This is mainly contributed by the C = O peptide bond

absorption whose peak position is sensitive to the protein’s

secondary structure [22–25]. In order to resolve this band into

its overlapping components, the second derivative analysis of the

spectrum [22] was performed. Two main components, appearing

as negative peaks, were detected at 1657 and 1635 cm21. The

former can be assigned to a-helices and random coils; the latter,

along with a shoulder around 1690 cm21, to native, intramolec-

ular b-sheets. In addition, two low-intensity components at about

1688 and 1678 cm21 were found in the typical absorption region

of b-turns [22–25], in keeping with the secondary structure

components reported for the JD [4,11]. The second derivative

spectra of the two other AT3 variants were similar to each other

and displayed the same secondary structure components found in

the JD (Fig. 2B, 2C). They, however, exhibited a 1657 cm21 band,

which was more pronounced than that around 1635 cm21,

contrary to the JD (Fig. 2A). This indicates that the C-terminal

disordered domain must contribute to the absorption of the

1657 cm21 component. Thus, we conclude that the secondary

structure of this stretch is mainly a-helical and/or disordered,

consistent with CD spectra and computational studies [11]. It is

also noteworthy that the glutamine side-chain infrared response,

which in the amide I region is expected in the ranges 1687–

1668 cm21 and 1611–1586 cm21 [26], was undetectable in the

freshly purified AT3Q55 spectrum, probably due to structural

heterogeneity of the polyQ stretch (Fig. 2B, 2C).

FTIR spectroscopy highlights major changes in the
secondary structure of AT3 variants upon incubation
under physiological conditions

Previous studies showed that AT3 undergoes aggregation under

physiological conditions, with resulting generation of amyloid-like

structures [13,14]. To assess the changes in secondary structure

associated with this process, we incubated the AT3 variants under

investigation at 37uC, and collected FTIR spectra at different

times (Fig. 3). JD second derivative spectra showed a slow decrease

in the 1657 cm21 and 1635 cm21 components, which are

contributed by a-helix/disordered and native b-sheet structures,

respectively. In addition, between 48 and 72 h of incubation, two

further low-intensity components appeared as shoulders around

1630 cm21 and 1694 cm21. These bands, which became better

resolved at 168 h (Fig. S1), occur in the absorption region of

intermolecular b-sheets, so they are diagnostic of aggregation

[21,27,28]. A similar behavior was observed in the case of

AT3Q24, with two major differences. First, the peak position of

the aggregation band at 1630 cm21 in the case of the JD, occurred

instead around 1624 cm21 (Fig. S1). This downshift points to

tighter aggregates in AT3Q24, probably resulting from stronger

hydrogen bonding and/or increased number of b-strands in the

intermolecular b-sheets ([29] and references therein). Second, the

aggregation of this variant was distinctly faster than that of the JD,

as apparent from the comparison of the aggregation bands of the

different proteins (shown in Fig. 3). This result fits well with the

kinetics monitored by ThT fluorescence (Fig. 1A), thus confirming

that the disordered C-terminal domain significantly enhances the

aggregation rate. Furthermore, these spectral data also show that

in the presence of this domain, the resulting aggregation products

are to some extent structurally different from those generated by

the JD alone.

The time-dependent spectral changes in the second derivative

spectra of the pathogenic AT3Q55, whilst sharing some features

with those of the other forms, also displayed unique traits. In

particular, the native b-sheet component at 1635 cm21 underwent

a decrease in intensity like the other forms, whereas the a-helix/

disordered component at 1657 cm21 first decreased until 30 h.

Thereafter it increased again, thus exceeding the zero-time

intensity (Fig. 3). The absorption spectrum of AT3Q55 displayed

a band at 1657 cm21 whose intensity was lower in the aggregated

protein compared to the freshly prepared sample (Fig. S2). This

Figure 2. FTIR spectra of freshly purified AT3 variants. Absorption spectra (dotted line) and their second derivatives (continuous line) in the
amide I region of AT3 variants: JD (A), AT3Q24 (B), and AT3Q55 (C). Band assignment to the secondary structure components is indicated.
doi:10.1371/journal.pone.0018789.g002
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apparently different behavior of relative band intensities in the

absorption and second derivative spectra can be accounted for if

one considers that peak intensities in the second derivative spectra

are inversely correlated with band widths [22], with resulting

intensification of narrow bands. The observed narrowing of the

1657 cm21 component is suggestive of a highly ordered structure.

Furthermore, the aggregation bands around 1624 cm21 and

1695 cm21 started to increase from the earliest stages of the

incubation, reaching intensities higher than those of the other

variants (Fig. 3). This holds true in particular for the 1624 cm21

band intensity that in AT3Q55 aggregates was twice as strong

after a 168-h incubation as that of the AT3Q24 aggregates (Fig.

S1). Most notably, we also observed an additional band at

1604 cm21 (Fig. 3) that was also retained in the spectrum of

AT3Q55 mature aggregates (Fig. S1). Although it was already

found in protein and peptide aggregates containing polyQs

[16,30–32], it has not yet been unambiguously assigned.

H/D exchange experiments allow one to unambiguously
identify the IR spectral components contributed by
irreversibly aggregated, expanded polyQ stretches

The amide I and II second derivative spectrum of the AT3Q55

aggregates, collected by centrifugation of the protein solution after

168 h of incubation, is presented in Fig. 4.

In H2O, the amide I spectrum displayed four well resolved

bands at 1695 cm21, 1657 cm21, 1624 cm-1 and 1604 cm21.

Whereas the 1695 cm21 and 1624 cm21 components can be

definitely assigned to the intermolecular b-sheet interaction of the

protein aggregates [21,27,28], the two other bands were assigned

by other authors to different vibrational modes. In particular,

bands at about 1658 cm21 and 1604 cm21 were found in the

spectrum of model polyQ peptides and both assigned to

intermolecular b-sheets [30]. Such bands were also observed in

the amyloid aggregate spectra of the cyclin-dependent kinase

subunit by Bader et al. [31], who suggested an assignment to

hydrogen-bonded glutamine side-chains instead. Thus, for a

conclusive assignment of these bands, we performed H/D

exchange experiments.

Indeed, several reports show that in both free and protein-

bound glutamines, the C = O stretching absorption of side chains

was found to downshift from 1687–1668 cm21 in H2O to 1654–

1635 cm21 in D2O, while the NH2 deformation mode of side

chains underwent a very large shift, from 1611–1586 cm21 in

H2O to about 1163 cm21 in D2O (for a review see ref. [26]).

These downshifts, which are considerably larger than those

expected for the protein backbone bands upon deuteration

[26,33], allowed us to discriminate between glutamine side-chain

IR response and that of protein backbone in aggregates. We

therefore incubated freshly prepared AT3Q55 at 37uC in D2O.

Under these conditions, deuterated aggregates were obtained, as

indicated by the downshifted IR band positions in the amide I

region (Fig. 4). Actually, in D2O, the two bands at 1695 cm21 and

1624 cm21 downshifted to 1685 cm21 and 1613 cm21, respec-

tively, as expected for intermolecular b-sheet backbone modes.

Most notably, the bands at 1657 cm21 and 1604 cm21 displayed

major downshifts, the former to 1637 cm21, the latter actually

disappearing from the amide I and amide II regions and shifting

into the crowded absorption region around 1160 cm21. These

results suggest that the 1657 cm21 and 1604 cm21 components

can be assigned to the C = O stretching and NH2 deformation

modes of the glutamine side chains, respectively, in AT3Q55

amyloid aggregates. To support this assignment, we performed an

additional H/D exchange experiment aimed at further investigat-

ing glutamine interactions in the AT3Q55 amyloid aggregates.

Aggregates obtained after incubation of the freshly purified protein

in H2O buffer at 37uC for 168 h were subsequently submitted to

three cycles of lyophilization and resuspension in D2O, as

described in Materials and Methods. After this drastic treatment,

the FTIR spectrum of AT3Q55 mature aggregates (Fig. 4) still

displayed the two components at 1657 and at 1604 cm21, thus

showing that no H/D exchange with the solvent took place under

these conditions. This makes it possible to exclude the assignment

of the 1657 cm21 band to unordered structures. This result is

indeed expected for glutamines involved in strong side chain-side

chain (and possibly side chain-backbone) hydrogen bonding.

The above experiments therefore provide conclusive evidence

supporting the previous proposed models [18,19], whereby

glutamine residues in irreversibly aggregated, expanded polyQ

stretches, are linked by hydrogen bonds between both main chain

Figure 3. Kinetics of aggregation of AT3 variants monitored by
FTIR spectroscopy. Second derivative spectra of AT3 variants were
taken at different times of incubation in PBS at 37uC. Arrows point to
increasing time.
doi:10.1371/journal.pone.0018789.g003

Ataxin-3 Side-Chain Polyglutamine Hydrogen Bonding

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18789



and side chain amides. It is worth mentioning that the C = O band

of glutamine side chains in AT3Q55 amyloid aggregates occurs in

H2O at 1657 cm21, which is outside the typical range of free

glutamine (1687–1668 cm21). This downshift is further evidence

that glutamine side chains are involved in strong hydrogen

bonding.

AT3Q55 intermolecular backbone hydrogen bond
formation precedes that of glutamine side chains, the
latter resulting in irreversible aggregation

We also monitored the kinetics of appearance of the bands at

1624 cm21 and 1604 cm21 that are assigned to b-sheet

intermolecular interactions and glutamine side chain NH2

deformation mode, respectively. The time course shows that the

increase in the b-sheet intermolecular band started at the very

beginning of the incubation, reaching a plateau after 50–80 h

(Fig. 5). In contrast, the glutamine band appeared after 30 h and

leveled off in a time interval comparable to that of b-sheets.

Remarkably, the appearance of the glutamine band was paralleled

by that of SDS-insoluble aggregates, as detected by filter trap

assays (Fig. 5). This distinctive IR response could not be abolished

by SDS treatment (Fig. S3). It is well known that only expanded

AT3 variants undergo irreversible aggregation, whereas wild-type

forms do not go beyond the first reversible aggregation step [13].

Thus, our results also demonstrate that the rearrangement of

glutamine side chains and the resulting side-chain hydrogen

bonding observed in the expanded variant is the key event

resulting in the generation of irreversible aggregates.

AFM confirms that only the expanded AT3Q55 generates
fibrils

Tapping mode AFM was employed to investigate the

morphologies of the aggregates formed by JD, AT3Q24 and

AT3Q55 at fixed aggregation times. At all the times analyzed, the

JD formed globular particles with a mean height of 3.660.1 nm

that displayed a relatively low propensity to form clusters of

spheroidal aggregates even after 72 h from the start of the

aggregation experiment (Fig. S4). A more complex aggregation

behavior was shown by AT3Q24 that evolved from globular

particles with a mean height of 4.960.2 nm at t = 0 to clusters of

particles at 24 h (Fig. S5A and B). After 72 h, most of the

aggregates still exhibited a non-fibrillar morphology, while only

Figure 4. Effect of H/D exchange on FTIR spectra of ATQ55 aggregates. Freshly purified AT3Q55 was incubated in H2O/PBS (spectrum 1) and
in D2O/PBS (spectrum 2) at 37uC for 168 h. The second derivative spectra of the pelletted aggregates are reported. Upon deuteration, the shift of the
cross b-sheet bands (continuous arrows) and the glutamine side chain bands (dotted arrows) are indicated. In a different H/D exchange experiment,
freshly purified AT3Q55 was incubated in H2O/PBS at 37uC for 168 h and the obtained mature aggregates were subsequently submitted to three
cycles of lyophilization and resuspension in D2O, as described in Materials and Methods. Then, the mature aggregates were resuspended in D2O and
their ATR/FTIR second derivative spectrum recorded (spectrum 3). No appreciable H/D exchange with solvent took places under these conditions,
except for the minor one of the 1695 cm21 component.
doi:10.1371/journal.pone.0018789.g004

Ataxin-3 Side-Chain Polyglutamine Hydrogen Bonding
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few short protofibrils 250–300 nm long and about 4 nm high were

observed (Fig. S5C).

At the start of aggregation the expanded variant AT3Q55 also

showed a distribution of globular particles of variable size (Fig. 6A),

with a mean height of 3.160.2 nm. A globular morphology was

also detected after 2 h (Fig. 6A, inset), but the mean particle height

was increased to 5.160.2 nm. After 24 h from the start of

aggregation, the globular oligomers were found to be assembled

into clusters (Fig. 6B), while at 48 h bundles of fibrils, almost

totally submerged by non fibrillar material, were observed (Fig. 6C

and Fig.S6). Sample treatment with SDS and centrifugation, as

detailed in Materials and Methods, were performed to recover the

insoluble fibrillar fraction (Fig.6C, inset). Bundles of fibrils became

the prevailing morphology observed after 72 h; treatment with

SDS allowed us to better reveal the ultrastructure of these bundles.

They turned out to be composed of fibrils about 4 nm high

intertwined together and further assembled into bundles between

20 and 60 nm high (Fig. 6D).

Discussion

This work was aimed at characterizing the structural features

emerging during the aggregation in both normal (Q24) and

expanded (Q55) AT3, as well as in the JD in isolation. We first

monitored the kinetics of the process by ThT fluorimetry, which

showed that all the variants investigated underwent aggregation,

that AT3/182D (consisting of the sole JD) aggregated much more

slowly than the two other forms, and that it displayed an evident

lag phase, in keeping with the previously proposed nucleation-

dependent mechanism [14]. This, of course, does not rule out that

the two full-length variants also undergo a lag phase, which might

be however undetectable due to the much higher aggregation rate.

It is worth mentioning, in any case, that these results confirm the

intrinsic amyloidogenic potential of the JD, as previously proposed

[10,11] but, at the same time, they highlight the effect of the C-

terminal disordered domain to substantially enhance the rate of

the process.

By dot-blot and filter trap assays we provided a further

characterization of the intrinsic properties of these aggregates. In

dot blots we used an antibody that is capable of selectively

recognizing oligomers but not mature fibrils [20]; in filter trap

assays an anti-AT3 antibody. Our results show that all three forms

were initially recognized by the anti-oligomer antibody, but AT3/

182D and AT3Q24 gave an approximately constant signal over

time unlike AT3Q55, whose signal progressively faded and

completely disappeared at a 30-h incubation (Fig. 1B). This was

paralleled by the appearance of the filter-trap signal by the same

expanded AT3 form after 30 h (Fig. 5), whereas in contrast, no

reactivity was displayed by the two other variants.

To further confirm these findings we also characterized the

morphology of the three AT3 variants by AFM, which actually

showed that AT3Q55 underwent progressive aggregation, gener-

ating oligomers (Fig. 6A), which formed clusters after 24 h (Fig. 6B)

and gave rise to bundles of tangled SDS-resistant fibrils at 48 and

72 h (Fig. 6C and D). Nevertheless, a closer inspection of the

images also suggests that, taken individually, fibrils are un-

branched. The morphology of these bundles of fibrils resembles

that reported for synthetic polyQ peptides [34]. As expected, the

normal full-length AT3Q24 only generated oligomers and short

protofibrils even at the latest times of incubation (Fig. S5), and the

JD generated a prevailing globular morphology (Fig. S4). These

are among the first AFM images taken of AT3 during aggregation.

Overall, these results provide a comprehensive framework of the

events taking place during aggregation of normal and expanded

AT3 that confirms the previously proposed two-step kinetics

[12,13]. Nevertheless, very little is known so far regarding the

structural changes accompanying the different stages of the

process. We thus addressed this issue by taking advantage of

FTIR spectroscopy. We collected second derivative spectra in the

amide I band region of the three forms, before and during the

incubation. Before the incubation they were fairly similar,

indicative of a-helical/disordered structures (1657 cm21 band),

intramolecular b-sheets (1635 cm21) and b-turns (1688 cm21 and

1678 cm21). The most notable difference was that the 1657 cm21

band was more pronounced than the one around 1635 cm21 in

the full-length AT3 forms compared to the JD. This implies that

the C-terminal disordered domain must contribute to the

absorption of the 1657 cm21 component, and that it is mainly

a-helical and/or disordered, consistent with CD spectra and

computational studies [11].

During the incubation, JD and AT3Q24 spectra underwent

similar changes that point to a decrease in intramolecular b-sheet

and a-helical/disordered structures, and a concurrent increase in

intermolecular b-sheet, clearly representative of the aggregation

process. However, the full-length variant aggregated much faster

than the JD and, in addition, displayed a downshift of the b-

intermolecular band from 1630 cm21 to 1624 cm21, suggestive of

stronger interactions and/or increased number of b-strands. This

clearly shows that the C-terminal domain also affects stability and

structure of the aggregates, irrespective of whether it carries

normal or expanded polyQs.

Although the aforementioned results make a significant

contribution to the understanding of the mechanisms of AT3

fibrillogenesis, the key discovery of the present work is the

elucidation of a major, distinctive structural feature arising during

the aggregation of the expanded form but not of the normal one,

namely hydrogen bonds among glutamine side-chains. Actually,

by H/D exchange we could unambiguously assign the 1657 cm21

and 1604 cm21 bands to glutamines involved in strong side-chain-

side chain (and possibly side chain-backbone) hydrogen bonding in

the AT3Q55 mature amyloid aggregates. Therefore, based on our

Figure 5. Time course of AT3Q55 aggregation upon incubation
at 376C in PBS. Aggregation was monitored by detecting either the
appearance of SDS-insoluble aggregates by filter trap assays (upper
panel), or cross b-sheet (1625 cm21) and glutamine side chain bands
(1604 cm21) (lower panel). The band heights from the second
derivative spectra (normalized at the tyrosine peak to allow for possible
differences in protein content) are reported as percentage variations in
the time span 0–168 h. Standard deviations from three independent
experiments are indicated.
doi:10.1371/journal.pone.0018789.g005

Ataxin-3 Side-Chain Polyglutamine Hydrogen Bonding
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results, these are the hallmarks of mature fibrils generated by

expanded AT3 variants. So they are associated with, and

responsible for irreversible aggregation and SDS-insolubility of

the expanded forms. As a matter of fact, the appearance of the

side-chain glutamine signal after about 50 h of incubation was

paralleled by the formation of irreversibly aggregated proteins and

bundles of SDS-resistant, mature fibrils, as shown in filter trap

assays and in AFM, respectively. Even more remarkably, the time

course of the appearance of main-chain and side-chain hydrogen

bonding showed that the former started from the very beginning of

incubation, whereas the latter became significant after 30 h (Fig.6).

So it is quite likely that the constraints generated at the level of the

main chain are a prerequisite for side-chain hydrogen bonding,

probably favoring the latter interaction entropically. Once either

interaction is formed, the protein would remain locked in an

irreversibly aggregated conformation.

Based on x-ray crystallography of a small glutamine peptide, i.e.

D2Q15K2, and on theoretical considerations, Perutz and cowork-

ers proposed that polyQs generate amyloid fibers consisting of at

least two b-helical turns each of 20 residues, and that residues in

successive turns would be linked by hydrogen bonds between both

main chain and side chain amides [18]. After inspecting the same

crystallographic data, Sikorski and Atkins [19] suggested an

alternative model, in which the peptide adopts a hairpin

conformation but still displays a similar pattern of hydrogen

bonding.

Whatever the real structure of polyQ amyloids may be, these

results highlight glutamine side-chain hydrogen bonding as a key

structural feature for the generation of irreversible aggregates. At

first glance, however, it is surprising that the models described rely

upon experimental data obtained from a short polyQ peptide,

whereas our observations unambiguously show that only expanded

polyQ stretches can give rise to such aggregates and the related

pattern of hydrogen bonding. These apparently conflicting results

can be reconciled if one assumes that the protein context, in

particular the flanking regions, play a crucial role in determining

the aggregation pathway. In other words, even a short polyQ

stretch in isolation would be subject to irreversible aggregation,

whereas a much longer polyQ stretch would be required to

achieve aggregation of normal sized proteins. Actually, the typical

threshold for aggregation and onset of polyQ diseases is around 40

consecutive glutamines [35]. Interestingly, a recent paper shows

that, in keeping with this hypothesis, synthetic polyQ peptides of

non-pathological length (e.g., KKQ32KK) are much more prone

to aggregation than a huntingtin exon 1 variant containing a Q53

stretch [36]. These results, along with ours and those of Perutz and

Sikorski, substantiate the idea that glutamine side-chain hydrogen

bonding is a common feature of all natural, irreversibly aggregated

polyQ proteins.

As a final remark, it is worth mentioning that the FTIR

spectroscopic methods adopted in the present work also allow one

to monitor the progress of aggregation in vivo by detecting the

Figure 6. Tapping mode AFM images (height data) of the expanded variant AT3Q55 incubated at 376C. The protein was incubated for:
(A) 0 h (inset 2 h); (B) 24 h; (C) 48 h; (D) 72 h. The samples imaged in the inset of (C) and in (D) were treated with SDS (see Materials and Methods) to
remove non fibrillar material. Scan size: (A, B, D) 2 mm; (C) 5 mm; insets 1 mm. Z range: (A) 10 nm, inset 20 nm; (B) 30 nm; (C) 700 nm, inset 180 nm;
(D) 150 nm.
doi:10.1371/journal.pone.0018789.g006
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FTIR signal in several model organisms, such as E. coli [37], yeast

[38] and Caenorhabditis elegans [39,40]. This provides an invaluable

tool to correlate the emerging toxic effects in such organisms with

the subtle structural features of the different aggregation products

arising during the process.

Materials and Methods

Cloning, expression and purification of AT3 variants
Plasmid encoding the fragment 1–182 (that consists of the sole

JD) was obtained by inserting, into the wild-type human AT3

(AT3Q24-isoform 2UIMs) gene cloned in pGEX-6P-1 (GE

Healthcare LifeSciences, Little Chalfont, England), two stop

codons downstream of the triplet encoding the residue 182. The

truncated form (AT3/182D) was expressed in the E. coli strain

BL21-CodonPlus(DE3)-RIL (E. coli B F2 ompT hsdS (rB
2 mB

2) dcm+

Tetr gall(DE3) endA Hte [argU ileY leuW Camr] (Stratagene, La

Jolla, CA, USA) in fusion with GST, with a Prescission Protease

cleavage site in between, and purified as previously described [41].

The cDNA-encoding human wild type AT3Q24 was removed by

BamHI-SmaI digestion from pGEX-6P-1 and subcloned in the

pQE-30 vector (Qiagen Hamburg GmbH, Hamburg, Germany).

The expanded form (AT3Q55) was chemically synthesized by

Eurofins MWG Operon (Ebersberg, Germany) and cloned in the

pQE30 vector. The two variants were expressed in SG13009 (E.

coli K12 Nals, StrS, RifS, Thi2, Lac2, Ara+, Gal+, Mtl2, F2,

RecA+, Uvr+, Lon+; Qiagen Hamburg GmbH, Hamburg,

Germany) as His-tagged proteins. The proteins were purified

following the procedure reported by Chow et al. [42], except that

only AT3Q55 was subjected to the last purification step, consisting

of a gel filtration on a HiPrep 16/60 Sephacryl S-100 High

Resolution column (GE Healthcare, Life Sciences, Little Chalfont,

England), pre-equilibrated with PBS-G (20 mM potassium

phosphate, pH 7.2, 150 mM NaCl, 1 mM 2-mercaptoethanol

and 10% glycerol). Elution was performed at a flow rate of 0.5 ml/

min in the same buffer. Fractions (1 ml) were collected and

analyzed by SDS-PAGE electrophoresis. Fractions containing

pure AT3Q55 were concentrated in an Amicon Ultra 30 K

microconcentrator (Millipore, Bedford, MA, USA) and stored at

220uC. Before use, AT-3 variants were centrifuged at 150006g

for 15 min at 4uC to eliminate aggregates.

Thioflavin T (ThT) assays
AT3 variants were incubated at a 25 mM concentration in PBS

(25 mM potassium phosphate, pH 7.2, 0.15 M NaCl) at 37uC
with 20 mM ThT, in clear-bottomed black Isoplate-96F/50B

plates (Perkin Elmer, MA, USA) and read in a VICTOR TM X3

Multilabel Plate Reader (Perkin Elmer, MA, USA). Excitation and

emission wavelengths were 445 nm and 535 nm, respectively.

Readings were carried out from the bottom of the plates with no

shaking and recorded every 30 min. Plates were sealed to prevent

evaporation. Storage buffer was replaced by PBS immediately

prior to each experiment using PD10 desalting columns (GE

Healthcare LifeSciences, Little Chalfont, England). Protein

content was determined using Comassie brilliant blue G-250 from

Pierce (Pierce Biotechnology, Rockford, IL) and bovine serum

albumin as a standard protein.

Dot Blot and filter trap assays
Dot blot and filter trap assays were performed on AT3 samples

incubated in PBS buffer at 37uC and a 1 mg/ml concentration

without shaking. Dot blotting was performed by applying protein

aliquots (13 mg) to a nitrocellulose membrane mounted on a

manifold. Samples were vacuum-filtered and washed with 200 ml

of PBS. Membranes were incubated in blocking solution (5% skim

milk in PBS) for 60 min at room temperature and then probed for

60 min at room temperature with anti-amyloid oligomer (Abeta)

antibody (Millipore, Bedford, MA, USA; Kayed et al., 2003) at

1:5000 dilution in blocking solution. After incubation in primary

antibody, membranes were washed thrice in 0.3% Tween in PBS

for 10 min each time, and subsequently incubated for 60 min at

25uC in secondary antibody (horseradish peroxidase-goat anti-

rabbit antibodies) at 1:5000 dilution. Immunoreactive bands were

revealed using ECL Western blotting reagent (GE Healthcare

LifeSciences, Little Chalfont, England). For the filter trap assay,

AT3 aliquots (10 ml-samples, 1 mg/ml protein concentration)

were mixed with 500 ml of SDS buffer (50 mM Tris-HCl, pH 8.0,

5% SDS, 10 mM DTT, 100 mM NaCl, 1 mM EDTA). After a

10 min incubation at 100uC, the resulting samples were applied to

a cellulose acetate membrane (0.2 mm pore size) mounted on a

manifold, vacuum-filtered, washed once with 100 ml of SDS buffer

and finally with 200 ml of PBS buffer. SDS-stable aggregates

retained on the membrane were detected by immunoblotting

analysis using anti-human AT3Q26 Z46 polyclonal antibody [41].

Membranes were incubated for 60 min at room temperature with

the antibody at 1:5000 dilution in blocking solution. After

incubation in primary antibody, membranes were rinsed thrice

in 0.3% Tween in PBS for 10 min each time, and incubated for

60 min at 25uC in secondary antibody (horseradish peroxidase-

goat anti-rabbit antibodies) at 1.5000 dilution. Immunoreactive

bands were revealed using ECL Western blotting reagent (GE

Healthcare LifeSciences, Little Chalfont, England).

FTIR spectroscopy
For the FTIR study of the AT3 variants, measurements were

performed in attenuated total reflection (ATR) on a single reflection

diamond element (Golden Gate, USA). An aliquot of about 5-10 ml of

the protein solution (in PBS at a concentration of 1 mg/ml) was

deposited on the diamond ATR plate and dried at room temperature

in order to obtain a protein hydrated film. Its ATR/FTIR spectrum

was then measured using the FTS40-A spectrometer (Digilab, USA),

equipped with a nitrogen cooled Mercury Cadmium Telluride

(MCT) detector and carefully purged by dry air to avoid interference

with water vapor under the following conditions: 2 cm21 spectral

resolution, 20 kHz scan speed, 1000 scan co-additions, triangular

apodization. Second derivatives of the spectra were obtained by the

Savitzky-Golay algorithm (5 points), after an 11 point binomial

smoothing of the measured spectra, using the software Grams/AI

(Thermogalactic, USA). To study the aggregation kinetics, the three

AT3 variants were incubated at 37uC in PBS, and the ATR/FTIR

spectra of their hydrated films were measured at different times. For

the hydrogen/deuterium exchange experiments, two different

procedures were employed: i) the freshly prepared AT3Q55 variant

was resuspended in heavy water and incubated at 37uC for up to

168 h. Under these conditions, H/D exchange took place during the

protein misfolding and aggregation. In this way, deuterated

aggregates were obtained and measured in ATR/FTIR as described

above; ii) AT3Q55 mature aggregates were obtained after incubation

of the native protein in H2O/PBS at 37uC for 168 h. To remove and

replace H2O with D2O, aggregates were subjected to, three cycles of

lyophilization and resuspension in D2O. After each resuspension,

they were incubated at room temperature for 3 h. The final sample

was again resuspended in D2O and incubated at room temperature

for 17 h before ATR/FTIR measurements.

AFM
AT3 was incubated at a 1 mg/ml-concentration in PBS at

37uC. Samples for AFM inspection were prepared at fixed
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aggregation times using two different procedures. In the first

procedure, a 10 ml aliquot was withdrawn, incubated on a freshly

cleaved mica substrate for 5 min, then rinsed with Milli-Q water

and dried under mild vacuum. In the second procedure, a 2 ml

aliquot was diluted 400-fold and 10 ml of the diluted solution were

deposited on mica and then dried under mild vacuum. When

imaged by AFM, samples prepared according these two

procedures displayed similar features, only differing in the

aggregate density. To eliminate the non-fibrillar material masking

AT3Q55 fibril morphology at long aggregation times (48 and

72 h), and to recover the insoluble fibrillar fraction, 30 ml aliquots

of AT3Q55 were added to 300 ml of SDS buffer (50 mM Tris-

HCl, pH 8.0, 5% SDS, 10 mM DTT, 100 mM NaCl, 1 mM

EDTA) and boiled at 100uC for 10 min. The sample was then

centrifuged at 150006g for 15 min and the supernatant was

replaced by Milli-Q water; this centrifugation and washing

procedure was repeated three times in total. The pellet was finally

suspended in Milli-Q water. For AFM imaging, the fibril

suspension was diluted 100-fold and 10 ml of the diluted sample

were deposited on mica and then dried under mild vacuum. AFM

images were acquired in tapping mode in air using a Dimension

3100 Scanning Probe Microscope equipped with a ‘G’ scanning

head (maximum scan size 100 mm) and driven by a Nanoscope

IIIa controller, and a Multimode Scanning Probe Microscope

equipped with ‘‘E’’ scanning head (maximum scan size 10 mm)

and driven by a Nanoscope IV controller (Digital Instruments -

Veeco, Santa Barbara, CA). Single beam uncoated silicon

cantilevers (type OMCL-AC160TS, Olympus, Tokyo, Japan)

were used. The drive frequency was between 320 and 340 kHz,

the scan rate was between 0.5 and 2.0 Hz. Aggregate heights were

measured from the height in cross section of the topographic AFM

images; standard errors are reported. Due to the drying procedure

applied, the measured heights reported in the Results are reduced

with respect to fully hydrated conditions. A shrinking factor of 2.2

has been evaluated by comparing the heights of a globular protein

under liquid and in air after drying under vacuum [43].

Supporting Information

Figure S1 FTIR second derivative spectra of AT3
variant aggregates. AT3 variants were incubated at 37uC for

168 h. The spectra of the pelletted aggregates are reported after

normalization at the tyrosine peak.

(TIF)

Figure S2 FTIR absorption spectra of freshly purified
(blue profile) and mature pelleted aggregates (red
profile) of AT3 variants.
(TIF)

Figure S3 FTIR spectra of AT3Q55 aggregates treated
with SDS buffer.
(TIF)

Figure S4 Tapping mode AFM images (height data) of
the truncated variant AT3/182D. The protein was incubated

at 37uC for: (A) 0 h; (B) 24 h; (C) 72 h. Scan size 2 mm, Z range

(A) 10 nm; (B) 20 nm; (C) 15 nm.

(TIF)

Figure S5 Tapping mode AFM images (height data) of
the normal full length variant AT3Q24. The protein was

incubated at 37uC for: (A) 0 h; (B) 24 h; (C) 72 h. Scan size 2 mm,

Z range 20 nm.

(TIF)

Figure S6 Tapping mode AFM image (left, height data;
right, amplitude data) of the expanded variant AT3Q55.
The protein was incubated at 37uC for 48 h. Non fibrillar material

completely covering a fibril bundle is apparent in the middle of the

image. A portion of another bundle is on the left. This

unstructured material can be removed by sample treatment with

SDS, to reveal the fibril morphology (see Fig.6). Scan size 1.9 mm,

Z range 200 nm.

(TIF)
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