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Multi-scale structure and geographic drivers of
cross-infection within marine bacteria and phages
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Bacteriophages are the most abundant biological life forms on Earth. However, relatively little is
known regarding which bacteriophages infect and exploit which bacteria. A recent meta-analysis
showed that empirically measured phage-bacteria infection networks are often significantly nested,
on average, and not modular. A perfectly nested network is one in which phages can be ordered
from specialist to generalist such that the host range of a given phage is a subset of the host range
of the subsequent phage in the ordering. The same meta-analysis hypothesized that modularity, in
which groups of phages specialize on distinct groups of hosts, should emerge at larger geographic
and/or taxonomic scales. In this paper, we evaluate the largest known phage-bacteria interaction
data set, representing the interaction of 215 phage types with 286 host types sampled from
geographically separated sites in the Atlantic Ocean. We find that this interaction network is highly
modular. In addition, some of the modules identified in this data set are nested or contain
submodules, indicating the presence of multi-scale structure, as hypothesized in the earlier meta-
analysis. We examine the role of geography in driving these patterns and find evidence that the host
range of phages and the phage permissibility of bacteria is driven, in part, by geographic separation.
We conclude by discussing approaches to disentangle the roles of ecology and evolution in driving
complex patterns of interaction between phages and bacteria.
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Introduction

Bacteriophages can have a significant effect on
microbial communities and ecosystems (Wilhelm
and Suttle, 1999; Wommack and Colwell, 2000;
Suttle, 2005, 2007; Brussaard et al., 2008). Bacter-
iophages are responsible for a significant fraction of
bacterial mortality (Suttle and Chan, 1994;
Weinbauer, 2004), engage in coevolutionary arms
races with their hosts (Buckling and Rainey, 2002;
Andersson and Banfield, 2008; Held and Whitaker,
2009; Marston et al., 2012), and redirect organic
material to the microbial loop via a process known
as the viral shunt (Wilhelm and Suttle, 1999;
Middelboe and Lyck, 2002; Jiao et al., 2010). A key
event in all of these ecological functions is the
interaction with and exploitation of a bacterium by a
phage. It is widely hypothesized that phages can
infect a very limited subset of bacteria in a given
environment. However, given the high diversity of

bacteria in natural environments (Rusch et al., 2007;
Quince et al., 2008), even infecting a limited subset
can nonetheless represent a heterogeneous range of
hosts. Indeed, there is a long record of evidence to
suggest that phages commonly infect multiple
distinct bacterial types in natural environments
(for example, Wichels et al., 1998; Holmfeldt et al.,
2007), including examples where individual phages
can infect hosts from distinct genera (for example,
cyanophages infecting hosts from Prochlorococcus
and Synechoccoccus (Sullivan et al., 2003)).
Recently, we utilized a network-based approach in
order to identify and characterize patterns within
published data sets of infection and exploitation of
bacteria by phages (Flores et al., 2011).

The key interaction patterns examined in Flores
et al., (2011) were nestedness (Rodriguez-Girones and
Santamaria, 2006; Ulrich and Gotelli, 2007; Almeida-
Neto et al., 2008; Ulrich et al., 2009) and modularity
(Newman, 2006b; Barber, 2007). In the context of
phage-bacteria interactions, nestedness indicates the
extent to which the host ranges of phages are subsets
of one another. In a maximally nested network, the
most specialized phage could infect hosts most
permissive to infection. Then, the next most specia-
lized phage could infect the host most permissive to
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infection as well as one additional host, and so on.
Nestedness is thought to emerge in coevolutionary
arms race dynamics in which hosts evolve resistance
to current and past pathogens, while pathogens
evolve counter resistance that enables them to infect
past hosts (Agrawal and Lively, 2002), for example, as
observed between the bacterium Pseudomonas fluor-
escens SB25 and the DNA phage SBW25F2 (Buckling
and Rainey, 2002). Similarly, modularity indicates
the extent to which interactions, in this case an
infection of a bacterium by a phage, can be partiti-
oned into groups with many interactions within them
and few interactions between them. These groups are
referred to as modules. In a maximally modular
network, there would be no cross-infections between
phages of one module and hosts of another module.
There are many possible drivers of modularity,
including geographic isolation, which can facilitate
the divergent coevolution of interacting species
(Thompson, 1999; Gómez and Buckling, 2011).

In our re-analysis of published studies, we found
that infection networks tended to be nested and not
modular (Flores et al., 2011). However, we hypothe-
sized that modularity should be expected when a
greater diversity of bacteria and phages interact. The
work described here follows up on our earlier study
by analyzing a previously published cross-infection
data set (Moebus and Nattkemper, 1981) not
included in our earlier analysis. The Moebus and
Nattkemper (1981) data set is the largest phage-
bacteria infection network available in the literature
(as far as we are aware), representing interactions
between marine phages and bacteria in the Atlantic
Ocean. The data set contains cross-infection and
geographic information but no sequence informa-
tion. As such, we focus our analysis on the
following questions: (i) how do patterns of infection
change at different scales, that is, when examining
the entire network (large scale) vs subcomponents of
the network (small scale); (ii) what role does
geographic separation have in shaping cross-infec-
tion? Despite the cosmopolitan nature of viruses
(Breitbart et al., 2004; Angly et al., 2006) (for an
exception see (Desnues et al., 2008)), multiple lines
of evidence suggest that phages are often better
adapted to hosts from the same location than they
are to hosts from a different location (Held and
Whitaker, 2009; Vos et al., 2009; Gómez and
Buckling, 2011; Koskella et al., 2011). Hence, by
examining explicit cross-infections among many
microbes isolated across a large geographic range,
we hope to shed light on the structure of phage-
bacteria infection networks.

Materials and methods

Data set
We analyzed the cross-infection data set of Moebus
and Nattkemper (1981). This data include phage and
bacteria collected from February to April 1979 in the

Atlantic Ocean between the European continental
shelf and the Sargasso Sea (Moebus, 1980). Bacteria
were cultured and isolated using seawater-based
media and bacteriophages were enriched from the
same water sample (Moebus, 1980). In the original
analysis of cross-infection (Moebus and Nattkemper,
1981), the authors describe cross-reaction tests
among 733 bacteria and 258 phage strains collected
at 48 stations separated, in some cases, some 200
miles apart (Supplementary Figure S1). However,
the authors do not report results from strains, which
have both (i) identical infection patterns and (ii) that
were isolated from the same station. The reported
data set is included as a fold-out table in the main
text (see Supplementary Figure S2). We digitized
and automatically extracted the positive infection
results and then manually curated the results,
yielding a network of 286 bacteria strains and 215
phage strains with 1332 positive infection outcomes
out of a possible 61 490¼ 215*286 interactions (see
Supplementary Text S1 for more details). The
interactions were classified in the original study as
either (i) ‘More or less clear spots due to lysis of
bacteria’; (ii) ‘More or less turbid spots’. We
classified all interactions as either positive (either
clear or turbid spots) or negative (neither clearing
nor turbid spots). We refer to this data set as the MN
(Moebus and Nattkemper) matrix. The resulting
digitized data set is shown in Figure 1.

Network analysis

Disjoint components. An interaction network is
considered bipartite when it contains two types of
agents that interact, for example, bacteria and
phages. Any bipartite network can be decomposed
into disjoint components such that no cross-infec-
tions are found between components. Formally,
each disjoint component in a bipartite network of
host-viral cross-infection is defined in terms of
a set of hosts, H, and viruses V, such that: (i)
there is no virus V’ outside of V that can infect any
host in H; (ii) there is no host H’ outside of H
that can be infected by any virus in V; (iii) for each
virus in V there is at least one host in H that it can
infect.

Modularity. We used the standard BRIM (Bipartite
Recursively Induced Modules) algorithm (Barber,
2007), which utilizes a local search heuristic to
maximize a bipartite modularity value Q (see
Supplementary Text S2 for more details). The value
of Q represents how often a particular ordering of
phages and bacteria into modules corresponds to
interactions that are primarily inside a module
(QE1 or modular), primarily outside of modules
(QE� 1 or antimodular) or somewhere in between
(� 1oQo1). BRIM helps find the arrangement of
phages and bacteria in modules that maximize Q.
We used two different approaches of the BRIM
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algorithm depending on the size of the matrix. For
the entire matrix, we extended the BRIM algorithm
to first partition the network into different isolated
modules and then subsequently recursively subdi-
vide the network as has been done in the case of

unipartite networks (Newman, 2006a, b), that is,
networks with only one type of node. Our approach
(described in Supplementary Text S2) yields higher
values of Q than both BRIM and LP-BRIM (Liu and
Murata, 2009). Within each module, we used the
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Figure 1 Digitized version of the MN matrix with 286 hosts (rows) and 215 phages (columns) in the same orientation as originally
published (Moebus and Nattkemper, 1981). The 1332 black cells represent positive interactions between hosts and phages (see Materials
and methods). The connectance of the network (interactions/total size) is approximately 0.022E1332/61490.
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adaptive heuristic of the BRIM algorithm (Barber,
2007), which has been verified to perform well in
small matrices (Liu and Murata, 2009).

Nestedness. We utilized two algorithms to mea-
sure the extent to which hosts and phage interac-
tions have a nested pattern.

Nestedness temperature calculator. The nested-
ness temperature calculator (NTC) algorithm was
originally developed by (Atmar and Patterson, 1993)
and has been reviewed elsewhere (Rodrı́guez-
Gironés and Santamarı́a 2006). In the present
context, the ‘temperature’, T, of an interaction matrix
is estimated by resorting the row order of hosts and
the column order of phages such that as many of the
interactions occur in the upper left portion of the
matrix. In doing so, the value of T quantifies
the extent to which interactions only take place in
the upper left (TE0), or are equally distributed
between the upper left and the lower right (TE100).
Perfectly nested interaction matrices can be resorted
to lie exclusively in the upper left portion and hence
have a temperature of 0. The value of temperature
depends on the size, connectance and structure of
the network. Because the temperature value quanti-
fies departures from perfect nestedness, we define
the nestedness, NNTC, of a matrix to range from 0 to 1,
NNTC¼ (100�T)/100, such that NNTC¼ 1 when T¼ 0
(perfect nested pattern) and NNTC¼ 0 when T¼ 100
(chessboard pattern).

Nestedness metric based on overlap and decreasing
filling. NODF is a nestedness metric introduced by
Almeida-Neto et al. (2008). NODF is independent of
row and column order. This algorithm measures the
nestedness across hosts by assigning a value MH

ij to
each pair i, j of hosts (rows) in the interaction
matrix, which is defined as:

MH
ij ¼

0 if ki¼ kj

nij/ minðki; kjÞ otherwise

�
ð1Þ

where ki and kj are the degree of hosts i and j
respectively, and nij is the number of common
interactions between them. ‘Degree’ is a standard
network science term that is defined as the number
of interactions that a given type has (Newman,
2010). For example, in this context, the degree of a
host is the number of viruses that can infect it and
the degree of a virus is the number of hosts it can
infect. The same method is used to calculate
nestedness across phages, such that the total
nestedness value is:

NNODF ¼
P

io j MH
ij þ

P
io j MP

ij

H H � 1ð Þ
H þ P P�1ð Þ

P

ð2Þ

The meaning of nestedness as calculated by NODF
is that higher values denote matrices whose (i) pairs
of rows are typically subsets of each other, that is,
host pairs share some, but not all, viruses that can

infect them; (ii) pairs of columns are typically
subsets of each other, that is, viral pairs share some,
but not all, hosts that they can infect.

Null models. We utilized two null models in order
to measure the statistical significance of modularity
and nestedness. The first is a Bernoulli random null
model in which the null matrix has the same total
number of interactions as the original matrix, albeit
randomly positioned. The second is a probabilistic
degree null model in which each interaction
between host i and phage j in the null matrix is
assigned with a probability pij according to:

pij¼
1

2

ki

P
þ dj

H

� �
ð3Þ

where the degree ki is the number of phages that
infect host i, the degree dj is the number of hosts
infected by phage j, P is the number of phages and H
is the number of hosts. In all cases, we utilize
100 000 random matrices to evaluate the statistical
significance of modularity and nestedness. Finally,
given the two null models, we evaluate modularity
using two significant tests, and we evaluate nested-
ness using four significance tests (two each for the
NTC and NODF).

Multi-scale analysis
Nestedness metrics may overestimate the statistical
significance of nestedness, particularly when the
fraction of realized interactions of a network
becomes either very large or very small, for example,
Fischer and Lindenmayer (2002). In addition, in
cases where a network is comprised of nested
modules, we expect that some nestedness measures
will spuriously identify the entire network as nested
(see for example, Figure 7 of Flores et al. (2011)). We
developed two approaches to characterize nested-
ness given a large, sparsely connected network.
These two approaches are consistent with recent
calls to take a local, rather than a strictly global,
approach to identifying community structure
(Fortunato and Barthélemy, 2007). First, in the case
of nestedness as calculated using NTC, we identify
modules in the original matrix, and then constrain
the row/column re-ordering so that rows and
columns cannot break the modular structure. Hence,
we still sort the rows and columns, but only inside
modules. In addition, we permit random permuta-
tions of the modular blocks along the main matrix
diagonal and select the configuration that minimizes
temperature (maximizes nestedness). Second, in the
case of nestedness as calculated using NODF, we
again identified modules and then restricted the
comparisons of overlap to rows and columns across
modules. In this way, we can evaluate the overall
nestedness of the original matrix without consider-
ing the nestedness contribution that comes from
inside of modules. More details are found in
Supplementary Text S3.
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Geographic analysis
Modules identified in our network analysis include
hosts and phages collected at potentially different
sample sites. The sample site of each phage and host
corresponds to different ‘stations’ in the Atlantic
Ocean. We estimated the geographic diversity of
stations within a given module using Shannon (Hk)
and Simpson indices (Dk) (Shannon, 1948; Simpson,
1949) where the subscript k denotes the module
number. Both indices measure the variability in the
stations of isolation of phages and hosts within a
given module. In addition, both indices were
applied to hosts and phages separately. The diver-
sity indices of a given module are:

Hk¼ �
PR
i¼1

ni

N log ni

N ; Dk¼ 1�
PR
i¼1

ni ni � 1ð Þ
N N �1ð Þ ð4Þ

where N are the number of different strains inside
the module, R are the number of stations inside the
module, and ni are the number of strains from
station i. Low values in both indices indicate low
geographical diversity. We determined the signifi-
cance of a measured diversity value by comparing
observations with an ensemble of randomized
matrix assignations of station labels to modules
(see Supplementary Text S4 for details).

Results

Characteristics of a large-scale phage-bacteria infection
network
The network properties of the MN phage-host
infection data set are shown in Table 1. We find
that only a small percentage of the cross-infections
yield a positive result (2.17%¼ 1332/61490), in
contrast to a previous meta-analysis where many
cross-infections yielded positive results (36.6%
¼ 4365/11944) (Flores et al., 2011). However, in
agreement with the prior meta-analysis we find that

phages can infect multiple hosts (average of 6.20,
median of 4 in the present study, average of 8.75,
median of 6 in the prior meta-analysis). Similarly,
we find that hosts are infected by multiple phages
(average of 4.66, median of 3 in the present study,
average of 4.34, median of 3 in the prior meta-
analysis). These averages and medians were calcu-
lated over all strains in the current study and by
aggregating strains from the prior analysis. Impor-
tantly, the degree distribution of this network is not
unimodal, that is, it does not have a single peak.
Instead, we find long-tailed distributions of the
number of hosts that a phage can infect, and
similarly, the number of phages that can infect a
host (see Supplementary Figure S3). Hence, there
exists a spectrum of viral types spanning specialists to
generalists; we find there are many more specialists
than generalist viral types in this study. Similarly,
hosts can span a spectrum of types from permissive to
resistant types; we find there are many more resistant
types than permissive types in this study.

Evaluating modularity at the whole-network scale
The MN matrix is comprised of 38 disjoint compo-
nents, that is, sets of phages and bacteria, which have
cross-infections within a component but no cross-
infections between components (see Figure 2). Given
the finding of disjoint components, we expect that
the MN matrix is significantly modular. We confirm
this via a modularity analysis using the BRIM
algorithm in which we identify 49 separate modules
(see Supplementary Table S2). The 49 modules
include the subdivision of some of the 38 disjoint
components as identified in the BRIM analysis such
that the overall modularity value Q is increased.
These results enable in-depth resolution of the
specialization within the system, in contrast to the
conclusion by Moebus and Nattkemper (1981) via
visual inspection that ‘two large groups of bacter-
iophage-host systems were encountered’ and ‘8 small
ones were found’. Figure 3 shows the modularity
sorting of the MN matrix resulting from the BRIM
algorithm, in which rows and columns inside
modules were sorted in order to highlight the
possible nested structure within modules. Remark-
ably, 1219/1332¼ 91.52% of the interactions occurs
within modules rather than between modules. The
calculated modularity of the MN matrix (Q¼ 0.7950)
is larger than any of the 105 realizations in either null
model (Po10�5, which is a conservative upper
bound). As a point of reference, the highest value of
any of the random matrices was Q¼ 0.4503. The
Z-score, representing the relative number of standard
deviations the actual modularity is larger than the
mean of the random ensemble, as calculated for
modularity was 87.55 using the Bernoulli null model
and 51.02 using the probabilistic degree null model.
It is important to note that although most interactions
occur within a module, these modules include
phages and bacteria from multiple stations. Hence,

Table 1 General properties of the curated phage-bacteria
interaction network

General properties Definition Value

NC Number of components 38
H Number of hosts 286
P Number of phages 215
I Number of interactions 1332
S¼HþP Number of species 501
M¼HP Size 61490
C¼ I/M Connectance or fill 0.0217

Host interactions
LH¼ I/H Mean host degree 4.6573
Max(ki) Max host degree 20
Min(ki) Min host degree 1

Phage interactions
LP¼ I/P Mean phage degree 6.1953
Max(di) Max phage degree 31
Min(di) Min phage degree 1
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we find that 76% (B1012/1332) of infections trans-
cend the site of isolation (see Supplementary File 1
and subsequent section on geographic analysis).

Evaluating nestedness at the whole-network scale
We evaluated the nestedness of the MN matrix
using a combination of algorithms and null models.

First, we resorted the row and columns in order of
increasing degree, a heuristic that tends to maximize
nestedness using the temperature calculator.
Visually, it would seem that the MN matrix is not
nested (see Figure 3 and Supplementary Figure S4).
We showed in a previous study that a community of
nested modules can lead to apparent nestedness at
the whole-matrix scale (Flores et al., 2011). Indeed,

Figure 2 Network representation of the study. We observe 38 isolated components. Black nodes represent phages, and white nodes
represent hosts. The station IDs of each host and phage are contained in the center of each node.
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for the four nestedness tests (two null models and
two algorithms) we find that the MN matrix is
apparently significantly nested in all cases except
for the NODF algorithm using the probabilistic
interaction null model. We argue that the apparent
finding of nestedness is driven by the fact that the

matrix contains nested modules, rather than a
nested arrangement of hosts and phages spanning
the entire matrix. We applied a multi-scale network
analysis to evaluate this hypothesis (see Materials
and methods and Supplementary Text S3). The
results of the conventional and multi-scale

c = 49 Modules

Q = 0.795, p < 10−5

Phages (215 nodes)
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Figure 3 Modularity sorting of the network. We detect 49 modules (shaded rectangles). The 15 largest modules discussed in the main
document begin at the left of the matrix. Black symbols represent those interactions within a module. Gray symbols represent those
occurring between modules. The P-value for the observed modularity is smaller than 10�5.
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nestedness analysis are summarized in Table 2. The
multi-scale analysis enables us to reject the finding
of nestedness for both algorithms when using the
probabilistic degree null model. Nestedness can also
be rejected even in the case of the Bernoulli null
model for NODF and for one of the multi-scale
analysis methods using NTC.

Network analysis at the intra-module scale
We performed a network analysis of the 15 largest
modules extracted from the modularity sort (see
Table 3 for summary statistics and Supplementary
Table S2 for information on all 49 modules). Figures
4 and 5 show the modularity and nestedness sorting,
respectively. We detected that 9/15 modules are
statistically modular in at least one of the two null
models, whereas 5/15 are modular using both of the
null models. In addition, we find that 8/15 of the
modules are statistically nested in at least one
combination of NTC/NODF vs Bernoulli/Probabil-
istic degree null models. The fact that 8 of 15
modules are statistically nested in at least one case
is an indication that nestedness is present at smaller
scales. This supports the hypothesis that modularity
may be characteristic at large scales (the scale of
the entire network), whereas nestedness may be
observed at small scales (at the scale of an
individual module) (Flores et al., 2011). However,
here we note that small-scale structure includes
nestedness and modularity.

Geographical diversity of interactions
We find that, on average, there is less geographic
diversity in each of the largest 15 modules identified
in Figure 3 than would be expected by chance. The
result of the geographic diversity test is shown in
Figure 6. Specifically for phages, 11 of 15 modules
exhibit statistically significant lower diversity than is
expected by chance using Simpson diversity, and 12
of 15 modules are found to be statistically significant
when using Shannon diversity (see Supplementary

Figure S7 and Supplementary Table S3). Moreover,
the two largest modules have lower geographic
diversity of phages than average, but not significantly
lower than might be expected by chance. Similar
results hold for hosts, where 10 of 15 modules exhibit
statistical significant lower diversity using Simpson
and 11 of 15 using Shannon diversity (again see
Supplementary Figure S7). These results imply that
strains within modules are overrepresented by
phages and hosts that belong to the same subset of
stations. However, it is important to point out that
this data set includes many positive infections (1012
of 1332) of hosts by phages that were not isolated
from the same sample site.

To what extent are the interactions between
phages and hosts at a given site more likely to occur
than those between sites? First, we find that the
probability of a phage infecting and exploiting a host
from a different station is lower (0.017) than it is of
infecting and exploiting a host from the same station
(0.17). This is a 10-fold effect in geographic

Table 2 Significance of the nestedness of the MN matrix using alternative algorithms

NTC algorithm NODF algorithm

NNTC Bernoulli Probabilistic degree NNODF Bernoulli Probabilistic degree

Normal analysis 0.9541 Po1e-5 Po1e-5 0.0341 Po1e-5 P¼ 0.2336
Multi-scale analysis 0.9359

0.9263
0.8568

Po1e-5
Po1e-5

P¼1

P¼1
P¼1
P¼1

0.0062 P¼ 1 P¼1

Abbreviations: MN matrix, Moebus and Nattkemper matrix; NODF, nestedness metric based on overlap and decreasing filling; NTC, nestedness
temperature calculator; The P-value denotes the fraction of random matrices that have a larger value of nestedness, N, than the observed MN
matrix. In the ‘normal’ analysis, the NTC algorithm and NODF algorithms are used to estimate nestedness using alternative null models (see
Materials and methods). For the multi-scale analysis three values have been reported for analyzing the significance of nestedness using the NTC
algorithm: (1) Modules are sorted according to the sort heuristic described in Supplementary Text S3; (2) Modules are sorted in descending order
of the number of phages; (3) Modules are sorted in ascending order of the number of phages. See Supplementary Figure S6 for the details of
sorting. Note that the values of nestedness can differ depending on the algorithm used, it is their relative value to the null model that determines
significance.

Table 3 Network properties of the largest 15 modules identified
using the modularity analysis (see Table 1 for definitions of all
quantities)

No. H P S I M C Lp Lh

1 42 23 269 65 966 0.28 6.40 11.70
2 39 12 138 51 468 0.29 3.54 11.50
3 31 31 233 62 961 0.24 7.52 7.52
4 23 13 61 36 299 0.20 2.65 4.69
5 16 20 114 36 320 0.36 7.13 5.70
6 15 5 30 20 75 0.40 2.00 6.00
7 12 7 27 19 84 0.32 2.25 3.86
8 11 8 52 19 88 0.59 4.73 6.50
9 8 6 38 14 48 0.79 4.75 6.33
10 8 11 57 19 88 0.65 7.13 5.18
11 7 5 15 12 35 0.43 2.14 3.00
12 7 7 17 14 49 0.35 2.43 2.43
13 7 9 49 16 63 0.78 7.00 5.44
14 6 7 21 13 42 0.50 3.50 3.00
15 6 6 27 12 36 0.75 4.50 4.50
Mean 15.87 11.33 76.53 27.20 241.47 0.46 4.51 5.82
Median 11 8 49 19 84 0.40 4.50 5.44
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isolation. We caution that the isolation procedures
for phages are heavily biased toward obtaining this
effect as phages were isolated from hosts at a given
station. As one means to control for this effect, we
reduced the number of internal station interactions

by the total number of viruses and re-perform this
analysis. In doing so, we find a revised probability of
0.061 within modules, which is a 3.6-fold increase
when compared with interactions between modules.
Finally, in Supplementary Figure S8, we show that

Module 1 − AB Module 2 − AB Module 3 − AB Module 4 − AB Module 5 − AB

Module 6 − A Module 7 − A Module 8 − a Module 9 − X Module 10 − a

Module 11 − A Module 12 − A Module 13 − ab Module 14 − X Module 15 − X

Figure 4 Modular sort of the internal structure of the 15 largest modules, in the same order as they appear in Figure 3. The significance
of modularity is denoted as follows: A/a¼ statistically modular/antimodular using Bernoulli null model, B/b¼ statistically modular/
antimodular using probabilistic degree null model. X¼no significant modular or antimodular.

Module 1 − ABCD Module 2 − AC Module 3 − ABCD Module 4 − AB Module 5 − ABC

Module 6 − X Module 7 − X Module 8 − ABCD Module 9 − X Module 10 − AB

Module 11 − X Module 12 − X Module 13 − A Module 14 − X Module 15 − X

Figure 5 Nestedness sort of the 15 largest modules. The gray line represents the isocline of the NTC algorithm. A/B¼ statistically nested
using NTC and Bernoulli/probabilistic degree null model, C/D¼ statistically nested using NODF and Bernoulli/ probabilistic degree null
model. X¼no significance was found.
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the fraction of shared interactions for both hosts and
phages is larger within stations than it is between
stations. Altogether these results show geographic
location, whether at a given site or among a subset of
sites, have an important role in driving infection
patterns.

Discussion

We performed the first multi-scale analysis of a
phage-bacteria infection network, comprised of 286
bacteria and 215 phages isolated from the Atlantic
Ocean. First, we found that bacteria and viruses were
highly variable in their interactions, corresponding
to a spectrum of generalist and specialist viruses

as well as hard-to-infect to permissive bacteria
(Supplementary Figure S3). Second, we found that
the infection network was modular at a large scale
and had multi-scale structure such that modules
were themselves nested and/or had further modular
organization. Network studies have suggested that
modularity can be topological, for example, func-
tional modularity as found in protein–protein inter-
action networks (Rives and Galitski, 2003) or
transcriptional regulatory networks (Ihmels et al.,
2002). Here, a geographic diversity analysis revealed
that the modular signal observed was driven, in part,
by geographic isolation. However, it is important to
point out that cross-infections that transcend site of
isolation were common, indeed approximately 76%
of observed interactions occurred between a phage

Figure 6 Geographical representation of the 15 largest modules. Each module is considered in a separate panel. Large filled circles
represent the stations included in the corresponding module; open circles represent the stations not included in the corresponding
module. Red and green small circles representing phages and bacteria, respectively, were randomly placed around their corresponding
station for improved visibility. A gray line between a red and green circle denotes an interaction between a virus and bacteria.
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and a bacterium isolated at different sites. We discuss
the relevance and implications of each of these
results below.

The observation has been made on multiple
occasions that the number of hosts a virus can infect
can vary substantially, (for example, Moebus and
Nattkemper, 1981; Wichels et al., 1998; Comeau
et al., 2006; Holmfeldt et al., 2007; Middelboe et al.,
2009). Variability in the host range of phages is
consistent with the notion that phages have evolved
evolutionary strategies ranging from specialists to
generalists. Similarly, variability in the number of
viruses that can infect a given host is consistent with
the notion that hosts have evolved evolutionary
strategies ranging from well defended to permissive.
It is thought that the relative ecological success of
such strategies depends on environmental condi-
tions, for example, bacterial defense specialists
may be favored when resources are abundant and
competition strategists may be favored when
resources are limited (Winter et al., 2010). However,
such conclusions are often based on models of
interaction dynamics, such as Kill-the-Winner
(Thingstad and Lignell, 1997; Thingstad, 2000), that
do not include significant cross-infection. Combin-
ing cross-infection networks into dynamic models
could help develop predictions relating infection
structure to community composition (Weitz and
Wilhelm, 2012).

Although we identified generalist viruses, the
most generalist virus could infect 31 of the 286 total
hosts in the network, suggesting that nestedness at
the whole-network scale is unlikely. Indeed, the MN
matrix is comprised of disjoint components
(Figure 2) of which some of these components
exhibit additional modular structure within a
component (Figure 3). These modules may them-
selves have further modularity and/or nestedness
(Figures 4 and 5). This is the first instance, of which
we are aware, of detection of such multi-scale
structure in microbial interaction networks. This
result can be interpreted in a number of ways. First,
the finding of modules within modules suggests
multiple levels of specialization that may be present
in the community. Second, the finding of nestedness
and modularity are not exclusive. In our prior study
(Flores et al., 2011), we found nearly perfectly
nested networks that appear ‘modular’ using the
standard BRIM metric (Barber, 2007). This warrants
separate examination to develop metrics that can
disentangle these two network properties. We
developed one such approach here, by suggesting
that estimates of nestedness could be performed
under modular constraints, and in so doing find that
modularity at the scale of the entire MN network
and observe nestedness at a local scale (that is,
within modules).

What is the biological basis for modules? Given
the data available, we evaluate the role of geography
in structuring infection. Moebus and Nattkemper
(1981) hypothesized, based on visual inspection,

that geographic location drove part of the interaction
signal. Recent work has suggested that viruses are
more likely to infect hosts from the same site than
they are hosts isolated at different sites (Vos et al.,
2009; Gómez and Buckling, 2011; Koskella et al.,
2011). We found a similar result, in that viruses were
at least three times more likely to infect a host
isolated from the same location than a host isolated
from a different location, even after accounting for
isolation bias. However, infection across sample
sites was observed frequently, and modules typi-
cally contained hosts and phages from multiple
sample sites. Using a geographic diversity method,
we found that modules tend to have phages and
hosts from a much smaller number of sample sites
than would be expected by chance. Hence our study
is consistent with recent calls for greater attention to
spatial structure to viral biogeography (Desnues
et al., 2008; Held and Whitaker, 2009). One inter-
pretation of our results is that interactions between
phages and host may be endemic despite a con-
sensus that viruses are usually cosmopolitan, that is,
they can be observed across a broad range of
locations (Breitbart et al., 2004; Angly et al., 2006).
This may be the case because geographically
separated sites are comprised of relatively distinct
microbes (for example, microbes differ at the genus
level or higher) so that isolated viruses are unlikely
to infect the taxa of microbes across sites. Or, it may
be that geographically separated sites have relatively
similar microbial isolates (for example, commu-
nities are dominated by culturable microbes related
at the species level or lower) but that their
geographic separation facilitated local coevolution
to take place, which enabled divergences in func-
tional interactions (Held and Whitaker, 2009;
Paterson et al., 2010; Breitbart, 2012).

The finding of multi-scale structure also suggests
that different processes may drive the emergence of
functional interactions at different scales. For exam-
ple, in the gene-for-gene model of coevolutionary
adaptation (Agrawal and Lively, 2002), hosts and
phages accumulate differences in defense and coun-
ter defense that are consistent with the emergence of
nestedness. However, innovations by hosts may also
have an important, albeit less frequent, role in
permitting hosts to escape from phage infection and
selective pressure. Similarly, innovations by phages
may also permit them to re-establish access to a
host population (Meyer et al., 2012). A number of
evolutionary models of phages and hosts have
proposed mechanisms by which coevolutionary
dynamics unfold (Thingstad, 2000; Weitz et al.,
2005; Rodriguez-Valera et al., 2009; Childs et al.,
2012). We suggest that examining resultant phage-
bacteria interaction networks will be an important
means to quantify functional complexity in natural
systems and to identify signatures that could dis-
criminate between alternative coevolutionary models.

Ecological patterns depend on the scale of inquiry
(Levin, 1992). In the case of phage-bacteria infection
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networks, relevant scales may be taxonomic, envir-
onmental and/or geographic. Hence, measurements
of interaction networks coupled with information on
geography, taxa and environmental conditions (for
example, Poisot et al., 2011) could help disentangle
the relative importance of drivers of microbial
interactions, in much the same way that biogeo-
graphic studies are beginning to quantify the relative
importance of drivers of microbial species distribu-
tions (Martiny et al., 2006). Of course, in doing so,
new methods to measure cross-infection will be
needed. First, our discussion of phage-host interac-
tions in this paper has largely focused on the
antagonistic mode. However, the MN matrix includes
turbid plaques, which could be interpreted as
indicative of infection by temperate phages. Follow-
up studies on the differences and similarities
between virulent vs temperate phages in natural
environments are worthwhile. Second, it was
recently noted that ‘the true host range for most
marine phages is completely uncharacterized’
(Breitbart, 2012). Previously published cross-infec-
tion assays, including the MN matrix examined here,
use traditional spot-assay or plaque-assay based
methods for assessing interactions between cultured
bacteria and phages. In moving forward, we suggest
that methods to evaluate the functional interaction
between hosts and phages that do not rely on
cultured isolates (Tadmor et al., 2011; Deng et al.,
2012) will represent an important step to assessing
the general structure of interactions in natural
communities. We hope that the network approach
developed here will be of use in such an effort.
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