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PPAR-delta promotes survival of breast cancer cells in harsh
metabolic conditions
X Wang1,2, G Wang1, Y Shi1, L Sun1,2, R Gorczynski3,4, Y-J Li1,5, Z Xu2,9 and DE Spaner1,3,6,7,8,9

Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively
associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast
adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ
increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred
the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions
such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low
glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT
phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival
benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh
microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ
may have a role in the treatment of breast cancer.
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INTRODUCTION
A hallmark of lethal breast cancers is their ability to live in
metabolic conditions that would otherwise kill normal cells.1 This
property is associated with resistance to chemotherapy and
immunotherapy and ultimately limits patient survival. A better
understanding of the mechanisms that allow breast cancer cells to
survive in harsh conditions might identify new targets to improve
therapeutic outcomes.
The nuclear receptor peroxisome proliferator activated receptor

delta (PPARδ) may be a central regulator of the ability of cells to
thrive in harsh conditions. It is the least characterized of the
nuclear receptor family that includes PPARγ and PPARα, which
control fat storage in adipocytes and fatty acid oxidation in liver
and muscle, respectively.2 PPARδ is expressed ubiquitously and, in
the absence of ligands, binds corepressors like NCOR1 and recruits
histone deacetylases to repress gene expression. PPARδ is
activated by high concentrations of free fatty acids, bioactive
lipids and synthetic agonists such as GW501516 and GW0742.2

Following ligand binding, it undergoes a conformational change
and mediates transcription of genes such as PPARD itself, ANGPTL4
and antioxidant genes such as CAT (catalase) that serve as
‘signatures’ for PPARδ activity.3

PPARδ increases the endurance capacity of muscle cells4 and
prevents exhaustion of hematopoietic stem cells by lowering
oxidative stress and preventing symmetric cell divisions.5,6 For
success in these situations, cells are required to function

effectively over relatively long periods of time in the presence
of increasingly unfavorable metabolic conditions. If PPARδ had
similar activity in cancer cells as in muscle and stem cells,
it could allow them to grow in metabolically stressful conditions.1,7

We have shown that PPARδ mRNA and protein expression are
upregulated when glycolysis is inhibited in leukemia cells.8 The
experiments in this manuscript were designed to investigate the
effect of PPARδ in harsh conditions such as found in breast cancer
microenvironments.9

RESULTS
PPARD upregulation in breast cancer cells is associated with more
aggressive clinical behavior
The magnitude of PPARD expression in 295 different breast cancer
samples has been associated directly with overall survival.10

We confirmed this by analyzing a public database of over 2500
clinically annotated breast cancer samples11 (Figure 1a).
Previously, we characterized a number of clones of adeno-

carcinomas derived from rats that had been injected with
v-Ha-Ras transgene-expressing retroviruses into the mammary
ducts. The ability of these clones to grow in soft agar was shown
to be predictive of aggressive behavior in vivo.12 Expression of
PPARδ by these clones was measured by immunoblotting
(Figure 1b). PPARδ levels were low or undetectable in four out
of six of the non-aggressive clones that did not grow in soft agar.
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In contrast, all seven aggressive clones that grew well in soft agar
expressed high PPARδ (Figure 1b).
A panel of luminal and basilar breast human cancer cell lines13

was then screened for PPARD mRNA expression (Figure 1c).
There was a trend toward higher expression of PPARD in lines
derived from basilar breast cancers, which are considered to have
more aggressive clinical behavior.14

MCF-7 cells were then used to study the effects of increasing
PPARD expression as they had relatively low baseline mRNA
expression (Figure 1c). The cells were transfected with retroviruses
expressing human PPARD and clones of PPARDhi-MCF-7 cells were
generated as described in the materials and methods. PPARDhi

and control MCF-7 cells transfected with expression vectors alone
were then injected into the mammary fat pads of NSG female
mice. After 21 days, PPARDhi-MCF-7 cells exhibited higher local
growth and metastasized to the lungs to a greater extent,
consistent with more aggressive behavior (Figure 1d).

PPARδ increases survival of MCF-7 cells in low extracellular
glucose
Consistent with the increased propensity to metastasize in vivo,
PPARDhi-MCF-7 cells also exhibited greater migration in vitro in
response to chemotactic factors in fetal bovine serum (FBS)
(Figure 2a). PPARDhi-MCF-7 cells did not grow much differently
than control cells for the first few days of culture in conventional
conditions (Dulbecco's modified Eagle's media (DMEM)+5% FBS).
However, if the cultures were continued without feeding, PPARDhi

cells grew better and there were significantly more PPARDhi cells
by day 9 than control MCF-7 cells (Figure 2b).
PPARD was not completely absent from the control cells,

although it was expressed to a much lower extent than in PPARDhi

cells. PPARδ knockout cells were generated by CRISPR/Cas9
technology, as described in the materials and methods. These
cells grew more slowly and their numbers at day 9 were much
lower than both PPARDhi cells and control MCF-7 cells (Figure 2b).
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Figure 1. Association of PPARδ expression with aggressive behavior of breast cancer cells. (a) Overall survival of 2500 breast cancer patients as
a function of PPARD gene expression in their biopsies. (b) PPARδ expression by immunoblotting in clones of rat mammary adenocarcinomas
with β-actin used as a loading control. Numbers of colonies from plating 5 × 103 cells in soft agar are shown for each clone.12 (c) PPARD
expression was measured by RT–PCR in the nine human breast cancer cell lines described in the table. The average and standard error of
PPARD expression for the basilar and luminal cell lines is shown in the bottom graph. (d) Two groups of NSG mice (n= 5) were injected in the
mammary fat pad with MCF-7 cells transfected with either a PPARD expression vector (clone 7 with high PPARD expression) or the vector
alone. Mice were killed after 21 days and local tumor volumes measured with calipers. Numbers of tumor colonies in the lungs were
determined by visual inspection. **Po0.05.
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After 9 days without feeding, the culture media is expected to
represent harsh metabolic conditions as the cells use up nutrients
such as glucose.15 On the basis of their behavior in continuous
culture (Figure 2b), PPARDhi cells were tested for their ability to
survive directly in low-glucose conditions. PPARDhi, control and
knockout cells in DMEM+5% FBS (4.5 gm/l = 25 mM glucose) were
washed and cultured in glucose-free RPMI+5% non-dialyzed FBS
(0.25 mM glucose) and cell viability was determined at various
times (Figure 3a). After 2–3 days, survival of PPARDhi cells was
much better than controls, whereas PPARD knockout cells did
quite poorly in these harsh conditions (Figure 3a).
To determine whether induction of PPARD expression without

genetic manipulation also conferred the ability to survive in
low-glucose conditions, MCF-7 cells were treated with the
glucocorticoid receptor agonist dexamethasone (30 μM) or the
PPARδ agonists GW0742 and GW501516. This concentration of
dexamethasone promotes PPARD expression in leukemia cells8

and PPARδ is known to auto-regulate itself.16 PPARD mRNA levels
increased modestly in low-glucose conditions and were also
increased by dexamethasone and the PPARδ agonists (Figure 3b,
top panels). Consistent with the increase in PPARD, the cells also
survived to a greater extent upon culture in low-glucose
conditions (Figure 3b, bottom panels).
To determine whether this ability to survive in low-glucose was

directly related to PPARD overexpression and not acquired
because of selection processes from prolonged tissue culture,
MCF-7 cells were independently transfected with lentiviruses that
expressed PPARD (Figure 3c, left panels) along with a turbo-red
fluorescent gene. Owing to infection efficiencies of 50% or more

and the ability to sort PPARD-expressing cells by flow cytometry,
this method allowed PPARDhi-MCF cells to be studied within a few
days of infection. PPARDhi-MCF-7 cells made with lentiviruses also
survived much better and further increased their expression of
PPARD in low glucose, suggesting these properties were conferred
directly by PPARδ (Figure 3c, left panels).
To determine that this ability to survive in low glucose was

not specific to MCF-7 cells, SKB-R3 breast cancer cells were also
transfected with PPARD. Clones of PPARDhi-SKB-R3 cells also
acquired the ability to survive in low-glucose compared with cells
transfected with the vector alone. PPARD levels also increased
further upon culture in low-glucose conditions (Figure 3c, right
panels).

PPARδ protects MCF-7 cells from endoplasmic reticulum (ER)
stress
Glucose deprivation causes an ER stress response17 and PPARδ
has been shown to protect cells from developing ER stress.18

Consistent with this, PPARDhi-MCF-7 cells also survived better than
control cells in other conditions that cause ER stress including
treatment with thapsigargin and hypoxia (Figure 3d).
The unfolded protein response is activated by ER stress and

mediated by PERK, ATF6 and IRE1.19 PERK causes a transcriptional
block that facilitates transcription of activating transcription factor
4 (ATF4), which mediates transcription of the gene encoding
the proapoptotic protein CHOP.19 Baseline expression of PERK
appeared to be higher in PPARDhi-MCF-7 cells but disappeared
after 24 h of glucose deprivation (Figure 3e). Expression of CHOP
began to increase after 8 h of glucose deprivation in both cell lines
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Figure 2. Migration and growth of PPARDhi, knockout and control MCF-7 cells in conventional glucose conditions. (a) Transwell invasion assays
were performed as described in the materials and methods in the presence or absence of the PPARD antagonists DG172 or NXT1511 (3 μM).
Cells that migrated to the bottom of the insert were counted after 96 h. Pictures of the stained and fixed inserts are shown in the upper panels
(×10 magnification) and the average and standard error of the numbers of large, blue migrated cells are shown in the lower graph. (b) Cells
were plated at an initial concentration of 104 cells/ml in 24-well plates in DMEM+5% FBS and counted manually on the indicated days. The
average and standard error of the results of three different counts per well are shown. Experiments were repeated three times with similar
results. **Po0.05.
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and was even higher in PPARDhi-MCF-7 cells (Figure 3e). These
findings suggest that PPARδ did not prevent the development of
ER stress but protected breast cancer cells from the consequences
of ER stress.

PPARδ protects MCF-7 cells from the oxidative stress of glucose
deprivation
Glucose deprivation is known to cause oxidative stress in cancer
cells20 and PPARδ has been shown to increase the antioxidant
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defenses of a number of cell types, including neurons and
cardiomyocytes.21,22 Oxidative stress increased considerably in
control MCF-7 cells after 24 h in low-glucose conditions as
measured by staining with dichloro-dihydro-fluorescein diacetate
(DCFH), which indicates levels of reactive oxygen species.23

In contrast, DCFH staining did not change significantly in

PPARDhi-MCF-7 cells (Figure 4a), suggesting they were protected
from oxidative stress. Short-term expression of PPARD in MCF-7
cells by lentiviruses also conferred protection from oxidative stress
(Figure 4d), suggesting it was caused directly by PPARδ and not
simply an epiphenomenon associated with increased PPARD
expression.

Figure 3. Survival of breast cancer cells in low glucose and other harsh conditions as a function of PPARD expression. (a) Control, PPARDhi and
PPARD knockout MCF-7 cells were cultured in glucose-free RPMI+5% non-dialyzed fetal calf serum. Percentages of viable cells that excluded
7-aminoactinomycin D (7AAD) were then determined at the indicated times by flow cytometry. The numbers in the scatter plots are the
percentages of viable 7AAD− cells. Averages and standard errors from three different experiments are shown in the lower graph. (b) Control
MCF-7 cells were cultured in low-glucose conditions with or without dexamethasone (DEX) (30 μM) (left panels) or GW0742 (1 μM) or GW50516
(100 nM) (right panels) to increase PPARD expression. PPARD (top panels) and percentages of 7AAD− cells (bottom panels) were measured by
RT–PCR or flow cytometry after 72 h. Each line represents the results from a different experiment and the average of all experiments was used
for statistical calculations. Results with the two synthetic agonists were pooled, as indicated by GW on the x axis of the right bottom graph.
(c) MCF-7 cells infected with lentiviruses (left panel) or SKB-R3 cells infected with retroviruses (right panel) expressing PPARD or the vectors
alone were cultured in low-glucose conditions. Viable cells were determined by flow cytometry after 3 days. The average and standard errors
of two separate experiments are shown. PPARD expression by RT–PCR under normal and low-glucose conditions after 2 days is shown in the
other graphs. (d) Viable cells were determined after 2 days of culture in conventional conditions with or without thapsigargin or hypoxia or in
low-glucose conditions. Averages and standard errors of three separate experiments are shown. (e) Cells were cultured in low-glucose
conditions and levels of PERK and CHOP were determined at the indicated times by immunoblotting using β-actin as a loading control.
**Po0.05.
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Figure 4. Effect of PPARδ on glucose deprivation-induced oxidative stress and catalase expression. (a) PPARDhi and vector control MCF-7 cells
were cultured in normal or low-glucose conditions for 24 h and then stained with DCFH as a measure of reactive oxygen species (ROS) levels.
Examples of the flow cytometric analyses are shown on the left. The numbers in the histograms represent the mean fluorescence intensity
(MFI) of DCFH staining. Averages and standard errors of three separate measurements are shown on the right. (b) MCF-7 cells were cultured in
low-glucose condition for 0, 4, 8, 24 and 48 h. PPARD and CAT levels were measured at these times by RT–PCR. (c) The cells were cultured in
low-glucose with or without catalase (20 μg/ml) for 3 days and the percentages of viable 7-aminoactinomycin D (7AAD)− cells were then
determined by flow cytometry. (d) MCF-7 cells infected with PPARD-expressing or control lentiviruses were cultured in normal or low-glucose
conditions for 24 h and then stained with DCFH. Averages and standard errors of two to three separate measurements are shown. **Po0.05.
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Catalase is one of the antioxidant genes that is regulated by
PPARδ.24 To determine whether it might help PPARDhi-MCF-7 cells
resist oxidative stress, catalase (CAT) and PPARD expression were
measured at serial times over 48 h of culture in low glucose
(Figure 4b). CAT mRNA levels increased more than twofold in both
vector control and PPARDhi cells, beginning around 8 h after
glucose deprivation (Figure 4b). Because CAT expression was
initially much higher in PPARDhi cells, CAT mRNA levels remained
fourfold to fivefold higher in PPARDhi cells for at least 48 h
(Figure 4b). Similar results were seen for PPARD itself. Addition of
exogenous catalase to correct the defect in CAT expression partially
rescued control MCF-7 cells from glucose starvation (Figure 4c).

PPARδ increases the AKT-mediated survival response to severe
glucose deprivation
The serine/threonine kinase AKT is another important mediator of
cancer cell survival in low-glucose conditions.25,26 Short-term
glucose deprivation (less than 6 h) causes a modest increase in
AKT phosphorylation owing to a release of feedback inhibition
from p70S6K. Prolonged glucose deprivation (416 h) induces a
marked increase in AKT phosphorylation owing to the formation
of a complex that consists of AKT together with the heat shock
protein GRP78 and the AKT-activating kinase PDPK1.25 Accord-
ingly, phospho-AKT levels were measured over time in MCF-7 cells
in low-glucose conditions (Figure 5a). Consistent with the survival
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benefit conferred by PPARD overexpression in these conditions
(Figure 2), phosphorylation of AKT was much higher in PPARDhi-
MCF-7 cells at 24 h compared with vector control cells (Figure 5a).
PPARδ has been shown to regulate the AKT signaling pathway

and PDPK1 is a transcriptional target of PPARδ.27 PDPK1 mRNA
(Figure 5b) and protein (Figure 5a) levels increased over time in
both control and PPARDhi-MCF-7 cells. However, PDPK1 levels
were higher initially and also at 24 h in PPARDhi-MCF-7 cells,
potentially accounting for the greater phosphorylation of AKT
(Figure 5a).
PPARDlo vector control cells were then treated with insulin,

IFN-alpha or both at 0 and 24 h after culture in low glucose
(Figure 5c) to activate AKT at later times and implicate the
changes in AKT phosphorylation with survival. The combination of
IFN-alpha and Insulin increased p-AKT levels (Figure 5c, left panel)
in these cells and their survival after 3 days (Figure 5c, right panel).
Conversely, inhibition of AKT with a small molecule inhibitor

decreased the survival of both vector control and PPARDhi MCF-7
cells in low glucose. PPARDhi cells were especially sensitive to AKT
inhibition in these conditions (Figure 5d).

Small molecule inhibitors reverse the survival effects of PPARδ
Despite the apparent importance of PPARδ in cancer biology,
there are presently no PPARδ antagonists available for clinical use.
However, a number of recent tool compounds28–32 can inhibit
activation of PPARD reporter constructs by ligands with EC50s in
the 10–100 nM range and little cross-reactivity to other nuclear
receptors. DG172 exhibits high binding affinity and potent inverse
agonistic properties28 (that is, binds PPARδ as an agonist but
decreases basal expression of target genes by increasing
recruitment of corepressors). PT-S58 is a cell-permeable-specific
competitive antagonist, targeting the ligand-binding site of PPARδ
but not allowing coregulator interactions.30 NXT1511 is another
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chemical compound that inhibits PPARδ at low micromolar
concentrations.33

All of these inhibitors decreased the ability of PPARDhi-MCF-7
cells to grow in exhausted tissue culture media (Figure 6a). The
ability of these cells to survive following glucose deprivation was
also reversed (Figure 6b, left panel) along with the upregulation of
the PPARδ-regulated genes PPARD, PDPK1 and CAT that occurs in
low glucose (Figure 6b, right panel). Invasion of PPARDhi-MCF-7
cells was also inhibited by DG172 and NXT1511 (Figure 2a).
The fact that three different chemical inhibitors of PPARδ gave

the same results provided some assurance that the results could
be explained by inhibition of PPARδ. To provide additional
evidence that the effects of the inhibitors were not simply due to
off-target activity, the PPARδ synthetic agonists GW0742 and
GW501516 were used.2 As DG172 is thought to bind to the ligand-
binding site of PPARδ, it should be displaced by these synthetic
agonists. Both agonists partially increased the survival of PPARDhi

cells in the presence of DG172 in low-glucose conditions
(Figure 6d, left panel) along with PDPK1 and CATmRNA expression
(Figure 6d, right panel). GW501516 appeared to be more potent in
this regard than GW0742.

DISCUSSION
The results in this manuscript indicate that PPARD is expressed
by breast cancer cells with more aggressive clinical behavior
(Figure 1). Higher PPARδ levels confer increased migratory
(Figure 2a) and metastatic (Figure 1d) properties along with the
ability to survive in harsh metabolic conditions such as exhausted
tissue culture media (Figure 2b) or low glucose (Figure 3). PPARδ
mediates these effects by mechanisms that include increased
expression of antioxidant proteins such as catalase (Figure 4) and
enhanced AKT-mediated survival signaling after prolonged
nutrient deprivation (Figure 5). PPARδ-antagonist tool compounds
can reverse these effects in vitro (Figure 6).
The role of PPARδ in cancer biology appears to be context-

dependent. PPARδ can prevent tumors, perhaps through
anti-inflammatory effects, but it promotes angiogenesis and
progression of cancers once they are established.34–37 Clinical
evidence supports an association of PPARδ with aggressive
cancers. For example, PPARδ expression is inversely correlated
with survival in gastrointestinal cancers.38 Consistent with our
findings (Figure 1), PPARδ has been implicated as an important
transcriptional node in breast cancer, and shorter survival of
breast cancer patients is associated with increased expression of
PPARδ by their tumor cells (Figure 2).10 Synthetic PPARδ ligands
also promote breast cancer progression and metastasis in
transgenic mice.37

Our results suggest PPARδ allows breast cancer cells to ‘endure’
harsh metabolic conditions (Figures 2,3 and 4), analogous to its
ability to promote endurance in muscle cells and prevent
exhaustion of stem cells.4–6 Taken together, the observations
suggest that PPARδ drives aggressive clinical behavior because it
allows cancer cells to grow in metabolically stressful conditions,
which would include the presence of chemotherapies that cause
ER stress (Figure 3d).1,7,8

It is not entirely clear why PPARδ should be expressed by
aggressive cancers. PPARD is located at chromosome 6p21.2,
which is a site of gain in estrogen receptor-negative and high-risk
breast cancers.39 However, PPARD appears to be expressed mainly
in response to factors in the microenvironment such as
glucocorticoids (Figure 3b), cytokines40 and signals that activate
calcineurin.41 We found it was also increased by low extracellular
glucose levels (Figures 3b and 4b) that cause ER stress (Figure 3d).
Interestingly, the transcription factor ATF4 is expressed in
ER stress conditions19 and may co-regulate the expression of
PPARδ-regulated genes, which include PPARD itself.3 However,
transcription of PPARδ-regulated genes did not seem to absolutely

require concomitant ER stress as baseline levels were higher in
PPARDhi cells growing in high-glucose ‘stress-free’ conditions
(Figures 4 and 5). CAT and PDPK1 gene expression did increase
following glucose deprivation to protect PPARDhi MCF-7 cells from
glucose stress (Figures 4 and 5), but also increased in control cells
although presumably not to sufficient levels to mediate protection
from the harsh conditions. In contrast, higher baseline levels of
these genes in PPARDhi cells meant that even higher levels were
achieved following glucose deprivation. Thus, high levels of PPARδ
appear to ‘condition’ the cells to survive in harsh conditions.
Synthetic agonists of PPARδ also increased PPARD levels

in MCF-7 cells (Figures 3b). Natural ligands of PPARδ
include bioactive lipids such as prostacyclin,42 15-HETE43 and
5-Oxo-ETE,44 derived from arachidonic acid by cyclooxygenase
and lipoxygenase enzymes. Other PPARδ ligands include high
concentrations of free fatty acids released from lipoproteins by
lipoprotein lipase45 or intracellular lipid droplets by ATGL.46 It is
unclear whether any of these ligands are activating PPARδ in
PPARDhi-MCF-7 cells or if sources of activating ligands change in
different microenvironmental conditions and mediate different
outcomes.
There are presently no clinically relevant PPARδ antagonists, but

existing drugs may block some of the effects of PPARδ. For
example, AKT inhibitors have been proposed to overcome the late
survival signaling responses that allow some cancer cells to
survive prolonged glucose deprivation.25 If PPARδ regulates this
response (Figure 5), then AKT inhibitors may act downstream of
PPARδ to kill tumor cells. However, protection by PPARδ appears
to involve multiple mechanisms, including prevention of oxidative
stress (Figure 4), which would not necessarily be blocked by ATK
inhibitors and could help explain the weak effects of these agents
in clinical trials.47 The results with tool compounds (Figure 6)
suggest they may be used to engineer clinically relevant
anti-PPARδ drugs. An alternative might be to use lipase inhibitors
and combinations of clinically relevant lipoxygenase and
cyclooxygenase inhibitors to block ligand generation and prevent
the activation of PPARδ.48,49 On the basis of the apparent
importance of PPARδ in mediating the behavior of aggressive
breast cancer cells, it would appear that strategies to target this
nuclear receptor may ultimately improve the outcomes of breast
cancer patients.

MATERIALS AND METHODS
Cell line and cell culture
The human breast cancer cell lines MCF-7, SKB-R3 and other lines
described in Figure 1c were obtained from American Type Culture
Collection (ATCC). Rat breast cancer cells shown in Figure 1b have been
previously described.12,50

Cells were cultured in high-glucose DMEM (Multicell) or glucose-free
RPMI 1640 Media (Multicell, Toronto, ON, Canada) supplemented with 5%
FBS and 1% penicillin-streptomycin (Multicell) at 37 ℃ with 5% carbon
dioxide.

Antibodies and reagents
PT-S58 (PPARδ antagonist), catalase, thapsigargin and β-actin
antibodies were from Sigma-Aldrich (St Louis, MO, USA). DCFH was from
Life-Tech (Carlsbad, CA, USA) while 7-aminoactinomycin D was from
Biolegend (San Diego, CA, USA). GW0742 and GW501516 (PPARδ agonists)
were from Cayman Chemical (Ann Arbor, MI, USA). Dexamethasone
(Omega, Montreal, QC, Canada), insulin (Eli Lilly, Toronto, ON, Canada) and
interferon-α2b (Schering Canada Inc., Pointe-Claire, QC, Canada) were
purchased from the hospital pharmacy. AKT inhibitor IV was from
Calbiochem (San Diego, CA, USA). DG172 (PPARδ antagonist) has been
previously described.28 NXT1511 (PPARδ antagonist) was provided by
Peppi Prasit (Inception, San Diego, CA, USA).
Antibodies to PERK, PDPK1, p-AKT(T308), AKT, p-SAPK/JNK (T183/Y185),

CHOP, anti-Rabbit IgG and anti-Mouse IgG were from Cell Signaling

PPARδ in breast cancer
X Wang et al

8

Oncogenesis (2016), 1 – 11



Technology (Danvers, MA, USA). The PPARδ antibody (101720) was from
Cayman.

Retroviral and lentiviral infections
Human PPARD full cDNA was obtained from Addgene (Cambridge, MA,
USA) and sub-cloned into the XhoI and EcoRI sites of retroviral MSCV2.2
plasmids or into the XhoI and NotI sites of lentiviral pLemiR plasmids.
Sequences of the constructs were confirmed before transfection.
Replication-defective viruses were prepared by transfecting the MSCV-
PPARD viral plasmid into the helper-free packaging cell line GP+A (B8), as
described previously.50 Supernatants from the virus-producing cells were
used to infect MCF-7 and SKB-R3 cells, plated at a density of 2 × 106 cells/
ml. Stably transfected clones were obtained by limiting dilution and
selection in G418 (Multicell). Transfection was conducted with Lipofecta-
mine 3000 according to the manufacturer's protocol (Invitrogen, Carlsbad,
CA, USA). Cells infected with retroviruses containing the empty vectors but
otherwise handled in the same way were used as controls.
To make lentiviruses, 8 × 105 HEK293T cells were seeded into 6-well

plates and transfected 24 h later with plemiR-PPARδ plasmids (1 μg) and
package plasmids (0.8 μg 8.2VPR vector and 0.2 μg VSVG vector) using
Lipofectamine 3000 according to the manufacturer's instructions. After
24 h, the media was replaced with 2 ml fresh media. After 48 h, the
supernatants containing lentivirus particles were collected and used to
infect MCF-7 and SKB-R3 cells. Infected cells expressed turbo-red
fluorescent proteins and were sorted on a flow cytometer. Control cells
were also made with the empty plasmids.

Generation of PPARδ knockout cells
To generate PPARδ loss-of-function phenotypes, PPARD was targeted by
commercial pLV-U6g-EPCG CRISPR single plasmids (HS0000171233,
Sigma), containing the PPARD gRNA and Cas9 element. MCF-7 cells
(7 × 105) were seeded into 6-well plates and transfected with 2 μg lentiviral
pLV-U6g-EPCG-PPARδ CRISPR plasmid using Lipofectamine 3000. After
24 h, stably infected cells were selected by growth in puromycin at
1 μg/ml for a week. Successful knockout of PPARD was confirmed by
immunoblotting.

Hypoxia treatment
MCF-7 cells were cultured at 1 × 106 cells/well in 6-well plates or 2 × 104

cells/well in 24-well plates in high-glucose DMEM with 5% FBS in an
INVIVO2 200 hypoxia workstation (Ruskinn, Bridgend, Mid Glamorgan, UK)
that was flushed with a mixture of 1 O2, 5 CO2 and 94.5% N2. Anaerobic
conditions were confirmed by using a Hypoxia Gas Mixer Q (Ruskinn) to
read the O2 content in the workstation.

Cell proliferation assays
Breast cancer cells were seeded at a density of 104 cells/well in 24-well
culture plates and counted in a hemocytometer at days 2, 5, 7 and 9.

Isolation of RNA and synthesis of cDNA
MCF-7 and SKB-R3 cells were harvested and washed. Total RNA was
extracted using the RNeasy kit (Qiagen, Mississaga, ON, Canada) according
to the manufacturer's instructions. RNA concentrations were determined in
a spectrophotometer at 260 nm.
Subsequent cDNA synthesis was performed using the Superscript III First

Strand Synthesis System for RT–PCR (Invitrogen) in a 20-μl reaction
containing 2 μg total RNA, 20 mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, 5 mM

dithiothreitol, 2.5 μm OligodT20, 0.5 mM each of dATP, dGTP, dCTP, dTTP
and 200U Superscript III Reverse Transcriptase. The priming oligo-
nucleotide was annealed to total RNA by incubating at 65 °C for 5 min
and cooling to 4 °C. Reverse transcription was performed at 50 °C for
50 min and cDNA was stored at − 20 °C until used for real-time PCR
analysis.

Real-time PCR
The following primers were used to amplify human PPARD, PDPK1, CAT and
HPRT transcripts: PPARD forward: 5′-CTCTATCGTCAACAAGGACG-3′;
reverse: 5′-GTCTTCTTGATCCGCTGCAT-3′. PDPK1 forward: 5′-TAACAAGA
GAGCGGGATGTC-3′; reverse: 5′-ATCGGGTACAGGTCTCATCG-3′. Catalase
forward: 5′-CCTTTCTGTTGAAGATGCGGCG-3′; reverse: 5′-GGCGGGTGAGT

GTCAGGATAG-3′. HPRT forward: 5′-GAGGATTTGGAAAGGGTGTT-3′; reverse:
5′-ACAATAGCTCTTCAGTCTGA-3′. PCR was performed on a DNA engine
Option System (MJ Research Inc, Waltham, MA, USA) using SYBR Green
(Life Technologies, Warrington, UK) as a double-stranded DNA-specific
binding dye. PCR reactions were cycled 40 times after initial denaturation
(95 °C, 15 min) with the following parameters: denaturation at 95°C for
20 s, annealing of primers at 58 °C for 20 s, and extension at 72 °C for 20 s.
Fluorescent data were acquired during each extension phase. After each
PCR reaction, a melting curve analysis of amplification products was
performed by increasing the temperature to 95 °C at 0.2 °C/s. Fast loss of
fluorescence is observed uniquely at the denaturing/melting temperature
of the amplified DNA fragment. Standard curves were generated with
serial 10-fold dilution of cDNAs obtained with the same primers as for
real-time PCR.

Western blots
MCF-7 cells were collected and lysed for 30 min in lysis buffer (0.5%
TritonX-100, 25 mM MES, 150 mM NaCl, 1 mM Na3VO4, 2 mM EDTA, 1 mM

PMSF, 1 μg/ml aprotinin) at 4 °C, followed by high-speed centrifugation for
15 min. Protein extracts were collected, quantified by the method of
Bradford and prepared for immunoblotting by 1:4 dilution in 5 × sample
buffer ( 8% (wt/vol) SDS, 8% (vol/vol) 2-ME, 250 mM Tris, 40% glycerol, 2%
bromophenol blue in dd-H2O) and denaturation at 100 °C for 5 min.
Sample were then loaded on a discontinuous polyacrylamide gel
consisting of 10% resolving and 5% stacking gels. The separated proteins
were then transferred to Immobilon-P membranes (EMD Millipore, Billerica,
MA, USA) that were pre-activated with 100% methanol. Blots were blocked
with 5% milk or bovine serum albumin for 1 h before incubation with
primary antibodies followed by anti-rabbit or anti-mouse antibodies.
Signals were detected with Supersignal horseradish peroxidase enhanced
chemiluminescence reagent (Thermo Fisher Scientific, Waltham, MA, USA),
and blots were exposed to premium autoradiography film. Blots were
stripped for 60 min at 37 °C in Restore Western blot Stripping buffer
(Thermo) washed twice in Tris-buffered saline plus 0.05% Tween-20
at room temperature, blocked and re-probed, as required. Antibodies
to β-actin (1:50 000 dilution) were used to control for loading.

Flow cytometric analysis of live cells and reactive oxygen species
Cells were transferred to conical tubes, pelleted and resuspended in 500 μl
phosphate-buffered saline with 3 μl 7-aminoactinomycin D. After 15 min in
the dark at room temperature, the cells were analyzed on a FACSCalibur
flow cytometer (BD Biosciences, Mississauga, ON, Canada) using CellQuest
flow. At least 10 000 events were collected for each experiment.
The dye 2’7’-dichlorofluorescin diacetate (DCFH2-DA) (Molecular Probes,

Eugene, OR, USA) was used to indicate intracellular reactive oxygen species
formation. Intracellular esterases cleave the acetyl groups from the
molecule to produce non-fluorescent DCFH2, which is trapped inside the
cell. In the presence of reactive oxygen species, DCFH2 is oxidized to DCF,
which emits fluorescence at 530 nm, after excitation at 488 nm. Breast
cancer cells were incubated with 10 μM DCFH2-DA at 37 °C for 30 min.
Samples were then washed in phosphate-buffered saline and DCFH2

oxidation was measured as ‘green’ (FL1) fluorescence on a log scale for
10 000 events.

Transwell cell invasion assay
Transwell 24-well chambers (Corning, NY, USA) were used to monitor cell
invasion. The upper side of the filter was covered with Matrigel (Corning).
DMEM with 5% FBS containing chemoattractants was added to the lower
chamber. MCF-7 cells (1 × 105 cells in 100 μl DMEM alone) were plated in
the upper chamber and incubated at 37 °C for 96 h. Cells that had adhered
to the underside of the membrane were fixed, stained with Coomassie
Brilliant Blue and counted under a dissecting microscope.

In vivo experiments
NOD-SCIDγc

null (NSG) mice were bred and maintained at the Toronto
Medical Discovery Tower, MaRs Centre (Toronto, ON, Canada). Female mice
(8–12 weeks old) were injected with 5× 106 breast cancer cells in 100 μl
phosphate-buffered saline into the mammary fat pad. At day 21, local
tumors were measured in two dimensions by calipers and the mice were
killed. To enumerate lung metastases, lungs were fixed in 4% para-
formaldehyde and tumor nodules were counted under a dissecting
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microscope as described before.51 Animal protocols were approved by the
Sunnybrook Research Institute animal care committee.

Statistical analysis
All in vitro experiments were performed in triplicate and repeated three
times. Data are presented as mean± standard error unless otherwise
indicated. Unpaired two-tailed student t-tests were used to determine
P-values for differences between sample means. P-values less than 0.05
were considered significant.
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