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ABSTRACT

Evaluation of drug interactions is an essential step in the new drug development process. 
Regulatory agencies, including U.S. Food and Drug Administrations and European Medicines 
Agency, have been published documents containing guidelines to evaluate potential drug 
interactions. Here, we have streamlined in vitro experiments to assess metabolizing enzyme-
mediated drug interactions and provided an overview of the overall process to evaluate 
potential clinical drug interactions using in vitro data. An experimental approach is presented 
when an investigational drug (ID) is either a victim or a perpetrator, respectively, and the 
general procedure to obtain in vitro drug interaction parameters is also described. With the in 
vitro inhibitory and/or inductive parameters of the ID, basic, static, and/or dynamic models 
were used to evaluate potential clinical drug interactions. In addition to basic and static models 
which assume the most conservative conditions, such as the concentration of perpetrators 
as Cmax, dynamic models including physiologically-based pharmacokinetic models take into 
account changes in in vivo concentrations and metabolizing enzyme levels over time.

Keywords: Drug Interactions; Metabolism; Cytochrome P-450 Enzyme Inhibitors; 
Cytochrome P-450 Enzyme Inducers

INTRODUCTION

Drug-drug interactions (DDIs) are crucial concerns in drug development process and clinical 
practice. The in vitro techniques for drug interaction assessment continue to be developed, 
and various approaches have been established to translate in vitro data into in vivo prediction 
of potential drug interactions. Regulatory agencies such as Food and Drug Administration 
in the U.S. (USFDA) and European Medicines Agency (EMA) detailed these methods through 
the documented guidelines [1,2]. DDI referred to herein stands for pharmacokinetic (PK) 
DDI and more specifically implies metabolizing enzyme- and transporter-mediated DDI.

In order to predict potential DDI using in vitro data, both cases, where an investigational drug 
(ID) acts as a perpetrator or as a victim (substrate), should be considered. If an ID acts as a 
perpetrator, it can increase or decrease exposures of a substrate, inducing potential toxicity 
or loss of efficacy. In this case, a basic model and static mechanistic or dynamic model are 
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Glossary
CA  drug concentration in arterial 

compartment
CLint  intrinsic clearance, metabolic 

clearance
CLint, H  the total intrinsic hepatic clearance
CLint,G the total intrinsic gut clearance
CLint,met metabolic intrinsic clearance
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CT  drug concentration in tissue 
compartment

CV  drug concentration in venous 
compartment

CYP cytochrome P450
DDI drug-drug interaction
Eact abundance of active enzyme
EC50  the concentration causing half-

maximal effect determined in vitro
Emax  the maximum induction effect 

determined in vitro
fm  the fraction of drug metabolized by 

an enzyme
fu  the fraction of unbound drug in 

plasma
fu,incubation  the fraction of unbound drug in in 

vitro incubation system
HH human hepatocyte
HLM human liver microsome
IC50  the concentration of an inhibitor to 

cause 50% inhibition
ID investigational drug
Ig(H)  the maximal unbound concentration 

of the interacting (perpetrator) drug 
in gut (liver)

Imax,u  the maximal unbound plasma 
concentration of the interacting 
(perpetrator) drug at steady-state

ISEF intersystem extrapolation factor
IVIVE in vitro-in vivo extrapolation
kdeg  the apparent first-order degradation 

rate constant of the affected enzyme
Ki  the enzyme inhibition constant
KI  the enzyme inactivation constant
kinact the maximal rate of inactivation
Km  Michaelis constant, the substrate 

concentration producing a reaction 
velocity of 50% of Vmax

kobs  the observed inactivation rate 
constant

Kp  tissue to plasma partition coefficient
QT tissue blood flow
RIS relative induction score
rhCYP recombinant human CYP
TDI time-dependent inhibition
UGT  uridine 5′-diphospho-

glucuronosyltransferase
Vmax  the maximum rate of metabolite 

formation
VT tissue volume
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sequentially used to determine the magnitude of clinical DDI, in which in vitro absorption, 
distribution, excretion, and metabolization (ADME) data and an inhibitory constant or 
induction parameters are used. On the other hand, if an ID acts as a victim, which means 
that the drug is metabolized ≥ 25% by a specific enzyme, clinical DDI studies with strong 
inhibitors and/or inducers should be conducted [1,2].

A general framework for evaluating clinical DDI using in vitro data is well documented in 
the guidance issued by USFDA [1], and there have been many publications on an in vitro-in 
vivo extrapolation (IVIVE) approach for predicting DDI. However, this tutorial focuses more 
on the following contents: 1) specific methods and information about in vitro experiments, 
2) an overview of the overall process to evaluate clinical DDI potentials using in vitro data, 
and 3) an introductory and comprehensive description of a translational DDI approach for 
scientists who are not familiar with drug metabolism and pharmacokinetics. This tutorial 
only covers metabolizing enzyme-mediated DDI, but it does not discuss the interactions with 
therapeutic proteins, gastric pH change-dependent DDI, transporter-mediated DDI, and 
pharmacodynamic DDI.

EXPERIMENTAL APPROACHES FOR OBTAINING IN VITRO 
PARAMETERS IN NEED FOR DDI PREDICTION
ID as a substrate: metabolism parameters
The approach to be introduced here is a general and frequently used method. However, it is 
not standardized and can be flexibly adjusted depending on characteristics of an ID.

Prior to conducting a reaction phenotyping study for metabolizing enzyme identification, 
metabolic stability screening in various experimental conditions is generally performed. 
Various in vitro systems, including human hepatocytes (HHs), human liver microsomes 
(HLMs), S9, cytosol, and/or recombinant human CYP (rhCYP) isozymes, are used for 
experiments, depending on which enzymes are investigated. From the experiments, a 
metabolic pathway and metabolic clearance (CLint) of the ID can be identified. The numerous 
kinds of in vitro systems are summarized in Table 1 [3], and the examples of metabolic 
stability tests using HLM are shown in Table 2.

Regarding the identification of specific metabolizing enzymes of an ID, two methods are 
widely used and recommended by USFDA guidance for the industry as well [1]. The first 
one is to use chemicals, drugs, and antibodies as selective inhibitors of enzymes, and the 
other is to use recombinant human enzymes. Both methods of measuring parent depletion 
and metabolite formation can be utilized. However, when examining the contribution of 
individual metabolizing enzymes to metabolite formation, the formation rate of specific 
metabolites should be measured. If metabolite information is available, the maximum 
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Table 1. In vitro drug-metabolizing experimental systems
In vitro system CYP MAO UGT ST GST
Microsomes O X O X O*
S9 O X O O O
Cytosol X X X O O†

Hepatocytes O O O O O
CYP, cytochrome P450; MAO, monoamine oxidase; UGT, UDP-glucuronosyltransferase; ST, sulfonyltransferase; 
GST, glutathione-S-transferase.
*Membrane-bound GST; †Soluble GST.
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reaction velocity (Vmax) and the substrate concentration producing a reaction velocity of 50% 
of Vmax (Km) can be determined with enzyme kinetic analysis.

After identifying the specific enzymes that are responsible for ID metabolism and obtaining 
CLint from the experiment, the fraction of drug metabolized by a specific enzyme, fm, should 
be calculated. In general, the higher the fm of a specific enzyme is, the greater the potential of 
the specific enzyme-mediated DDI can occur. The process of calculating fm is well-described 
in the previous tutorial [4].

ID as an inhibitor: inhibition parameters
The potential of an ID to inhibit the metabolism of other drugs should be examined. The 
regulatory agencies recommend in vitro inhibition studies on 6 CYP isoforms, including 
CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A in both reversible and irreversible 
(time-dependent inhibition, TDI) manner [1,2], and UGT isoforms including UGT1A1 
and UGT2B7 as well [2]. The list of in vitro selective marker reactions of probe substrates, 
inhibitors, and inducers recommended by EMA and/or USFDA are summarized in Table 3.

IC50 represents the concentration of an inhibitor to cause 50% inhibition at one selected 
substrate concentration and is commonly used for reversible inhibition screening. 
Determination of IC50 is a simple assay, and multiple inhibitor concentrations are tested for 
inhibition at a single substrate concentration. The most important concern here is that the 
substrate concentration should be close to Km for achieving high precision results. If IC50 of 
the ID is low at a specific enzyme, Ki (the enzyme inhibition constant) assay can proceed. At 
this time, 3 or more substrate concentrations including Km should be selected. It provides 
information about the type of reversible inhibition of the ID (competitive, non-competitive, 
uncompetitive, or mixed inhibition) and the potency of the inhibition. Ki is used for 
quantitative assessment of DDI potential. In the absence of assayed Ki values, IC50 values can 
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Table 2. The examples of metabolic stability screening using HLM
Metabolic Pathways (enzymes) None ES, CES ES, CES, CYP, FMO ES, CES, UGT ES, CES, CYP ES, CES, FMO
Buffer* O O O O O O
HLM X O O O O O
NADPH† X X O X O O
UDPGA‡ X X X O X X
SKF525A§ X X X X X O
Pre-incubation 37°C, 5 min 37°C, 5 min 37°C, 5 min Ice, 30 min 45°C, 30 min∥ 37°C, 5 min
ES, esterase; CES, carboxylesterase; CYP, cytochrome P450; FMO, flavin-containing monooxygenase; HLM, human liver microsome; UGT, UDP-
glucuronosyltransferase; GST, glutathione-S-transferase.
*Phosphate buffer or Tris buffer; †MgCl2 can be added; ‡Alamethicin is added before pre-incubation; §SKF525A is a nonspecific CYP inhibitor; ∥Heat (45°C) 
inactivates FMO activity.

Table 3. Examples of in vitro marker reactions, inhibitors, and inducers for specific enzymes
Enzymes Marker reaction Inhibitor Inducer
CYP1A2 Phenacetin O-deethylation, 7-ethoxyresorufin-O-deethylation α-Naphthoflavone, furafylline* Omeprazole, 

lansoprazole
CYP2B6 Efavirenz hydroxylation, bupropion hydroxylation Sertraline, phencyclidine*, thiotepa*, ticlopidine* Phenobarbital
CYP2C8 Paclitaxel 6α-hydroxylation, amodiaquine N-deethylation Montelukast, quercetin, phenelzine* Rifampicin
CYP2C9 S-Warfarin 7-hydroxylation, diclofenac 4'-hydroxylation Sulfaphenazole, tienilic acid* Rifampicin
CYP2C19 S-Mephenytoin 4'-hydroxylation S-(+)-N-3-benzyl-nirvanol, nootkatone, ticlopidine*, loratadine Rifampicin
CYP2D6 Bufuralol 1'-hydroxylation, dextromethorphan O-demethylation Quinidine, paroxetine* -
CYP3A Midazolam 1'-hydroxylation, testosterone 6β-hydroxylation Itraconazole, ketoconazole, azamulin*, troleandomycin*, 

verapamil*
Rifampicin

*Time-dependent inhibitors; †No selective inhibitor is available in vitro for CYP2C19- and CYP2B6-mediated metabolisms.
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be used to calculate Ki (Ki = IC50/2 if the substrate concentration used for IC50 assay is similar 
to Km) [5]. However, it is recommended to use Ki values obtained from the experiment as IC50 
is not a constant and tends to have high interlaboratory variability. A representative example 
of reversible inhibition is shown in Fig. 1.

For TDI, a single point assay and IC50 shift assay are generally performed to screen whether 
an ID is a potential irreversible inhibitor or not. In the single-point assay, the percent of 
inhibition of an ID is calculated using metabolite formation of a probe substrate in the 
presence or absence of NADPH in the pre-incubation step. On the other hand, in the IC50 
shift assay, IC50 values are compared in the presence or absence of NADPH in the pre-
incubation step. If the IC50 value in the presence of NADPH shift to the left more than 
1.5-fold, it is considered as a potential irreversible inhibitor. In that case, further approaches 
for determining inactivation kinetic parameters, including KI (concentration of inhibitor at 
which the inactivation rate is at half-maximum) and kinact (the maximal rate of inactivation), 
are warranted. In this experiment, metabolite formations of the probe substrate are 
measured with various concentrations of the inhibitor at various pre-incubation times (0 to 
40 minutes), and the inactivation rate constant (kobs) can be obtained by regression using the 
following Eq. 1.
 

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢

𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢
 

 

Imax,u represents the maximum unbound concentration of the interacting (perpetrator) drug at 
steady state. The examples of TDI results were shown Figs. 2 and 3.

ID as an inducer: induction parameters
To investigate the induction potential of an ID in vitro, HH is preferred. HHs from at least 
3 donors are recommended, and both positive and negative control groups should be 
added to validate the experimental system. Incubation of HHs with an ID generally lasts 
for 48–72 hours to allow complete induction. The mRNA levels and/or enzyme activity 
should be assessed. In other words, because enzyme activity can be masked if concomitant 
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(Eq. 1)
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Figure 1. A representative example of IC50 and Ki determination assay. Dextromethorphan was used as a 
probe substrate of CYP2D6 activity. (A) IC50 determination assay was conducted in the presence of 5 μM 
dextromethorphan whose concentration is known as Km of dextromethorphan of CYP2D6. (B) Ki determination 
assay of quinidine (a CYP2D6 inhibitor) in the presence of 3 different concentrations of dextromethorphan was 
performed, and the results were a good fit for the competitive inhibition type when linearized on a Dixon plot. 
Figures are adapted from Cho et al. [6] with permission. 
IC50, the concentration of an inhibitor to cause 50% inhibition; Ki, the enzyme inhibition constant; Km, Michaelis 
constant, the substrate concentration producing a reaction velocity of 50% of Vmax.
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inhibitors are present, the measurement of mRNA level is preferred. The USFDA guidance 
recommends conducting an induction study for CYPs, including CYP1A2, CYP2B6, and 
CYP3A, induced via different nuclear receptors. If CYP3A4 is induced by the ID, additional 
induction studies of CYP2Cs should be conducted because CYP2C is induced by the pregnane 
X receptor (PXR), the same nuclear receptor for CYP3A induction. If in vitro induction results 
are positive, further induction studies to determine Emax (the maximum induction effect 
determined in vitro) and EC50 (the concentration causing half-maximal effect determined 
in vitro) are warranted. Here, Emax typically represents the highest fold-induction observed 
at experimental concentrations. Therefore, at least 4 different concentrations of inducer 
are required to determine Emax and EC50 values. If the maximal fold-induction has not been 
determined in the experiment, or if Emax exhibits high variability between donors, the 
maximal fold-induction obtained from the positive control can be used for calibration.
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Figure 2. Examples of IC50 shift assay. Paclitaxel 6α-hydroxylation is a marker reaction of CYP2C8. (A) Gemfibrozil inhibited CYP2C8 with IC50 values of 120 μM 
(without NADPH preincubation) and 150 μM (with NADPH preincubation), indicating that gemfibrozil competitively inhibited CYP2C8. (B) On the other hand, GFG 
inhibited CYP2C8 with IC50 values of 24 μM (without NADPH preincubation) and 1.8 μM (with NADPH preincubation), indicating that GFG irreversibly inhibited 
CYP2C8. Figures are adapted from Ogilvie et al. [7] with permission. 
IC50, the concentration of an inhibitor to cause 50% inhibition; GFG, gemfibrozil glucuronide.
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Figure 3. An example of determination of inactivation kinetic parameters. (A) Based on the result from IC50 shift assay (Fig. 2), KI and kinact of GFG against CYP2C8 
activity were determined, and (B) kobs (λ) was also calculated using KI and kinact. The kinact value was 0.21 1/min which meant that 21% of CYP2C8 was inactivated 
every minute by GFG. Figures are adapted from Ogilvie et al. [7] with permission. 
GFG, gemfibrozil glucuronide; kobs, the observed inactivation rate constant; KI, the enzyme inactivation constant; kinact, the maximal rate of inactivation.
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DATA INTERPRETATION

Based on collected in vitro DDI data, DDI potential can be predicted in three ways: a basic, 
static, or dynamic model. Despite the fact that all of these models require in vitro DDI 
parameters, their complicatedness and sensitivity vary according to how they are used. 
According to the USFDA, basic models are the first-line DDI evaluation tools to determine 
whether further evaluation is necessary or not. If the basic model does not rule out the 
DDI potential, a static or dynamic model is recommended for further evaluation to assess 
DDI risks and proactively plan the DDI study in clinical development [1]. The static model 
approach is relatively simple and direct but tends to overpredict DDI risks because it does 
not consider time-varying changes and assumes that the concentration of perpetrator stays 
at maximum. On the other hand, the dynamic model approach is more demanding but 
most informative, because it allows time-dependent changes of concentration and enzyme 
abundance. Thus, between static and dynamic models, it is recommended to choose a static 
model as startup approaches and pursue a dynamic model subsequently depending on 
the predicted DDI potential, potential concomitant drugs and sponsor’s financial/human 
resource capacity.

Basic model
The basic model does not incorporate drug disposition, and it only determines whether an 
ID is a potential perpetrator or not based on its in vitro DDI parameters (i.e., Ki, KI, kinact, 
EC50) and Imax,u. It calculates the ratios of intrinsic clearance values (R1, R2, R3) of a probe 
substrate for an enzyme pathway in the absence and presence of the interacting drug by each 
mechanism using corresponding in vitro DDI parameters mentioned above.

 𝑅𝑅𝑅𝑅1,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1 +  𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢

𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒
 For reversible inhibition  (Eq. 2)

 𝑅𝑅𝑅𝑅2,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+ 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 For TDI                    (Eq. 3)

 (𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 50 × 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢

𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼,𝑢𝑢𝑢𝑢,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 50 × 𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢
) 

 
𝑅𝑅𝑅𝑅3,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1

1+
𝑑𝑑𝑑𝑑×𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒×10×𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸50,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒+10×𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑢𝑢

 For induction 
  (Eq. 4)

In the equations, kdeg represents the apparent first-order degradation rate constant of the 
affected enzyme and d refers to the scaling factor and is usually assumed to be 1 [1]. If R1 
≥ 1.02, R1,gut ≥ 11, R2 ≥ 1.25, or R3 ≤ 0.8, the potential DDI risks should be further evaluated 
according to USFDA guidance [1]. For accessing the TDI and induction potentials in the 
basic model, 50 and 10 times of Imax,u are used respectively for the conservative results. 
Remember that the unbound fractions of Imax and Ki (or KI) are different. The former is the 
fraction of unbound in plasma (fu), whereas the latter is the fraction of an unbound drug 
in in vitro incubation system (fu,incubation). For the assessment of CYP induction, fold-change 
methods and/or correlation methods can also be used instead of the R3 value. These methods 
are summarized in Table 4. If induction kinetic parameters including Emax and EC50 are not 
available, fold-change methods can be used. In addition, RIS in correlation methods is 
suitable for CYP3A induction since sufficient data are only available for PXR activation [8].

By evaluating the R1, R2, R3 values of each enzyme, the potential DDI risk of the ID as a 
perpetrator is determined. This method is the most conservative because it assumes that the 
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victim drug is 100% eliminated by the enzyme (fm, enzyme = 1), and exposure of the perpetrator 
drug stays at maximum. Thus, it is the first and most important model to use for DDI 
evaluation which can rule out further evaluations in mechanistic models and determine the 
necessity of clinical DDI study using index drugs [1].

Static model
When the basic model does not rule out the DDI potential, mechanistic modeling can be 
used for further evaluation, and a static model is one of them. The static model approach is 
relatively simple and useful for preliminary mechanistic evaluation [9,10]. It was suggested 
by Fahmi et al. [11] and also called as “Modified Rowland-Matin model” [12-14]. Unlike the 
basic model, which only determines DDI potential without considering PKs of a victim drug, 
the static model predicts the overall exposure changes of a victim drug in terms of area under 
the concentration-time curve (AUC) ratio by incorporating elimination pathway (fm, FG) of the 
victim drug and in vitro DDI parameters of the perpetrator drug. Also, it takes into account 
intestinal metabolism for oral administration. Basically, when assuming that absorption 
rate is unaffected, the AUC ratio in the presence and absence of a perpetrator drug can be 
expressed using the ratio of intrinsic clearance in intestine and liver as below:

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝐹𝐹𝐹𝐹′𝐺𝐺𝐺𝐺
𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺

×
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻
=
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝐺𝐺

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝐺𝐺
×
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻
 

 

F’G and FG represent the fraction available after intestinal metabolism of the victim drug with 
or without the perpetrator drug, respectively. CL’int,H and CLint,H represent the total intrinsic 
hepatic clearance of the victim drug with or without the perpetrator drug, respectively. 
Like the basic model, the ratio of intrinsic clearance can be expressed using in vitro DDI 
parameters and the maximum concentration of a perpetrator drug. However, the static model 
simultaneously assesses competitive inhibition, TDI, and induction effect [11]. Moreover, 
when a victim drug is eliminated by multiple pathways, DDIs only affect the related intrinsic 
clearances by factoring the contribution fraction to the total clearance (fm). The expected net 
effects of intrinsic clearance changes can be expressed as Eq. 6 and Eq. 7, and the AUC ratio 
(Eq. 8) can be illustrated by substituting Eq. 6 and Eq. 7 into Eq. 5:

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝐺𝐺

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐺𝐺𝐺𝐺
=

1
�𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔 × 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 × 𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔� × �1 − 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔�+ 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔

                         

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻𝐻𝐻
=

1
∑(𝐴𝐴𝐴𝐴ℎ × 𝐵𝐵𝐵𝐵ℎ × 𝐶𝐶𝐶𝐶ℎ) × 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 + (1 − ∑𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚) 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
1

�𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔 × 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 × 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔� × �1 − 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔� + 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔
×

1
∑(𝐴𝐴𝐴𝐴ℎ × 𝐵𝐵𝐵𝐵ℎ × 𝐴𝐴𝐴𝐴ℎ) × 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 + (1 − ∑𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚)  
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(Eq. 5)

(Eq. 8)

(Eq. 7)

(Eq. 6)

Table 4. Basic methods for the assessment of CYP induction
Methods Fold-change methods Correlation methods
Descriptions 1) mRNA levels increase in a concentration-dependent manner 1) RIS = (Emax × Imax,u)/(EC50 + Imax,u)

2)  The fold-change of mRNA levels relative to the vehicle control is ≥ 2-fold at the expected hepatic 
concentrations of the drug

2) Calculate Imax,u/EC50 values

3) The increase is more than 20% of the response of the positive control:
% of positive control = (mRNA fold increase of test drug treated cells − 1) × 100/(mRNA fold increase of positive 
control − 1)

CYP, cytochrome P450; RIS, relative induction score; Emax, the maximum induction effect determined in vitro; Imax,u, the maximal unbound plasma concentration of 
the interacting (perpetrator) drug at steady-state; EC50, the concentration causing half-maximal effect determined in vitro.
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𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻) = 1 +

𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻)

𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢,𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒
 

 

 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻) =
k𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔,enzyme,g(H)

kdeg,enzyme,g(H) +
𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻) × 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻) + 𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼,𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

         (Eq. 10)

 

𝐶𝐶𝐶𝐶 = 1 +
𝑑𝑑𝑑𝑑 × 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 × 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻)

𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶50,enzyme + 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔(𝐻𝐻𝐻𝐻)
 

 

where A and B is the reversible and TDI term, respectively, and C is the induction term 
to describe the DDI effect on the intrinsic clearance of the enzyme. Most parameters and 
structures in A, B, and C terms are comparable to those in R1, R2, and R3 terms of basic 
models, and they are applied to either gut or liver in the same way. However, instead of using 
a maximum unbound concentration in plasma, the static model uses maximum unbound 
concentration in the liver or intestine (Ig(H)). For hepatic intrinsic clearance, A, B, and C terms 
should be applied to all metabolic pathways of a victim drug. Only CYP3A enzyme-mediated 
pathway is included for intestinal intrinsic clearance, and the fraction metabolized in the 
intestine (1 − Fg) is considered fraction metabolized by CYP3A enzyme (fm,CYP3A) unless there 
is evidence of other major mechanisms in intestinal cells. However, predicting a change of 
intestinal clearance is not as direct as predicting that of hepatic clearance due to uncertainty 
of (1) intestinal concentration, (2) metabolizing pathway, and (3) other influencing factors 
(i.e., permeability, residence time, enterohepatic recirculation) [15]. Moreover, even though 
the model can simultaneously account for influences of competitive inhibition, TDI, and 
induction of enzymes in both liver and intestine, the USFDA recommends evaluating 
inhibition potential and induction potential separately in case of the combination of 
inhibition and induction to prevent false negative prediction. The detailed descriptions of the 
parameter values are provided in the USFDA guidance, and PIPET provides the application 
that can assess DDI risks using basic and static models (pipetapps.com).

Dynamic model
Although both static and basic models are based on the assumption that the DDI effect 
is independent of change of time, concentrations and enzyme levels of both victim and 
perpetrator change with time, and the DDI effect in vivo between them is a dynamic process. 
These models assume that the concentration of a perpetrator is maintained at maximum 
(e.g., Imax,u, Ig(H)), which can lead to the overprediction of DDI effects [15]. Thus, the dynamic 
model has its strength for accurate DDI prediction as it considers the changes of in vivo 
concentrations and the enzyme level with time. Physiologically based pharmacokinetic 
(PBPK) modeling is one of the best methods minutely expressing concentration over time 
in each organ, incorporating those parameters and time-varying concentration of drugs and 
predicting DDI effects dynamically.

The PBPK model is mathematically expressed by dividing a human body into multiple 
compartments according to each organ, as shown in Fig. 4 [16]. The compartments are 
linked by tissue blood flow and expressed using differential equations (Eq. 12, Eq. 13). In 
the equations, VT, QT, CT, CV, and CA represent the tissue volume, the tissue blood flow, the 
drug concentrations in tissue, venous, and arterial compartments, respectively. The model 
integrates physiology data such as blood-flow rates and tissue volumes and PK properties of 
an ID such as tissue to plasma partition coefficient (Kp) and permeability. Compartments in a 
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(Eq. 11)
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PBPK model generally include organs associated with ADME, but these may vary depending 
on the drug properties or DDI mechanism of interest. The PBPK model can be used in various 
cases, and DDI evaluation is one of its major applications. According to a recently published 
survey of the PBPK-based submissions to the USFDA, about 56–67% cases of the submissions 
utilized PBPK modeling to evaluate the DDI potential [17,18].

 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 × 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 × 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 − 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 × 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝑇𝑇𝑇𝑇 For non-eliminating tissue                        (Eq. 12)

 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 × 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 × 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 − 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 × 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝑇𝑇𝑇𝑇 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 × 𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢 × 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝑇𝑇𝑇𝑇 For eliminating tissue   
(Eq. 13)

PBPK modeling and DDI assessment should be performed in a step-by-step manner (Fig. 5) [1]. 
First, PBPK models of both victim and perpetrator drugs should be developed with a mechanistic 
understanding of drugs and verified by clinical data. If necessary, the model can be refined to 
describe PK profiles during the verification process, but applicable rationale should be provided. 
Second, the developed PBPK models should be linked to each other, incorporating all of the 
DDI mechanisms based on in vitro DDI parameters by following equations of CLint and active 
enzyme abundance (Eact,enzyme) (Eq. 14, Eq. 15) [19] where the [I] refers to time-varying unbound 
concentration of the perpetrator drug in the tissue compartment. The change in CLint by the 
perpetrator, which is a reversible inhibitor, an irreversible inhibitor, or an inducer is included in 
Eq. 14 and Eq. 15.
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = ��
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1 + [𝐼𝐼𝐼𝐼]
𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢,𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

× 𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ×
𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(0)� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × (1 −�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

 

(Eq. 14)
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Figure 4. General scheme of physiologically based pharmacokinetic model structure.
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 𝑑𝑑𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑒𝑒𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(0) × (1 +

𝐸𝐸𝑒𝑒𝑎𝑎𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × [𝐼𝐼]
𝐸𝐸𝐸𝐸50,𝑢𝑢,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + [𝐼𝐼]) − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑑𝑑) × (𝑘𝑘𝑑𝑑𝑒𝑒𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +

[𝐼𝐼] × 𝑘𝑘𝑖𝑖𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
[𝐼𝐼] + 𝐾𝐾𝐼𝐼,𝑢𝑢,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) 
 

Finally, simulation should be performed using the linked model to evaluate DDI potential by 
predicting plasma or tissue exposure ratio of a substrate (e.g., AUC, Cmax). When using PBPK 
modeling for DDI assessment, in-depth justification and credible sources should be provided 
on any model assumptions. Moreover, the physiological and biochemical plausibility of the 
model, parameter and variablity, sensitivity analysis, and uncertainty measures should be 
clarified [1]. These processes are demanding that a validated PBPK model from published 
literature or commercial software such as Simcyp, PK-Sim, and GastroPlusTM can be utilized 
[20-22].

https://doi.org/10.12793/tcp.2022.30.e6

Prediction of metabolizing enzyme-mediated clinical drug interactions

𝑑𝑑𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑒𝑒𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(0) × (1 +

𝐸𝐸𝑒𝑒𝑎𝑎𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × [𝐼𝐼]
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Figure 5. Process of DDI assessment using PBPK model adapted from USFDA guidance. Step 1. Building verified 
PBPK models of a substrate and interacting drugs which can describe clinical PK profiles appropriately using in 
vitro/in silico/in vivo human ADME data. Step 2. Linking the models by including all DDI mechanisms based on 
in vitro DDI parameters. Step 3. Simulating the linked model with the proper dosing regimen and predicting DDI 
potential based on the anticipated exposure change of substrate (e.g., AUC ratio, Cmax ratio). 
DDI, drug-drug interaction; PBPK, physiologically based pharmacokinetic; USFDA, Food and Drug Administration 
in the U.S.; PK, pharmacokinetic; ADME, absorption, distribution, metabolism, and excretion; AUC, area under 
the concentration-time curve.
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The USFDA suggests utilizing a PBPK model to predict the effect of enzyme modulators if the 
model can describe clinical data on DDIs for a strong enzyme inhibitor or inducer. However, 
according to a recent update from USFDA, even though PBPK modeling showed good 
predictive performance for CYP-mediated inhibition, it had a limitation on predicting CYP-
mediated induction and transporter-mediated DDI [17]. PBPK modeling is still in progress to 
bridge knowledge gaps and improve predictive performance. Nevertheless, the capability of 
PBPK modeling on DDI prediction is growing rapidly with accumulating knowledge on PBPK 
models and the development of in vitro experiments, and it is expected to broaden its role in 
the process of new drug development.

CONCLUSION

This tutorial has streamlined in vitro methods to evaluate metabolizing enzyme-mediated DDI 
and briefly introduced data interpretation methods for clinical DDI prediction recommended 
by regulatory agencies. The importance of DDI prediction is getting more attention, and so 
is the ability to understand and interpret in vitro data for DDI prediction. Therefore, from the 
early stage of new drug development, it is recommended that in vitro ADME data should be 
generated with consideration in mind that these data will be utilized to translate IVIVE and 
predict clinical potential of DDI.
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