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ABSTRACT Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli
(EIEC) is challenging because of their close relatedness. Distinction is vital, as infec-
tions with Shigella spp. are under surveillance of health authorities, in contrast to
EIEC infections. In this study, a culture-dependent identification algorithm and a mo-
lecular identification algorithm were evaluated. Discrepancies between the two algo-
rithms and original identification were assessed using whole-genome sequencing
(WGS). After discrepancy analysis with the molecular algorithm, 100% of the evalu-
ated isolates were identified in concordance with the original identification. How-
ever, the resolution for certain serotypes was lower than that of previously described
methods and lower than that of the culture-dependent algorithm. Although the res-
olution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shi-
gella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of
Shigella flexneri isolates were identified in concordance with the original identifica-
tion. Discrepancy analysis using WGS was able to confirm one of the used algo-
rithms in four discrepant results. However, it failed to clarify three other discrepant
results, as it added yet another identification. Both proposed algorithms performed
well for the identification of Shigella spp. and EIEC isolates and are applicable in
low-resource settings, in contrast to previously described methods that require WGS
for daily diagnostics. Evaluation of the algorithms showed that both algorithms are
capable of identifying Shigella species and EIEC isolates. The molecular algorithm is
more applicable in clinical diagnostics for fast and accurate screening, while the
culture-dependent algorithm is more suitable for reference laboratories to identify
Shigella spp. and EIEC up to the serotype level.

KEYWORDS EIEC, Escherichia coli, Shigella, whole-genome sequencing,
enteroinvasive E. coli, identification, molecular methods, phenotypic methods

In 1898, Kiyoshi Shiga first described Shigella dysenteriae as the etiologic agent of
dysentery (1). Nowadays, the genus Shigella comprises four species based on antigenic

properties, Shigella dysenteriae, Shigella flexneri, Shigella boydii, and Shigella sonnei. All
species cause symptoms varying from mild diarrheal episodes to dysentery (2).

The relatedness of Shigella spp. with Escherichia coli has always been recognized
(3–6). In addition, in the 1940s, an E. coli pathotype was described that has the same
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invasive mechanism as Shigella species. This pathotype was named enteroinvasive E.
coli (EIEC) and is more related to Shigella spp. than noninvasive E. coli (7). EIEC and
Shigella spp. possess the same virulence genes, which are located on the chromosome
and carried by a large invasion plasmid (pINV) (8).

The close relatedness of Shigella spp. and E. coli challenges identification if they are
encountered in laboratories. Nowadays, an initial molecular screening of fecal samples
is often used for the detection of Shigella spp., in which the ipaH gene is a frequently
used target (9–11). This is a multicopy virulence gene present on both the chromosome
and pINV of Shigella spp. and EIEC strains and not present in commensal or other
pathotypes of E. coli (12). Consequently, the ipaH gene can distinguish Shigella spp.
from all pathotypes of E. coli, except for EIEC. After this initial screening, most labora-
tories perform culture to select Shigella and EIEC isolates for differentiation and
antibiotic resistance profiling. Species identification of a selected isolate is traditionally
based on phenotypical key characteristics, including motility, lysine decarboxylase, and
the ability to produce both gas and indole, which are negative for Shigella spp. and
usually positive for E. coli (13, 14). Unfortunately, EIEC isolates can either be positive or
negative for these features (15).

In many countries, it is obligatory to notify health authorities if a laboratory confirms
a case of shigellosis. In contrast, infections with EIEC are not notifiable. Therefore, a
diagnostic algorithm able to distinguish Shigella spp. from E. coli, including EIEC, is
required.

In the last decade, multiple molecular identification methods for Shigella spp. and E.
coli, including EIEC, were reported (5, 6, 8, 16–19). One of these methods is based on
the presence of the uidA and lacY genes (16, 19). However, this method appeared to be
not as accurate as expected (6). Alternatively, a few research groups used whole-
genome sequencing (WGS) for the distinction of Shigella spp. from E. coli (5, 6, 17, 18).
Although some methods based on WGS analysis showed effectiveness, the described
identification markers are phylogenetic clade specific rather than species specific (5, 6,
8). In another study, identification markers were identified by a BLAST search of coding
regions of genomes of the different species (17). Consequently, these identification
markers were species specific instead of clade specific; however, they were validated
using only one EIEC isolate (17). Pettengill et al. (6) used a k-mer-based approach to
distinguish between Shigella spp. and E. coli; however, some EIEC isolates were incor-
rectly identified as Shigella spp. by this approach (18). In conclusion, differentiation of
Shigella spp. and E. coli, and of Shigella and EIEC in particular, is a challenge.

Despite it being proven before that Shigella spp. and EIEC are related and that EIEC
is a diverse pathotype (5, 6, 8, 18), distinction is necessary for infectious disease control
measures, as in many countries, shigellosis is a notifiable disease, in contrast to
infections with EIEC. In this study, a culture-dependent identification algorithm was
developed, based on previously described molecular, phenotypical, and serological
features of Shigella spp. and EIEC. In addition, this algorithm was compared to a
recently developed molecular identification algorithm (R. F. de Boer, M. J. C. van den
Beld, W. de Boer, M. C. Scholts, K. W. van Huisstede-Vlaanderen, A. Ott, and A. M. D.
Kooistra-Smid, unpublished data) for the identification of Shigella spp., E. coli, and EIEC.

MATERIALS AND METHODS
Isolates and original identification. The selection of isolates was based on Shigella serotype or E.

coli O type and is listed in Table 1. For selection, the original identification was a guide. This original
identification was established with different methods at different institutes spanning the last 50 to 60
years. Most documentation about the methods used is lost. Therefore, except for the purchased isolates,
the original identification cannot be considered the gold standard, and only concordance or discordance
with the results obtained by the here-described algorithms can be examined.

Culture-dependent algorithm. The culture-dependent algorithm was designed to facilitate identi-
fication and serotyping of Shigella spp. or EIEC from pure cultures up to the serotype level. It was based
on the positivity of the ipaH gene and then subsequent profiling of earlier described phenotypical and
serological features.

The isolates were cultured overnight at 37°C on Columbia sheep blood agar (CSA; bioTRADING,
Mijdrecht, The Netherlands). Lysates were prepared by boiling strains in TE buffer (10 mM Tris-1 mM
EDTA [pH 8.0]; Sigma-Aldrich, Zwijndrecht, The Netherlands) for 30 min. A PCR to detect the ipaH gene
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TABLE 1 Original identification and original collection of the isolates used in this study

Genus and species Strain Serotypea

Original
collectionb

S. dysenteriae CIP 57.28T 1 CIP
A1 1 CDC ¡ Cib
A2 2 CDC ¡ Cib
A3 3 CDC ¡ Cib
A4 4 CDC ¡ Cib
A5 5 CDC ¡ Cib
A6 6 CDC ¡ Cib
A7 7 CDC ¡ Cib
505/58 8 Cib
A9 9 CDC ¡ Cib
A10 10 CDC ¡ Cib
BD92-00426 12 Cib

S. flexneri CIP 82.48T 2a CIP
9950c 1a SSI
9722c 1b SSI
12698c 2b SSI
Zc 3a SSI
9989c 3a SSI
BD10-00109 3b Cib
8296c 4a SSI
9726c 4b SSI
8523c 5a SSI
8524c 5b SSI
9729c 6 SSI
9951c Y SSI

S. boydii CIP 82.50T 2 CIP
9327c 1 SSI
9850c 3 SSI
9770c 4 SSI
9733c 5 SSI
9771c 6 SSI
9734c 7 SSI
9328c 8 SSI
9355c 9 SSI
9357c 10 SSI
9359c 11 SSI
9772c 12 SSI
8592c 14 SSI
10024c 15 SSI

S. sonnei CIP 82.49T ND CIP
9774c Phase I SSI
BD13-00218 Phase I & II Cib
8219c Phase II SSI

Provisional Shigella BD09-00375 O159 Cib

E. coli (EIEC) CCUG 11335 O28 CCUG
T72351c O28 SSI
W71750c O28 SSI
BD12-00018 O29 Cib
F54157c O64 SSI
F54197c O64 SSI
BD11-00138 O102 Cib
DSM 9027 O112ac DSMZ
BD11-00028 O121 Cib
F20871c O121 SSI
EW227 O124 CDC ¡ Cib
BD13-00007 O124 Cib
b7(D2192)c O124 SSI
1111-55 O136 CDC ¡ Cib
No2 VIR (fr1292)c O143 SSI
N02135 AVIR (fr1294)c O143 SSI

(Continued on next page)
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was performed using a Biometra TProfessional standard gradient thermocycler (Westburg, Leusden, The
Netherlands), with the following program: 95°C for 3 min, followed by 35 cycles consisting of 95°C for 1
min, 57°C for 1 min, and 72°C for 1 min, and an elongation for 7 min at 72°C. As a mastermix, illustra
PuReTaq Ready-To-Go PCR beads (GE Healthcare Life Sciences, Eindhoven, The Netherlands) were used,
supplemented with the following primers designed for amplification of a conservative part of the ipaH
gene present in all different ipaH alleles (20): forward primer, 5=-TGG AAA AAC TCA GTG CCT C-3=; and
reverse primer, 5=-CCA GTC CGT AAA TTC ATT CTC-3=. As an internal control for presence of bacterial
DNA, a conservative part of the bacterial 16S rRNA gene was amplified with the following primers:
forward primer, 5=-AGA GTT TGA TCM TGG YTC AG-3=; and reverse primer, 5=-CTT TAC GCC CAR TRA WTC
CG-3=. All primers were used in a final concentration of 0.2 pmol/�l.

The ipaH-positive isolates were subjected to the following phenotypic tests: oxidase, catalase,
motility at 22°C and 37°C, growth on MacConkey agar and Salmonella Shigella agar (SS agar), gas from
D-glucose, ornithine decarboxylase (ODC), indole, esculin hydrolysis, ortho-nitrophenyl-�-galactoside
(ONPG), and fermentation of D-glucose, lactose, D-sucrose, D-xylose, D-mannitol, dulcitol, salicin,
D-raffinose, and D-glycerol in Andrade peptone water (21), lysine decarboxylase (LDC [22]), and arginine
dihydrolase (ADH [23]).

Next to the phenotypical tests, classical Shigella serotyping was performed with all available Shigella
antisera obtained from Denka Seiken Co., Ltd. (Tokyo, Japan), complemented with S. flexneri MASF IV-1,
MASF IV-2, MASF 1c, and MASF B from Reagensia AB (Solna, Sweden). If slide agglutination was negative
for all polyvalent antisera or an inconclusive serotype was obtained, a suspension of the isolate was
boiled for 1 h, after which slide agglutination was performed again.

Classical E. coli O serotyping was manually performed with antisera for E. coli O1 until O187, prepared
as previously described (24, 25) or purchased from Statens Serum Institut (Copenhagen, Denmark).
O-antigen suspensions were prepared by boiling an overnight broth culture for 1 h to inactivate the K
antigen. These prepared antigens, diluted (optical density at 600 nm [OD600], 0.44) with formalinized
(0.5%) phosphate-buffered saline (PBS), were stained with gentian violet (0.005%) and tested against the
187 O antisera in microtiter plate agglutination tests. After overnight incubation at 37°C, plates were
examined against a light background, and positive reactions were titrated. O-type reactions with titers
of �2,500, and reactions with titers until two steps lower than the reaction of the homologous standard
were considered positive.

With the results of the above-described molecular, biochemical, and serological tests, an identifica-
tion algorithm was applied as shown in Fig. 1, based on a previously described key (Fig. 2 in reference
26). A result was considered inconclusive if a distinction between a Shigella species and EIEC could not
be made and the serotypes are not described as related.

Molecular algorithm. The molecular algorithm was designed to screen fecal samples for the
presence of Shigella spp./EIEC quickly and accurately. However, in this study, only pure cultures were
examined; thus, only the molecular part of the algorithm that follows bacterial isolation was applied (de
Boer et al., unpublished data).

TABLE 1 (Continued)

Genus and species Strain Serotypea

Original
collectionb

DSM 9028 O143 DSMZ
M26020c O144 SSI
1624-56 O144 CDC ¡ Cib
BD09-00443 O152 Cib
1184-68 O152 CDC ¡ Cib
BD13-00213 O159 Cib
BD09-00375 O159 Cib
145/46 O164 CDC ¡ Cib
BH 2232-5c O172 SSI
L119-10B O173 SSI ¡ Cib
T20103c O173 SSI
H57237c O� SSI
H19610c O� SSI
BD13-00037 O untypeable Cib

E. coli (noninvasive) DSM 9026 O29 DSMZ
Coli-Pecs O135 CDC ¡ Cib
E10702 O167 CDC ¡ Cib

aShigella serotype in case of Shigella spp. or E. coli O type in case of E. coli or provisional Shigella. ND, not
determined.

bCIP, Collection de l’Institut Pasteur, Paris, France; CDC, Centers for Disease Control and Prevention, Atlanta,
GA, USA; Cib, Centre for Infectious Disease Control, Bilthoven, The Netherlands; CDC/SSI ¡ Cib, historical
isolates donated to Cib by the CDC or SSI, respectively, for antiserum preparation and validation from 1950s
to 1980s; SSI, Statens Serum Institut, Copenhagen, Denmark; CCUG, Culture Collection, University of
Göteborg, Sweden; DSMZ, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany.

cProvided by F. Scheutz, SSI.

van den Beld et al. Journal of Clinical Microbiology

October 2018 Volume 56 Issue 10 e00510-18 jcm.asm.org 4

https://jcm.asm.org


Briefly, lysates were prepared as described above. A real-time PCR to target the ipaH and the wzx
genes of S. sonnei phase I, S. flexneri serotype 1-5, S. flexneri 6, and S. dysenteriae serotype 1 was
performed on a ABI 7500 sequence detection system (Applied Biosystems, Nieuwerkerk aan den IJssel,
The Netherlands), as described previously (11). Each 25-�l reaction mixture consisted of 5 �l template
DNA, 1� Fast Advanced TaqMan Universal PCR master mix (Applied Biosystems), and 2.5 �g bovine
serum albumin (Roche Diagnostics Netherlands B.V., Almere, The Netherlands). The primers and probes
used for detection were designed based on the sequence of wzx genes, as described previously (27, 28).
Reactions were performed under the following conditions: 50°C for 2 min, 95°C for 20 s, followed by 40
cycles of 95°C for 3 s, and 60°C for 32 s. With the result of the ipaH gene PCR, a distinction between
Shigella/EIEC and noninvasive E. coli was made. Positivity of a wzx gene, in an expected ratio with a
threshold cycle (CT) value of the ipaH gene according to copy number (20), leads to the corresponding
serotype. If the ipaH gene had a CT value below 35 but all tested wzx genes were negative, the
identification is inconclusive and was interpreted as EIEC, S. boydii, S. sonnei phase II, or S. dysenteriae
serotype 2-15.

Discrepancy analysis using whole-genome sequencing. WGS analysis was performed on seven
isolates to solve discrepancies between the here-proposed algorithms and original identification (Tables
2 and 3). Isolates were cultured overnight at 37°C on CSA. For each isolate, an equivalent to 5 �l of
colonies was suspended in 300 �l MicroBead solution, and DNA was extracted with the UltraClean
microbial DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA). The DNA library was prepared with
the Nextera XT version 2 index kit (Illumina, San Diego, CA, USA). Subsequently, the library was
sequenced on a MiSeq sequencer (Illumina, Inc.), using a MiSeq reagent kit version 3 generating 300-bp
paired-end reads.

Quality control, quality trimming, and de novo assembly was performed using CLC Genomics
Workbench, version 9.1.1 (Qiagen, Aarhus, Denmark). A quality limit of 0.01 was used in trimming, and
a word size of 29 and a minimum contig length of 1,000 bp were used in de novo assembly. Other
parameters were set as default.

E. coli O types were predicted using SerotypeFinder (Center for Genomic Epidemiology, Lyngby,
Denmark). To predict the serotype of Shigella, trimmed reads of the isolates were mapped against
references of the S. flexneri O-antigen genes (29) and the O-antigen gene clusters of S. dysenteriae, S.
boydii, and S. sonnei (28). To our knowledge, S. dysenteriae serotypes 14 and 15 are rare, and the sequence
of their O antigens is not known; therefore, these serotypes were not evaluated in silico. The tnaCAB gene
cluster and rrlB gene were used as references for indole production from tryptophan and the mtlA, mtlD,

Is the E. coli O-type  previously 
associated with EIEC d ?

YES

FIG 1 Culture-dependent algorithm. Green, definitive identification; yellow, inconclusive identification; a, Strockbine et al. (32); b,
manufacturer’s protocol for Shigella antisera set 1, as per Denka Seiken, Sun et al. (41, 43), and Carlin et al. (44); c, Bopp et al. (13); d,
O28ac, O29, O42, O96, O112ac, O115, O121, O124, O135, O136, O143, O144, O152, O159, O164, O167, O173, and O untypeable; e, if
Shigella serotype has a known relation to E. coli O type, identification is Shigella [species] [serotype]; see Ewing (31), Cheasty and Rowe
(45), Liu et al. (39), and Perepelov et al. (42).
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and mtlR genes as references for the fermentation of D-mannitol. All genes and gene clusters were
retrieved from NCBI (see Table S2 in the supplemental material). If reads mapped with one or more
mutations, the functionality of the encoded proteins was assessed using ExPASy (Swiss Institute of
Bioinformatics [SIB] [30]) and BLASTp (NCBI, Bethesda, MD, USA).

The de novo assemblies were imported in SeqSphere� version 3.5.1 (Ridom GmbH, Münster,
Germany), including reference genomes retrieved from NCBI, to assess the homologies of the discrepant
strains with the references. A comparison of the sequences was made using the E. coli core-genome
multilocus sequence typing (cgMLST) genotyping scheme, which is based on the EnteroBase Escherichia/
Shigella cgMLST version 1 scheme (https://enterobase.warwick.ac.uk/species/index/ecoli). The resulting
comparison table was imported in BioNumerics, version 7.6.3 (Applied Maths, NV), and a neighbor joining
tree was inferred using 200� bootstrap resampling. The tree with the highest resampling support was
calculated. The accession numbers of all sequences are depicted in Fig. 2.

Accession number(s). The sequences of discrepant isolates were submitted to the European
Nucleotide Archive (ENA, EMBL-EBI, Cambridge, United Kingdom) as study no. PRJEB24877 with
accession numbers ERR2287281 (isolate 12698), ERR2287282 (isolate 505/58), ERR2287283 (isolate 9355),
ERR2300644 (isolate F54157), ERR2300645 (isolate F54197), ERR2300646 (isolate H57237), and
ERR2300647 (isolate Z) (https://www.ebi.ac.uk/ena).

RESULTS
Culture-dependent algorithm. With the culture-dependent algorithm, an incon-

clusive result was obtained for four isolates (Table 2). For these isolates, a distinction
between EIEC and either S. flexneri, S. boydii, or S. dysenteriae was impossible, and the
Shigella O type has no known relationship to the E. coli O type. Only S. sonnei and
noninvasive E. coli isolates were completely concordant with the original identification,
including the inconclusive results. The obtained percentages of concordance were 92%,
85%, 93%, and 90% for S. dysenteriae, S. flexneri, S. boydii, and EIEC isolates, respectively
(Table 2).

Molecular algorithm. For 55 isolates (72%), only the ipaH gene was detected and
none of the assessed wzx genes detected using the molecular algorithm. These isolates
were binned in the rest group, meaning they can be either EIEC, S. sonnei phase II, S.
boydii, or S. dysenteriae serotypes other than 1. All isolates except for one EIEC strain
(97%) were identified in concordance with the original identification or had an incon-
clusive result, of which one of the results was in concordance with original identifica-
tion (Table 2). One isolate had a discordant identification, although the result of the
molecular algorithm was in concordance with the culture-dependent algorithm (strain
H57237, Table 3).

Discrepancy analysis of discordant results. Seven isolates showed discordant
results with the original identification using the culture-dependent algorithm (Table 2),
and a discrepancy analysis using WGS was carried out (Table 3). The predicted E. coli
and Shigella serotypes and the presence of genes that encode for specific features are
displayed in Table 3, as well as the results of the two tested algorithms (Table 3). The
clustering of the discrepant isolates with reference isolates is shown in the cgMLST
analysis (Fig. 2).

In the discrepancy analysis of isolate 505/58, WGS data confirmed the serotype as
determined at original identification and with the culture-dependent algorithm, as the
predicted serotypes are E. coli O38 and S. dysenteriae serotype 8, which are related to

TABLE 2 Results of identification with culture-dependent and molecular algorithm compared to original identificationa

Original
identification (n)

Culture-dependent algorithm Molecular algorithm

Concordant Inconclusive Discordant Concordant Inconclusive Discordant

n % n % n % n % n % n %

S. dysenteriae (12) 11 (12) 92 (100) 0 0 1 (0) 8 (0) 2 17 10 83 0 0
S. flexneri (13) 8 62 3 23 2 15 13 100 0 0 0 0
S. boydii (14) 13 93 0 0 1 7 0 0 14 100 0 0
S. sonnei (4) 4 100 0 0 0 0 2 50 2 50 0 0
EIEC (30) 26 (27) 87 (90) 1 3 3 (2) 10 (7) 0 (1) 0 (3) 29 97 1 (0) 3 (0)
E. coli, noninvasive (3) 3 100 0 0 0 0 3 100 0 0 0 0
aConcordant or discordant refers to comparison with the original identification (Table 1). For inconclusive identification, the original identification is in concordance
with one of the results. Values in parentheses are the results after discrepancy analysis.
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FIG 2 Neighbor-joining tree for core-genome MLST, with distance based on E. coli cgMLST (EnteroBase) scheme, 2,513 columns, 200� bootstrapped. Accession
numbers are from GenBank or EMBL; Black, isolates 505/58, 12698, Z, 9355, F54157, F54197, and H57237; light blue, S. dysenteriae; red, S. flexneri; green, S. boydii;
pink, S. sonnei; blue, EIEC; gray, other pathotypes of E. coli.

van den Beld et al. Journal of Clinical Microbiology

October 2018 Volume 56 Issue 10 e00510-18 jcm.asm.org 8

https://jcm.asm.org


each other (31). However, because indole was negative, while all strains described in
the literature from S. dysenteriae serotype 8 are capable of producing indole (13, 31),
and because the E. coli O antigen is not typeable phenotypically (32), isolate 505/58 was
identified as EIEC O-untypeable using the culture-dependent algorithm. WGS data
confirmed that the tnaCAB cluster, which contains the functional genes for the pro-
duction of indole from tryptophan (33), is absent in 505/58. cgMLST showed that isolate
505/58 clustered with an EIEC reference genome and not with other S. dysenteriae
reference genomes in this analysis (Fig. 2). The molecular algorithm placed 505/58 in
the rest group, which is in concordance with the original identification, as well as with
the culture-dependent algorithm (Table 3). The clustering combined with the absence
of the tnaCAB cluster indicates that 505/58 was originally misidentified as S. dysenteriae
or that it has lost the tnaCAB cluster over time.

With isolate 12698, WGS data confirmed the serotype as determined at the original
identification and with the culture-dependent algorithm to be S. flexneri serotype 2b.
The molecular algorithm confirmed these results, as it detected the presence of the
wzx1-5 gene (Table 3). However, using the culture-dependent algorithm, 12698 was
repeatedly D-mannitol positive, while all described S. flexneri serotype 2b isolates are
D-mannitol negative (13, 31). Because D-mannitol was positive and the E. coli O type is
untypeable (32), 12698 was identified as EIEC O untypeable using the culture-
dependent algorithm. The WGS data confirmed the D-mannitol-positive result, as it
detected the mtlA and mtlD genes and its regulator mtlR (34). However, despite the
positive result of D-mannitol fermentation, isolate 12698 clustered with S. flexneri
reference isolates using cgMLST (Fig. 2), supporting the original identification, as well
as the classical and in silico serotyping to designate isolate 12698 S. flexneri serotype 2b.

Discrepancy analysis using WGS for isolate Z added an additional identification
instead of confirming one of the other results. Isolate Z was originally identified as S.
flexneri 3a, while with the culture-dependent algorithm, the isolate fit phenotypically to
S. flexneri 3a but had a serologically inconclusive serotype with antigenic formula B;6.
Because the Shigella antigenic formula was inconclusive and the E. coli O type was O135
(14), isolate Z was identified as EIEC O135 with the culture-dependent algorithm. WGS
analysis detected the presence of the following S. flexneri genes and clusters in isolate
Z: wzx1-5, oac, gtrI, and gtr1C, resulting in S. flexneri serotype 1c (Table 3). Although the
completely conserved gtrI and gtrIc clusters are present, including the gtrA and gtrB
genes (35, 36), with classical Shigella serotyping, agglutination with type I and MASF 1c
antisera was absent. In the cgMLST analysis, isolate Z clustered with S. flexneri reference
isolates (Fig. 2). The molecular algorithm identified isolate Z as S. flexneri; however, this
algorithm is not able to distinguish different serotypes (Table 3). To summarize, classical
and in silico serotyping, cgMLST analysis, and the result of the molecular algorithm
confirmed the original identification of isolate Z as S. flexneri but with discordances in
its serotype.

In the discrepancy analysis of isolate 9355, WGS data confirmed the serotype as
determined at the original identification and with the culture-dependent algorithm to
be S. boydii serotype 9. However, because indole is negative, while this should be
positive for S. boydii serotype 9 (13, 31), and the E. coli O type is O132, which has never
been associated with EIEC, isolate 9355 was provisionally identified as Shigella using the
culture-dependent algorithm. The molecular algorithm placed 9355 in the rest group,
which is in concordance with original identification as well as with the culture-
dependent algorithm (Table 3). The WGS data suggest that the whole tnaCAB cluster is
present in isolate 9355 and contains the indole production genes tnaA, tnaB, and tnaC
(33), which all encode functional proteins. Furthermore, all necessary features for the
induction of tnaA and tnaB genes are present in the tnaC and rrlB genes (37, 38). The
mechanism that hinders the production of indole could not be determined by assessing
the presence or absence of functional genes and features and is a subject for further
investigation. Isolate 9355 clustered with S. dysenteriae genomes in the cgMLST anal-
ysis. As clustering of S. boydii with S. dysenteriae was described before (5), cgMLST
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supports the original identification and the classical and in silico serotype to designate
isolate 9355 S. boydii serotype 9.

For isolates F54157 and F54197, discrepancy analysis using WGS added an addi-
tional identification instead of confirming one of the other results. They were originally
identified as EIEC O64 and as S. sonnei phase II in the culture-dependent algorithm;
however, they were predicted to be E. coli O149 and S. boydii serotype 1 with WGS data
(Table 3), which were described as identical antigens (31, 39). Agglutination with S.
sonnei phase II antiserum in the culture-dependent algorithm could be explained by
linkage between enterobacterial common antigen, which is a surface antigen present
in Enterobacteriaceae, and S. sonnei phase II core oligosaccharide (40). With the molec-
ular algorithm, isolates F54157 and F54197 were binned in the rest group, which is in
concordance with the original identification, with the culture-dependent algorithm and
with WGS data. Evaluation of the S. boydii serotype 1 O-antigen cluster in the WGS data
in more detail showed intact wzx and wzy genes but major deletions in the rmlB gene
for both isolates, explaining the lack of expression of the S. boydii serotype 1/E. coli
O149 phenotype (39). In the cgMLST analysis, strains F54157 and F54197 clustered with
S. dysenteriae and S. boydii strains. Overall, the discrepancy analysis based on WGS
showed that isolates F54157 and F54197 were originally misidentified as EIEC with O
type O64 and misidentified with the culture-dependent algorithm as S. sonnei phase II.

Isolate H57237 was originally identified as EIEC; however, both algorithms used in
this study identified this isolate as S. flexneri. The serotype of H57237 is Yv, as
determined by the culture-dependent algorithm and confirmed by the WGS analysis
(Table 3). Serotype Yv has only recently been described (41), and probably, the original
identification of this isolate predates the discovery of this novel serotype.

The discrepancy analysis showed that isolates H57237, F54157, F54197, and 505/58
might be misidentified during the original identification (Table 3 and Fig. 2). The results
of the comparison of the molecular and culture-dependent algorithms with the original
identification were corrected for these findings and are displayed in parentheses in
Table 2.

DISCUSSION

After discrepancy analysis, the identification of S. dysenteriae, S. sonnei, and nonin-
vasive E. coli isolates with the culture-dependent algorithm was 100% in concordance
with the original identification, including the inconclusive results. For S. flexneri, S.
boydii, and EIEC isolates, the concordance was 85%, 93%, and 93%, respectively.

With the molecular algorithm, 100% of the isolates were identified in concordance
with the original identification after discrepancy analysis (Table 3). However, its reso-
lution for certain serotypes is low, as it does not allow specific detection of EIEC, S.
boydii, S. sonnei phase II, and S. dysenteriae serotype 2-15. Another limitation is that
cross-reactivity of Shigella and E. coli O antigens is described. The primers from the S.
dysenteriae wzx gene are likely to amplify the E. coli O-antigen clusters O1, O120, and
O148 (31, 39), and the primers from the S. flexneri wzx1-5 gene will probably amplify the
E. coli O-antigen clusters O1, O13, O16, O19, O62, O69, O73, O135, and O147 (31, 42).
Of all these E. coli O types, only O135 is described as an EIEC-associated O type; none
of the other E. coli O types are likely to possess the ipaH gene and are therefore not
considered to be Shigella spp. or EIEC in the molecular algorithm. Nevertheless, EIEC
with O type O135 cannot be separated from S. flexneri. However, this is overcome in a
diagnostic setting by targeted culture from the fecal samples prompted by the results
of the molecular part of the algorithm. If an isolate is selected, it is identified based on
a few phenotypical key features and agglutination with Shigella and EIEC polyvalent
antisera. If no isolate is selected, the physician will receive a report that Shigella spp. or
EIEC is detected but without specifications about species or serotype.

One of the strengths of this study is the discrepancy analysis with WGS. This analysis
is able to confirm one of the determined identities of isolates 505/58, 12698, 9355, and
H57237. In contrast to those isolates, for isolates Z, F54157, and F54197, the discrep-

van den Beld et al. Journal of Clinical Microbiology

October 2018 Volume 56 Issue 10 e00510-18 jcm.asm.org 10

https://jcm.asm.org


ancy analysis with WGS added an extra identification result, therefore complicating the
identification further instead of clarifying it.

Isolates 12698, 9355, and 505/58 were serological congruent using all identification
methods, including WGS, but had one phenotypical test in discordance with their
serotype (Table 3), resulting in a different identification by the culture-dependent
algorithm. Phenotypical properties of a serotype are described by testing multiple
isolates of the same serotype. There is not necessarily a causal connection between the
serotype and the results of phenotypic tests, and phenotypic variability increases with
the number of tested isolates. If the culture-dependent algorithm was applied less
stringently and one phenotypical test against it was allowed, the above-described
isolates were correctly identified. However, disregarding phenotypic test results should
be considered carefully, because some phenotypic traits are set as defining for genus
or species, for instance, the absence of LDC or D-mannitol fermentation, which are
genus specific for Shigella or set as species specific for S. dysenteriae, respectively. The
results of these species specific phenotypic tests should not be disregarded.

A limitation of this study is that only a few isolates of every species were used, and
it is desirable to test more isolates with the proposed algorithms in the future. However,
rare serotypes were difficult to obtain, and one can debate to omit these rare serotypes
for test evaluation, because they are not frequently encountered in clinical diagnostics.

The here-described culture-dependent algorithm outperforms the previously de-
scribed method based on the detection of the uidA gene and the lacY gene (16) that
only correctly identified in silico 100% of S. sonnei, 92% of S. flexneri, 86% of S. boydii,
80% of S. dysenteriae, 77% of noninvasive E. coli, and 62% of EIEC isolates (6). In
addition, the lacY gene approach is able to distinguish organisms to the genus level
(16); therefore, its resolution is lower than that of the culture-dependent algorithm
described in this study.

The previously described k-mer-based method outperforms the here-described
culture-dependent algorithm for the identification of Shigella species, because it iden-
tified 100% of all Shigella species isolates in concordance with biochemical and
serological profiling. In contrast, for identification of EIEC isolates, the proposed culture-
dependent algorithm is superior, identifying 93% of EIEC isolates according to original
identification, against 81.5% of EIEC isolates with the k-mer based approach (18).
Furthermore, for the k-mer-based method, sequencing of whole genomes and subse-
quent bioinformatics analysis are required, making it less applicable in low-resource
settings, where Shigella spp. are encountered frequently. Moreover, to match the
resolution of the culture-dependent algorithm, extra analyses should be added to the
k-mer-based method in order to determine the in silico serotype.

This study shows again that species differentiation of Shigella spp. and E. coli is
challenging, as other studies have concluded before (5, 6, 18). With some isolates,
differentiation is impossible, as evidenced by the percentage of isolates (5%) for which
identification is inconclusive with the culture-dependent algorithm. Using the molec-
ular algorithm, 71% of the isolates resulted in an inconclusive identification; however,
this algorithm was not designed for use in the distinction between EIEC, S. boydii, S.
sonnei phase II, and S. dysenteriae serotype 2-15. Nevertheless, the molecular algorithm
would be sufficient for use in a developed country, because a recent study in The
Netherlands (R. F. de Boer, unpublished data) showed that in 80% of ipaH gene-positive
fecal samples, S. sonnei or S. flexneri is present. For use in other regions, the concept of
the molecular algorithm can be adjusted to their particular needs; targets of wzx genes
of S. dysenteriae and S. boydii can be added or the whole procedure can be redefined
to a conventional PCR platform if real-time platforms are unavailable.

In conclusion, although not perfect, the proposed algorithms are capable of iden-
tifying most Shigella sp. and EIEC isolates. The molecular algorithm is fast and accurate
and is suitable for daily application in diagnostic laboratories, as it can be performed
with standard PCR equipment; however, its resolution for certain serotypes is low. The
culture-dependent algorithm is more time-consuming, and many phenotypical tests
and antisera are required, yet the resolution is high for all serotypes. If a desirable
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complete identification cannot be obtained with the molecular algorithm, the culture-
dependent algorithm can be applied by a reference laboratory to obtain a higher
resolution.

Despite the genetic relationship of Shigella spp. and EIEC, causing difficulties for
identification, differentiation is still necessary for epidemiological and surveillance
purposes because of current guidelines for infectious disease control. One can specu-
late if guidelines need to be adjusted, but evidence for guideline optimization with
regard to infections with EIEC is currently lacking. In the future, the impact of infections
with EIEC on individual patients and on public health should be further investigated to
assess if it is justified that surveillance measures and control guidelines for infections
with EIEC are different from those of shigellosis.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM
.00510-18.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Flemming Scheutz from the Statens Serum Institut (Copenhagen, Den-

mark) for providing strains.
This research received no specific grant from any funding agency in the public,

commercial, or not-for-profit sectors.

REFERENCES
1. Lampel KA, Formal SB, Maurelli AT. 2018. A brief history of Shigella.

EcoSal Plus 8:3. https://doi.org/10.1128/ecosalplus.ESP-0006-2017.
2. Hale TL. 1991. Genetic basis of virulence in Shigella species. Microbiol

Rev 55:206 –24.
3. Brenner DJ, Fanning GR, Steigerwalt AG, Orskov I, Orskov F. 1972.

Polynucleotide sequence relatedness among three groups of patho-
genic Escherichia coli strains. Infect Immun 6:308 –15.

4. Pupo GM, Lan R, Reeves PR. 2000. Multiple independent origins of
Shigella clones of Escherichia coli and convergent evolution of many of
their characteristics. Proc Natl Acad Sci U S A 97:10567–72. https://doi
.org/10.1073/pnas.180094797.

5. Sahl JW, Morris CR, Emberger J, Fraser CM, Ochieng JB, Juma J, Fields B,
Breiman RF, Gilmour M, Nataro JP, Rasko DA. 2015. Defining the phy-
logenomics of Shigella species: a pathway to diagnostics. J Clin Micro-
biol 53:951– 60. https://doi.org/10.1128/JCM.03527-14.

6. Pettengill EA, Pettengill JB, Binet R. 2015. Phylogenetic analyses of
Shigella and enteroinvasive Escherichia coli for the identification of
molecular epidemiological markers: whole-genome comparative analy-
sis does not support distinct genera designation. Front Microbiol 6:1573.
https://doi.org/10.3389/fmicb.2015.01573.

7. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR. 2004. Molecular
evolutionary relationships of enteroinvasive Escherichia coli and Shi-
gella spp. Infect Immun 72:5080 – 8. https://doi.org/10.1128/IAI.72.9
.5080-5088.2004.

8. Hazen TH, Leonard SR, Lampel KA, Lacher DW, Maurelli AT, Rasko DA.
2016. Investigating the relatedness of enteroinvasive Escherichia coli to
other E. coli and Shigella isolates by using comparative genomics. Infect
Immun 84:2362–71. https://doi.org/10.1128/IAI.00350-16.

9. van den Beld MJ, Friedrich AW, van Zanten E, Reubsaet FA, Kooistra-
Smid MA, Rossen JW, participating Medical Microbiological Laboratories.
2016. Multicenter evaluation of molecular and culture-dependent diag-
nostics for Shigella species and entero-invasive Escherichia coli in the
Netherlands. J Microbiol Methods 131:10 –15. https://doi.org/10.1016/j
.mimet.2016.09.023.

10. Van Lint P, De Witte E, Ursi JP, Van Herendael B, Van Schaeren J. 2016.
A screening algorithm for diagnosing bacterial gastroenteritis by real-
time PCR in combination with guided culture. Diagn Microbiol Infect Dis
85:255–9. https://doi.org/10.1016/j.diagmicrobio.2016.03.017.

11. de Boer RF, Ott A, Kesztyus B, Kooistra-Smid AM. 2010. Improved detec-
tion of five major gastrointestinal pathogens by use of a molecular

screening approach. J Clin Microbiol 48:4140 – 6. https://doi.org/10
.1128/JCM.01124-10.

12. Venkatesan MM, Buysse JM, Kopecko DJ. 1989. Use of Shigella flexneri
ipaC and ipaH gene sequences for the general identification of Shigella
spp. and enteroinvasive Escherichia coli. J Clin Microbiol 27:2687–91.

13. Bopp CA, Brenner FW, Fields PI, Wells JG, Strockbine NA. 2003. Esche-
richia, Shigella and Salmonella, p 654 – 671. In Murray PR, Baron EJ,
Jorgensen JH, Pfaller MA, Yolken RH (ed), Manual of clinical microbiol-
ogy, 8th ed, vol 1. ASM Press, Washington, DC.

14. Scheutz F, Strockbine NA. 2005. Genus I. Escherichia Castellani and
Chalmers 1919, 9417, p 607– 624. In Garrity GM (ed), Bergey’s manual of
systematic bacteriology, 2nd ed, vol 2. The Proteobacteria. Springer
Science, New York, NY.

15. Silva RM, Toledo MR, Trabulsi LR. 1980. Biochemical and cultural char-
acteristics of invasive Escherichia coli. J Clin Microbiol 11:441– 4.

16. Pavlovic M, Luze A, Konrad R, Berger A, Sing A, Busch U, Huber I. 2011.
Development of a duplex real-time PCR for differentiation between E.
coli and Shigella spp. J Appl Microbiol 110:1245–51. https://doi.org/10
.1111/j.1365-2672.2011.04973.x.

17. Kim HJ, Ryu JO, Song JY, Kim HY. 2017. Multiplex polymerase chain
reaction for identification of shigellae and four Shigella species using
novel genetic markers screened by comparative genomics. Foodborne
Pathog Dis 14:400 – 406. https://doi.org/10.1089/fpd.2016.2221.

18. Chattaway MA, Schaefer U, Tewolde R, Dallman TJ, Jenkins C. 2017.
Identification of Escherichia coli and Shigella species from whole-
genome sequences. J Clin Microbiol 55:616 – 623. https://doi.org/10
.1128/JCM.01790-16.

19. Lobersli I, Wester AL, Kristiansen A, Brandal LT. 2016. Molecular differ-
entiation of Shigella spp. from enteroinvasive E. coli. Eur J Microbiol
Immunol (Bp) 6:197–205. https://doi.org/10.1556/1886.2016.00004.

20. Buysse JM, Hartman AB, Strockbine N, Venkatesan M. 1995. Genetic
polymorphism of the ipaH multicopy antigen gene in Shigella spps. and
enteroinvasive Escherichia coli. Microb Pathog 19:335– 49. https://doi
.org/10.1016/S0882-4010(96)80005-2.

21. Barrow GI, Feltham RKA. 1993. Cowan and Steel’s manual for the iden-
tification of medical bacteria, 3rd ed. Cambridge University Press, Cam-
bridge, United Kingdom.

22. Difco Laboratories. 1984. Difco manual. Difco Laboratories, Inc., De-
troit, MI.

23. Lenette EH. 1985. Manual of clinical microbiology, 4th ed. American
Society for Microbiology, Washington, DC.

van den Beld et al. Journal of Clinical Microbiology

October 2018 Volume 56 Issue 10 e00510-18 jcm.asm.org 12

https://doi.org/10.1128/JCM.00510-18
https://doi.org/10.1128/JCM.00510-18
https://doi.org/10.1128/ecosalplus.ESP-0006-2017
https://doi.org/10.1073/pnas.180094797
https://doi.org/10.1073/pnas.180094797
https://doi.org/10.1128/JCM.03527-14
https://doi.org/10.3389/fmicb.2015.01573
https://doi.org/10.1128/IAI.72.9.5080-5088.2004
https://doi.org/10.1128/IAI.72.9.5080-5088.2004
https://doi.org/10.1128/IAI.00350-16
https://doi.org/10.1016/j.mimet.2016.09.023
https://doi.org/10.1016/j.mimet.2016.09.023
https://doi.org/10.1016/j.diagmicrobio.2016.03.017
https://doi.org/10.1128/JCM.01124-10
https://doi.org/10.1128/JCM.01124-10
https://doi.org/10.1111/j.1365-2672.2011.04973.x
https://doi.org/10.1111/j.1365-2672.2011.04973.x
https://doi.org/10.1089/fpd.2016.2221
https://doi.org/10.1128/JCM.01790-16
https://doi.org/10.1128/JCM.01790-16
https://doi.org/10.1556/1886.2016.00004
https://doi.org/10.1016/S0882-4010(96)80005-2
https://doi.org/10.1016/S0882-4010(96)80005-2
https://jcm.asm.org


24. Ewing WH. 1986. The genus Escherichia, p 93–134. In Ewing WH (ed),
Edwards and Ewing’s identification of Enterobacteriaceae, 4th ed.
Elsevier Science Publishing Co. Inc., New York, NY.

25. Guinée PA, Agterberg CM, Jansen WH. 1972. Escherichia coli O antigen
typing by means of a mechanized microtechnique. Appl Microbiol 24:
127–31.

26. van den Beld MJ, Reubsaet FA. 2012. Differentiation between Shigella,
enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur
J Clin Microbiol Infect Dis 31:899 –904. https://doi.org/10.1007/s10096
-011-1395-7.

27. Houng HS, Sethabutr O, Echeverria P. 1997. A simple polymerase chain
reaction technique to detect and differentiate Shigella and enteroinva-
sive Escherichia coli in human feces. Diagn Microbiol Infect Dis 28:19 –25.
https://doi.org/10.1016/S0732-8893(97)89154-7.

28. Li Y, Cao B, Liu B, Liu D, Gao Q, Peng X, Wu J, Bastin DA, Feng L, Wang
L. 2009. Molecular detection of all 34 distinct O-antigen forms of
Shigella. J Med Microbiol 58:69 – 81. https://doi.org/10.1099/jmm.0
.000794-0.

29. Sun Q, Lan R, Wang Y, Zhao A, Zhang S, Wang J, Wang Y, Xia S, Jin D, Cui
Z, Zhao H, Li Z, Ye C, Zhang S, Jing H, Xu J. 2011. Development of a
multiplex PCR assay targeting O-antigen modification genes for molec-
ular serotyping of Shigella flexneri. J Clin Microbiol 49:3766 –70. https://
doi.org/10.1128/JCM.01259-11.

30. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E,
Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C,
Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N,
Rossier G, Xenarios I, Stockinger H. 2012. ExPASy: SIB bioinformatics
resource portal. Nucleic Acids Res 40:W597–W603. https://doi.org/10
.1093/nar/gks400.

31. Ewing WH. 1986. The genus Shigella, p 135–172. In Ewing WH (ed),
Edwards and Ewing’s identification of Enterobacteriaceae, 4th ed.
Elsevier Science Publishing Co., Inc., New York, NY.

32. Strockbine NA, Bopp CA, Fields PI, Kaper JB, Nataro JP. 2015. Escherichia,
Shigella and Salmonella, p 685–713. In Jorgensen JH, Pfaller MA, Carroll
KC, Funke G, Landry ML, Richter SS, Warnock DW (ed), Manual of clinical
microbiology, 11th ed, vol 1. ASM Press, Washington, DC.

33. Li G, Young KD. 2015. A new suite of tnaA mutants suggests that
Escherichia coli tryptophanase is regulated by intracellular sequestration
and by occlusion of its active site. BMC Microbiol 15:14. https://doi.org/
10.1186/s12866-015-0346-3.

34. Moss GP. 2017. Nomenclature Committee of the International Union of
Biochemistry and Molecular Biology (NC-IUBMB). http://www.sbcs.qmul
.ac.uk/iubmb/. Accessed 13 December 2017.

35. Stagg RM, Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK. 2009. A
novel glucosyltransferase involved in O-antigen modification of Shigella
flexneri serotype 1c. J Bacteriol 191:6612–7. https://doi.org/10.1128/JB
.00628-09.

36. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK. 2016. Shigella flexneri
serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster
via a bacteriophage. BMC Microbiol 16:127. https://doi.org/10.1186/
s12866-016-0746-z.

37. Yanofsky C. 2007. RNA-based regulation of genes of tryptophan synthe-
sis and degradation, in bacteria. RNA 13:1141–54. https://doi.org/10
.1261/rna.620507.

38. Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C. 2005. Features of
ribosome-peptidyl-tRNA interactions essential for tryptophan induction
of tna operon expression. Mol Cell 19:333– 43. https://doi.org/10.1016/j
.molcel.2005.06.013.

39. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q,
Reeves PR, Wang L. 2008. Structure and genetics of Shigella O
antigens. FEMS Microbiol Rev 32:627–53. https://doi.org/10.1111/j
.1574-6976.2008.00114.x.

40. Gozdziewicz TK, Lugowski C, Lukasiewicz J. 2014. First evidence for a
covalent linkage between enterobacterial common antigen and lipo-
polysaccharide in Shigella sonnei phase II ECALPS. J Biol Chem 289:
2745–54. https://doi.org/10.1074/jbc.M113.512749.

41. Sun Q, Lan R, Wang J, Xia S, Wang Y, Wang Y, Jin D, Yu B, Knirel YA, Xu
J. 2013. Identification and characterization of a novel Shigella flexneri
serotype Yv in China. PLoS One 8:e70238. https://doi.org/10.1371/
journal.pone.0070238.

42. Perepelov AV, Shekht ME, Liu B, Shevelev SD, Ledov VA, Senchenkova
SN, L’Vov VL, Shashkov AS, Feng L, Aparin PG, Wang L, Knirel YA. 2012.
Shigella flexneri O-antigens revisited: final elucidation of the
O-acetylation profiles and a survey of the O-antigen structure diversity.
FEMS Immunol Med Microbiol 66:201–10. https://doi.org/10.1111/j.1574
-695X.2012.01000.x.

43. Sun Q, Lan R, Wang Y, Wang J, Luo X, Zhang S, Li P, Wang Y, Ye C, Jing
H, Xu J. 2011. Genesis of a novel Shigella flexneri serotype by sequential
infection of serotype-converting bacteriophages SfX and SfI. BMC Mi-
crobiol 11:269. https://doi.org/10.1186/1471-2180-11-269.

44. Carlin NI, Rahman M, Sack DA, Zaman A, Kay B, Lindberg AA. 1989. Use
of monoclonal antibodies to type Shigella flexneri in Bangladesh. J Clin
Microbiol 27:1163–1166.

45. Cheasty T, Rowe B. 1983. Antigenic relationships between enteroinva-
sive Escherichia coli antigens O28ac, O112ac, O124, O136, O143, O144,
O152, and O164 and Shigella O antigens. J Clin Microbiol 17:681– 684.

Identification Algorithms for Shigella and E. coli Journal of Clinical Microbiology

October 2018 Volume 56 Issue 10 e00510-18 jcm.asm.org 13

https://doi.org/10.1007/s10096-011-1395-7
https://doi.org/10.1007/s10096-011-1395-7
https://doi.org/10.1016/S0732-8893(97)89154-7
https://doi.org/10.1099/jmm.0.000794-0
https://doi.org/10.1099/jmm.0.000794-0
https://doi.org/10.1128/JCM.01259-11
https://doi.org/10.1128/JCM.01259-11
https://doi.org/10.1093/nar/gks400
https://doi.org/10.1093/nar/gks400
https://doi.org/10.1186/s12866-015-0346-3
https://doi.org/10.1186/s12866-015-0346-3
http://www.sbcs.qmul.ac.uk/iubmb/
http://www.sbcs.qmul.ac.uk/iubmb/
https://doi.org/10.1128/JB.00628-09
https://doi.org/10.1128/JB.00628-09
https://doi.org/10.1186/s12866-016-0746-z
https://doi.org/10.1186/s12866-016-0746-z
https://doi.org/10.1261/rna.620507
https://doi.org/10.1261/rna.620507
https://doi.org/10.1016/j.molcel.2005.06.013
https://doi.org/10.1016/j.molcel.2005.06.013
https://doi.org/10.1111/j.1574-6976.2008.00114.x
https://doi.org/10.1111/j.1574-6976.2008.00114.x
https://doi.org/10.1074/jbc.M113.512749
https://doi.org/10.1371/journal.pone.0070238
https://doi.org/10.1371/journal.pone.0070238
https://doi.org/10.1111/j.1574-695X.2012.01000.x
https://doi.org/10.1111/j.1574-695X.2012.01000.x
https://doi.org/10.1186/1471-2180-11-269
https://jcm.asm.org

	MATERIALS AND METHODS
	Isolates and original identification. 
	Culture-dependent algorithm. 
	Molecular algorithm. 
	Discrepancy analysis using whole-genome sequencing. 
	Accession number(s). 

	RESULTS
	Culture-dependent algorithm. 
	Molecular algorithm. 
	Discrepancy analysis of discordant results. 

	DISCUSSION
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

