
© 2017 Falco et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

The Application of Clinical Genetics 2017:10 85–94

The Application of Clinical Genetics Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
85

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/TACG.S128455

RAI1 gene mutations: mechanisms of  
Smith–Magenis syndrome

Mariateresa Falco1,*
Sonia Amabile1,*
Fabio Acquaviva2

1Department of Molecular Medicine 
and Medical Biotechnology, University 
of Naples “Federico II”, Naples, 
Italy; 2Department of Translational 
Medical Sciences (DISMET), Section 
of Pediatric Clinical Genetics, 
University of Naples “Federico II”, 
Naples, Italy

*These authors contributed equally to 
this work

Abstract: Smith–Magenis syndrome (SMS; OMIM #182290) is a complex genetic disorder 

characterized by distinctive physical features, developmental delay, cognitive impairment, and 

a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions, encompassing 

multiple genes and including the retinoic acid-induced 1 gene (RAI1), or by mutations in RAI1 

itself. About 10% of all the SMS patients, in fact, carry an RAI1 mutation responsible for the 

phenotype. RAI1 (OMIM *607642) is a dosage-sensitive gene expressed in many tissues and 

highly conserved among species. Over the years, several studies have demonstrated that RAI1 

(or its homologs in animal models) acts as a transcriptional factor implicated in embryonic 

neurodevelopment, neuronal differentiation, cell growth and cell cycle regulation, bone and 

skeletal development, lipid and glucose metabolisms, behavioral functions, and circadian 

activity. Patients with RAI1 pathogenic variants show some phenotypic differences when com-

pared to those carrying the typical deletion. They usually have lower incidence of hypotonia 

and less cognitive impairment than those with 17p11.2 deletions but more frequently show the 

behavioral characteristics of the syndrome and overeating issues. These differences reflect the 

primary pathogenetic role of RAI1 without the pathogenetic contribution of the other genes 

included in the typical 17p11.2 deletion. The better comprehension of physiological roles of 

RAI1, its molecular co-workers and interactors, and its contribution in determining the typical 

SMS phenotype will certainly open a new path for therapeutic interventions.
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Introduction
The Smith–Magenis syndrome
Smith–Magenis syndrome (SMS; OMIM #182290) is a complex genetic disorder 

firstly described by Smith in 1982.1 Actual prevalence of SMS is one in 15,000, while 

birth incidence is estimated at one in 25,000, although this value may be consistently 

underreported, with no gender differences observed.2–4

The syndrome is due to interstitial 17p11.2 deletions, encompassing multiple 

genes and including the retinoic acid-induced 1 gene (RAI1), or to mutations in RAI1 

itself.5,6 SMS is considered a sporadic condition. The vast majority of cases are due 

to de novo mutations, although familial cases have been described and others are 

anecdotally known.7–9 A recurrent deletion of approximately 3.7 Mb due to nonallelic 

homologous recombination using flanking low copy repeats as substrates is observed in 

about 70–80% of all the deleted patients.3,10,11 This deletion encompasses RAI1, whose 

haploinsufficiency is considered the primary cause for most of the SMS features.6,12,13 
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About 10% of all the SMS patients, in fact, carry an RAI1 

mutation responsible for the phenotype (Figure 1).9 Despite 

great overlap, some phenotypic differences have been 

reported between patients with 17p11.2 deletion and those 

with mutations in RAI1. Genotype–phenotype correlation 

studies have proposed that the other genes included in the 

commonly deleted region are responsible for the variability 

in phenotypic expression and severity seen between those 

two categories of SMS patients.14–17

SMS is, in fact, a multiple congenital anomalies and 

intellectual disability syndrome with a clinically recognizable 

phenotype mainly characterized by physical and neurobe-

havioral features that become more evident with age.3,9,14,18–24

Physical and craniofacial features
Infants are usually born at term after a pregnancy remarkable 

for decreased fetal movement. Auxology at birth is normal; 

however, soon after birth, a deceleration of the growth curves 

is often observed, and several patients have head circumfer-

ence below the third percentile for age. Feeding difficulties 

leading to failure to thrive are common, and hypotonia, 

accompanied by hyporeflexia, is reported in most infants.25

The facial appearance is characteristic and typically 

changes with age with features that become coarser. In the 

infancy/childhood age, a broad square-shaped face is com-

mon, with brachycephaly and prominent forehead, deep-set 

eyes with synophrys, and up-slanting palpebral fissures. The 

nasal bridge is broad. Midfacial hypoplasia with micrognathia 

and a fleshy everted vermilion of the upper lip is common. 

Over time, micrognathia changes into relative prognathism 

because of an excessive growth of the mandible with persist-

ing midfacial retrusion, and eyebrows become thicker.

Additional findings might include skeletal abnormalities 

(brachydactyly, short stature, mild-to-moderate scoliosis, 

small arched feet conferring unusual gait), teeth anomalies 

(in particular malocclusion, taurodontism, and dental agen-

esis), and ocular and otolaryngological issues (strabismus, 

myopia, iris anomalies, and/or microcornea which may prog-

ress with age; recurrent otitis media, laryngeal anomalies, 

velopharyngeal insufficiency, oral sensorimotor dysfunction). 

Cardiac, urogenital, and thyroid abnormalities can occur; 

renal anomalies and cleft lip and/or palate occur in fewer 

than 25% of individuals.18,25–27

Neurobehavioral features
SMS patients might show a wide range of variability in 

cognitive and adaptive functioning with the majority of 

them having mild-to-moderate intellectual disability. The 

behavioral phenotype is typical and includes sleep distur-

bance, stereotypies, and maladaptive and self-injurious 

behaviors. Phenotypic food-related behaviors are also com-

mon. The neurobehavioral phenotype becomes recognizable, 

usually, from the second year of life and changes throughout 

the individual growth.19,20,28,29

In infancy, SMS patients present lethargy, hypotonia, and 

daytime sleepiness. Although some authors have documented 

fragmented sleep with shortened sleep cycles as early as 

6 months of age, the typical sleep disturbance due to the 

inverted circadian rhythm of melatonin is not yet recogniz-

able at this age.29 Neurodevelopmental delay, for both gross 

and fine motor skills and speech delay, is common together 

with minimal maladaptive behaviors and normally developed 

social skills.30,31 Global developmental delay, significant 

expressive language deficit, and emerging maladaptive 

behaviors are, usually, recognized by three years of age.29,30 

The final cognitive impairment, generally, falls into the mild-

to-moderate range with relative weaknesses in sequential 

processing and short-term memory, and relative strengths 

in long-term memory.

Slowly, the typical behavior emerges and escalates with 

age. Head banging may begin as early as 18 months of age. 

Most patients exhibit inattention with or without hyperactivity 

and meet the clinical criteria for the pervasive developmental 

disorder. Maladaptive behaviors, which often escalate with 

onset of puberty, embrace outbursts and temper tantrums, 

attention seeking, impulsivity, aggression, and the typical 

self-injury behaviors including self-hitting, self-biting, skin 

picking, the distinctive spasmodic upper-body squeeze or 

“self-hug” behavior, the onychotillomania (nail yanking), 

and the polyembolokoilamania (insertion of foreign objects 

into body orifices).3,19,32–35 A recent study pointed out that 

aggressive or destructive behaviors are not only self-inflicted 

but often directed toward others.36

Food-related behaviors, hyperphagia with deriving obe-

sity, usually appear in adolescence and continue through the 

adult age and are the consequence of an impaired satiety 

signaling.37 These disorders are similar, although less seri-

ous, to those observed in patients with Prader–Willi, the 

most frequent neurodevelopmental disorder with syndromic 

obesity due to hyperphagia caused by a severe impairment 

of satiety signals.36

While age and degree of developmental delay correlate 

with maladaptive behaviors, the degree of sleep disturbance 

remains a strong predictor of maladaptive behavior.33,34 

Individuals with SMS have difficulties in falling asleep, fre-

quent awakenings during the nighttime sleep, and excessive 
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daytime sleepiness. This issue is chronic and ends affecting 

the caregivers’ sleep attitude as well.38 The sleep disturbances 

are in strict correlation with the inverted circadian rhythm of 

endogenous melatonin pattern, although some patients are 

described to have the typical sleep disturbances but a normal 

pattern of melatonin secretion suggesting the involvement 

of other factor.39–42

The 17p11.2 deletion
The vast majority of SMS patients carry interstitial 17p11.2 

deletions, encompassing multiple genes and including RAI1 

(Figure 1).5 A recurrent deletion of approximately 3.7 Mb is 

observed in about 70%–80% of all the deleted patients, with 

the smallest deletion associated with the SMS phenotype 

spanning at least 650 kb.43 The common deletion includes the 

region from TNFRSF13B to ULK2, while the minimal critical 

region spans from PEMT to MYO15A.3,4,10,11,43–45

RAI1 haploinsufficiency is considered responsible for 

most of the SMS features, although some phenotypic differ-

ences between deleted patients and those with RAI1 mutations 

exist and probably reflect the role of the other genes included 

in the region.6,12–17

A genotype–phenotype correlation study, performed 

comparing patients with deletions of different sizes, sug-

gested that the region between SREBF1 and SHMT1 could 

be implicated in the short stature, while the hearing loss 

could be influenced by haploinsufficiency of LLGL1, FLCN, 

and MYO15A.15 In particular, mutations in MYO15A, which 

are responsible for the non-syndromic deafness (DFNB3; 

OMIM #600316), have been described in SMS patients with 

sensorineural hearing loss.46,47

Several other genes within the deletion interval have been 

implicated in other disorders, and the hemizygosity caused by 

the deletion may unmask the existence of autosomal reces-

sive alleles leading to the possibility of two distinct genetic 

disorders coexisting in the same individual.

Mutations in TNFRSF13B are responsible for the immu-

noglobulin A (IgA) deficiency-2 (OMIM #609529) and for 

the common variable immunodeficiency 2 (OMIM #240500) 

and could be involved in the IgA deficiency described in some 

SMS patients.3,5,15,18,48

FLCN is a tumor suppressor gene located in the com-

monly deleted region and associated with the Birt–Hogg–

Dubè syndrome (OMIM #135150), a genodermatosis which 

predisposes to pulmonary cysts, spontaneous pneumothorax, 

and renal and skin tumors.49 Intriguingly, recently a 58-year-

old woman with SMS has been reported for having developed 

a bilateral renal tumor.50

Mutations in ALDH3A2 gene cause the Sjogren–Larsson 

syndrome (OMIM #270200), an autosomal recessive neuro-

cutaneous disease with ichthyosis, intellectual disabilities, 

spastic paraparesis, macular dystrophy, and leukoencephalop-

athy.51 It has been observed that SMS patients with deletions 

present more frequently dry skin than those with mutations, 

suggesting a possible role of this gene in this feature.15

Many other genes are included in the region, but further 

studies are needed to determine whether these genes could 

contribute to specific features of the syndrome.

RAI1
RAI1 was firstly identified in 1995 as a main regulator of neu-

ronal and glial differentiation in a mouse model of embryonal 

carcinoma cell line after treatment with high doses of retinoic 

acid.52 Mutations causing haploinsufficiency of RAI1, identi-

fied for the first time by Slager et al in 2003, are responsible 

for a phenotype similar, but not completely overlapping, to 

that described for the 17p11.2 deletion syndrome.6,12,13

RAI1 is a dosage-sensitive gene. The chromosomal seg-

ment that includes RAI1 is within the critical interval involved 

in both SMS and Potocki–Lupski syndrome (PTLS; OMIM 

#610883), with deletions and duplications, respectively. 

Murine models of SMS, deletions of the region containing 

Rai1 or targeted gene inactivation, cause most of the clinical 

features observed in the SMS patients (obesity, craniofacial 

abnormalities, abnormal circadian rhythm, and seizures). On 

the other hand, murine models with duplication encompass-

ing Rai1 or with extra copies of Rai1 showed diametrically 

opposing phenotypes in head circumference, body weight, 

percent of body fat, anxiety, preference for social novelty, 

dominant behavior, and activity levels.16,17,37,53,54

Expression
RAI1 is widely expressed in many tissues with particularly 

high levels in brain, suggesting its crucial role in this tis-

sue.55 The subcellular distribution of human neuronal RAI1 

indicated its presence in both cytoplasm and nucleus.56 

Expression studies performed in mice showed that Rai1, the 

mouse homolog of the human RAI1, is primarily expressed 

in neurons, including pyramidal cells of the hippocampus, 

granule cells of the dentate gyrus, neurons in the neocortex, 

and Purkinje cells of the cerebellum.54 Similarly, human RAI1 

is highly expressed in hippocampal neurons, but not in glia, 

and in neurons of the occipital cortex. In the cerebellum, the 

second region of high expression, RAI1 is detected in Purkinje 

cells, but not granule cells. Northern blot analysis detected 

RAI1 mRNA in human frontal and temporal lobes.56,57
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Aiming to investigate the possible role of RAI1 as a con-

tributor to the pathogenesis of neuropsychiatric disorders, a 

recent study identified two SNPs (rs9907986 and rs4925102) 

in the 5′-upstream region (5′-UTR) as putative regulatory 

elements. These two SNPs, that fall within the binding sites 

for the transcription factors DEAF1 and for the retinoic acid 

RXRα-RARα, account together for approximately 30–40% 

of the variance in RAI1 mRNA expression in prefrontal 

cortex and temporal cortex.58–61 Further supporting the role 

of DEAF1 in regulating the RAI1 expression is a recent study 

that identified, by exome sequencing, a mutation in DEAF1 in 

a patient with clinical features resembling the typical SMS but 

negative for both the 17p11.2 deletion and RAI1 mutations.62

Structure
RAI1 is highly conserved among species. Human RAI1, which 

shows high levels of homology to the mouse Rai1, contains 

six exons and encodes for a 1906-amino-acid protein local-

ized in the cellular nucleus (Figure 1).55,57,63

RAI1 is a nuclear chromatin-binding protein with sev-

eral functional domains (Figure. 1). Moving forward from 

N-terminus, the following have been identified: a polyglu-

tamine-rich domain (Poly-Q), a first polyserine-rich domain 

(Poly-S1), bipartite nuclear localization signals (NLS1 and 

NLS2), a second polyserine-rich domain (Poly-S2), and a 

plant homeodomain (PHD).63,64

Function
Despite great advancement in our knowledge about RAI1 

functions, much is yet to be clarified. In brief, RAI1 is a 

transcriptional factor implicated in cell growth and cell cycle 

regulation, bone and skeletal development, lipid and glucose 

metabolisms, embryonic neurodevelopment and neuronal dif-

ferentiation, behavioral functions, and circadian activity.64–66

Figure 1 Schematic representation of chromosome 17, common 17p11.2 deletion, and RAI1. From left to right, the following are shown: the ideogram of G-band pattern 
of human chromosome 17; a schematic representation of the Smith–Magenis syndrome region with some representative genes; the RAI1 genomic and protein structure – 
glutamine-rich domain (Poly-Q), bipartite nuclear localization signals (NLS1 and NLS2), two serine-rich domains (Poly-S1 and Poly-S2), and C-terminal plant homeodomain 
(PHD); and the RAI1 mutations indexed in the HGMD™ Professional (version December 2015.4) known to date. *Indicates either frameshift or nonsense mutations.
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A recent study in genetically engineered mice shows that 

Rai1 interacts with chromatin, occupies DNA regions near 

active promoters (CpG islands, 5′-UTRs, and promoters, but not 

intergenic or repetitive regions), and enhances the expression 

of genes involved in circuit assembly and neuronal communi-

cation. In this study, the authors also show that pan-neuronal 

loss of Rai1 causes a severe SMS-like phenotype. They also 

point out that the haploinsufficiency of RAI1 in specific cel-

lular types causes deficits in motor function, learning, and food 

intake. These data underlie the relevant role of the subcortical 

excitatory neurons in the pathogenesis of the SMS.64

Bioinformatic analyses and gene expression assays 

strongly suggest that human RAI1 directly or indirectly 

influences transcription. First, the presence of a nuclear 

localization signal is consistent with the role in the regulation 

of gene expression. Second, the Poly-Q tracts are common 

in regulatory proteins, such as transcription factors, and 

contribute to transcriptional activation in mammalian cells. 

Furthermore, the PHD motif at the C-terminal is homologous 

to the PHD motif of the transcriptional co-activator TCF20 

and is presumably important, in both proteins, to carry out 

their role as “histone readers.” RAI1, thus, is able to “read” 

the specific posttranslational modifications of histones and 

to recruit proteins that regulate, among other metabolic func-

tions, the transcription of specific DNA regions.12,37,63,67–69

RAI1 mutations
To date, more than 30 variations in RAI1 have been associated 

with SMS (HGMD Professional, version December 2015.4), 

all clustered in exon 3, which encodes more than 95% of the 

protein (Figure 1). Most are frameshift, predicted to inacti-

vate the gene product, whereas few are missense mutations 

occurring within highly conserved sequences. All of them, 

hampering with the gene expression and/or the normal pro-

tein structure/function, and thus, result in haploinsufficiency 

and lead to the SMS phenotype.6,13,70

Animal models
To investigate in vivo the SMS disease mechanisms and the 

RAI1 functions, several animal models, in particular mouse 

and Xenopus models, have been created and extensively used.

In 2003, Walz et al generated the first SMS mouse model 

bearing the 17p11.2 deletion in the mouse chromosome 

region syntenic to the SMS critical interval. The deleted 

mice showed craniofacial abnormalities, seizures, and weight 

abnormality as many SMS patients do.53

Following the publication of reports on SMS patients 

carrying mutations in RAI1 in place of the 17p11.2 deletion, 

engineered mouse models were generated to investigate RAI1 

expression patterns and to explore its functions. In 2005, Bi et 

al generated mice with an Rai1 null allele (Rai1+/−) through the 

insertion of a lacZ reporter gene encoding β-galactosidase. 

These mice allowed to define the endogenous expression pat-

tern of Rai1 and to prove that some SMS phenotypes, already 

reported in mice carrying the 17p11.2 deletion, were also 

observed in a mouse model of Rai1 haploinsufficiency.71 In 

addition, it was observed that homozygous null mice (Rai1−/−) 

displayed embryonic lethality and almost all died in utero; 

the few mice that survived exhibited severe postnatal growth 

retardation, craniofacial and skeletal abnormalities, motor 

dysfunction, and fear-learning deficits.54

To determine whether specific symptoms/phenotypes 

observed in the affected patients were the results of Rai1 

requirement in specific cell types, in 2016 Huang et al gener-

ated Rai1 knock-in and Rai1 conditional knock-out mouse 

models.64 They engineered Rai1 alleles in order to charac-

terize Rai1 expression patterns (knock-in mice with tandem 

FLAG and myc peptides fused to the carboxyl terminus of 

endogenous Rai1). Also, they explored the neural functions 

of Rai1, and how the loss of Rai1 affects the transcriptome, 

by conditionally deleting Rai1 in the nervous system using 

a pan-neural NestinCre line and producing NestinCre;Rai1CKO 

mice.64 Furthermore, they explored if the phenotypic conse-

quences of RAI1 haploinsufficiency were the result of RAI1 

loss in specific neuronal subtypes. To do that, they knocked 

out Rai1 in different neuronal cell types using Gad2Cre that 

targets most GABAergic inhibitory neurons, Emx1Cre that 

targets cortical and hippocampal excitatory neurons and glia, 

mGfapCre that targets astrocytes and subsets of adult neural 

progenitors, and Vglut2Cre that targets subcortical excitatory 

neurons.64

On the other hand, these studies also pointed out that 

Rai1+/− mice have a significantly reduced fecundity and 

an altered transmission pattern of the mutant Rai1 allele. 

These observations limited the use of these models for large, 

extended studies. In 2014, Alaimo et al created an Rai1+/− 

mouse model by breeding C57Bl/6J Rai1+/− mice with FVB/

NJ mice to create offspring in a mixed genetic background, 

which ameliorated both fecundity and Rai1 allele transmis-

sion throughout generations and provided a more robust 

platform for larger phenotypic studies.72

Finally, in 2014, Tahir et al used the Xenopus as a tool to 

uncover the developmental mechanisms regulated by Rai1. 

They took advantages by the fact that, unlike the mouse, 

Xenopus embryo develops externally. Both Xenopus tropica-

lis and Xenopus laevis share 44% and 42% overall identity, 

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

90

Falco et al

respectively, with the human RAI1 protein with even higher 

shared identity in specific functional domains, such as the 

PHD domain. A targeted knock-down approach using anti-

sense oligos stabilized with morpholino was used to generate 

this animal model.73

RAI1 functions and mechanisms for 
the SMS phenotype
RAI1 and neurogenesis
RAI1 influences memory, behavior, and motor function 

through the retinoic acid metabolism. Expression studies 

demonstrate, overall, that human RAI1 is a highly expressed 

neuronal protein whose distribution matches with its role in 

cognitive and motor skills.56

Recent studies in mouse models show that Rai1 is highly 

expressed during the early stage of neurodevelopment. Spe-

cifically, Rai1 is expressed in the post-mitotic neurons of the 

cortical plate but not in progenitor neurons actively prolifer-

ating. This suggests its role in maintaining the functions or 

differentiation of correct mature neurons.64

Transgenic Rai1+/− mice show abnormal electroen-

cephalogram (EEG) with overt seizure and neurobehavioral 

abnormities, learning impairment, and motor dysfunction. 

Moreover, Rai1 null mice die during embryogenesis in almost 

all cases. Surviving Rai1−/− mice exhibit craniofacial and 

skeletal abnormalities, more severe neurobehavioral issues 

with less learning ability, overt seizures at younger age, 

motor dysfunction, and fear-learning deficits delineating a 

more severe clinical phenotype. These observations confirm 

a dosage-sensitive effect of Rai1 in neurodevelopment.54

Mutations in RAI1 are, thus, considered to have a causal, 

leading, role in the pathogenesis of most of the neurobe-

havioral features typically observed in the SMS patients, 

including autistic trait, intellectual disability, self-injurious 

behavior, EEG abnormalities, and sleep disturbances.

Moreover, further supporting its role in the neurode-

velopment, RAI1 is associated with non-syndromic autism 

disorder, spinocerebellar ataxia 2 (SCA2; OMIM #183090), 

and neuroleptic response in patients with schizophrenia.54

RAI1 and sleep disorders
Several studies, both in vitro and in vivo, demonstrated the 

crucial rule of RAI1 as a circadian regulator. RAI1 positively 

regulates the transcription of Circadian Locomotor Output 

Cycles Kaput (CLOCK), a key component of the mammalian 

circadian oscillator that, in turn, transcriptionally regulates 

many critical circadian genes such as PER2, PER3, CRY1, 

and BMAL1. Haploinsufficiency of RAI1, thus, results in the 

disruption of the circadian rhythm with consequence on the 

sleep–wake cycle.66 Sleep disturbances, including difficulty 

in falling asleep, abnormality in rapid eye movement phase 

of sleep, and daily sleepiness represent the typical features 

in SMS, present in almost all cases.74

RAI1 and obesity
Obesity and overeating issues are more frequently observed in 

individuals with RAI1 mutations compared to those carrying 

the 17p11.2 deletions.14 Food intake, moreover, can alter the 

function of brain regions responsible for the regulation of the 

circadian rhythm, reinforcing humoral signals and connecting 

metabolism, circadian rhythm, behaviors, and development.75

Several evidences show how RAI1 contributes to the 

hyperphagia and obesity seen in SMS. The brain-derived 

neurotrophic factor (BDNF) is a growth factor involved in 

development, differentiation, and survival of neurons and in the 

energy homeostasis. It is expressed both in the central nervous 

system and in peripheral tissues, such as liver, muscle, and 

adipose tissue.76 Low serum levels of BDNF have been associ-

ated with obesity, hyperphagia, and behavioral abnormalities 

even in humans.77 Studies in mice demonstrate that Rai1 

haploinsufficiency downregulates Bdnf and contributes to the 

obesity with hyperphagia and abnormal fat distribution. Rai1 

regulates, through its PHD domain, the transcription of Bdnf 

via intronic enhancer element. Rai1 haploinsufficiency is also 

responsible for altered hypothalamic expression of other genes. 

It downregulates proopiomelanocortin (Pomc), a precursor of 

melanocortins involved in energy homeostasis, whose muta-

tions have been associated with obesity in mice and human.37

RAI1 and coarse face
Craniofacial abnormalities have been observed in both 

17p11.2-deleted and RAI1-mutated patients suggesting that 

RAI1 might also play a crucial rule in the onset of facial 

dysmorphism in SMS. Similar midface abnormalities have 

also been reported in mouse models and in rai1 Xenopus 

morphants.17,73

Yan et al observed, in fact, that, in mouse models, deletion 

size and genetic background influenced the penetrance of the 

craniofacial phenotype suggesting that Rai1 was playing a 

major role in determining this phenotype but also that Rai1-

surrounding regions might contain regulatory elements which 

could modify the phenotype penetrance.17

More recently, Tahir et al showed, in vertebrate models X. 

laevis and X. tropicalis, that rai1, the frog homologous of RAI1, 

is expressed in the developing craniofacial tissues and that its 

haploinsufficiency results in defects in the developing brain 
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and face which exhibits midface hypoplasia and malformed 

mouth shape. They also offer insight about the mechanism. 

The formation of the face depends largely on neural crest 

development. During the embryogenesis, the neural crest was 

not migrating properly. The authors, in fact, observed fewer 

neural crest cells, and the migration itself seemed delayed and 

with migratory streams less defined. This defective neural crest 

development affected the formation of its derivative cartilage 

(ethmoid plate, infrarostral, Meckel’s, ceratohyal and gill 

cartilages) which appeared reduced in size. The whole process 

was considered responsible for the observed malformation.73

RAI1 role in other disorders
RAI1 is not only associated with SMS. Duplications of the 

chromosomal segment that includes RAI1 are responsible 

for the PTLS. Furthermore, RAI1 mutations have, also, 

been linked to other neurodegenerative and neuropsychiat-

ric disorders. The length of the polyglutamine rich domain 

(Poly-Q) at the N-terminus of the protein is associated with 

the response to neuroleptics in schizophrenia and with the 

age of onset of SCA2. Additionally, RAI1 has been identified 

as a candidate gene for the susceptibility to non-syndromic 

autism spectrum disorder.78–83

A recent study by Thaker et al identified a de novo 

RAI1 mutation in a child with morbid obesity and a clinical 

diagnosis of the Rapid-onset Obesity with Hypothalamic 

dysfunction, Hypoventilation and Autonomic Dysregula-

tion (ROHHAD) syndrome. The authors suggest to consider 

RAI1 as a candidate gene in children with morbid obesity, 

especially if presenting a phenotype consistent with the SMS 

or the ROHHAD syndrome.84

Finally, whole-exome sequencing analyses performed 

on 123 patients affected by non-syndromic hearing loss and 

negative for mutations in GJB2 revealed in several affected 

members of two unrelated families a homozygous mis-

sense mutation of RAI1. Despite the genotype–phenotype 

correlation studies indicating that the hearing issues in the 

SMS patients appear to be more frequently associated with 

the deletions, and thus, with the influence of genes other 

than RAI1, the authors of this study speculate about the 

possible role of RAI1, and of the retinoic acid signaling, in 

the mammalian organ of Corti development and, thus, in the 

pathogenesis of the hearing loss.14,15,85

Discussion
Accurate phenotype description and molecular mechanism 

underlying a phenotype are two aspects strictly entwined in 

medical genetics. The better a phenotype is described, the 

more successful the diagnostic path will be. Besides, a well-

described phenotype can be further analyzed in its different 

traits and, as a consequence, each trait can be investigated 

under a pathogenetic point of view. On the other hand, 

experimental models of diseases allow to investigate, and 

understand, the biological pathways underlying the onset of 

a specific phenotype, or a trait of a phenotype, giving eventu-

ally insight for specific medical interventions.

To date, there is no specific treatment for the SMS, and 

all the available therapeutic approaches are symptomatic 

treatments.40,92–94 As for most genetic conditions, the only 

way to find a cure is to better understand the biological role 

of the gene causing disease. This is true for the monogenic 

conditions but also for the contiguous gene deletion/duplica-

tion syndromes in which the definite contribution of one (or 

more) gene has been established. That is why, in our opinion, 

studies aiming to further elucidate the biological role of RAI1 

are essential to identify putative biological targets for bet-

ter medical strategies. Interest toward the clinical research 

and the translational medicine in order to improve the liv-

ing conditions of the patients is noteworthy, and necessary. 

Nevertheless, we should give proper credit to the amount of 

knowledge acquired after years of basic-research studies in 

cellular and animal models. The studies, reviewed herein, 

have contributed in elucidating structure, expression pattern, 

and biological function of RAI1 among different tissues. All 

these studies offer hypothesis on how RAI1 can be respon-

sible, when disrupted, for the onset of the SMS, a complex 

syndrome with different clinical manifestations.

Moreover, other recent publications identified a cohort of 

genes which might interact, directly or indirectly, with RAI1 

and its network.62,95 These works provide a good example of 

how entwined “good characterization of a phenotype”, on 

one side, and “molecular basis of a disease”, on the other, 

are. In fact, in those two studies starting from a phenotype 

strongly resembling the SMS (which was excluded by the 

molecular testing) and applying new testing technologies (the 

whole-exome sequencing), the authors identified a cohort 

of putative candidate genes causing disease and proposed a 

common disease network. All these studies and hypotheses 

are essential to further elucidate the mechanism of the SMS 

pathogenesis and to develop new targeted therapies.

Conclusion
About 10% of all the SMS patients carry an RAI1 muta-

tion which is responsible for the phenotype.9 Despite great 

overlap, these patients show several phenotypic differences 

when compared to those carrying the typical deletion. They 
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usually have less cognitive impairment and lower incidence 

of hypotonia, short stature, hearing loss, and cardiac and 

renal defects than those with 17p11.2 deletions suggesting a 

minor role for RAI1 in these clinical features and, most likely, 

reflecting the haploinsufficiency of other genes as for typical 

contiguous gene deletion syndromes.14,15 On the other hand, 

they are more likely to exhibit overgrowth phenotypes, and 

the behavioral characteristics of the syndrome – including 

polyembolokoilamania, skin picking, and self-hugging – and 

overeating issues with obesity tendency.4

RAI1 is a dosage-sensitive gene, highly expressed in 

neurons during the early stage of neurodevelopment, and 

its protein distribution matches with its role in cognitive 

and motor skills neurodevelopment.54,56 RAI1 carries out its 

role as a circadian regulator influencing the transcription of 

CLOCK. Therefore, RAI1 haploinsufficiency results in the 

disruption of the circadian rhythm with a consequence on 

the sleep–wake cycle.66 Likewise, RAI1 haploinsufficiency 

downregulates Bdnf and Pomc contributing to obesity with 

hyperphagia and abnormal fat distribution.37 Rai1 also 

affects the neural crest migration and the development of 

the derivative cartilage elements. This partially explains its 

role in the pathogenesis of the craniofacial abnormalities 

observed in the SMS patients.73 As observed by Tahir et al, 

in fact, craniofacial abnormalities have already been linked 

to anomalies in the neural crest development also in different 

conditions, such as the Williams–Beuren syndrome (OMIM 

#194050), the DiGeorge syndrome (OMIM #188400), the 

fragile-X syndrome (OMIM #300624), the Prader–Willi syn-

drome (OMIM #176270), and the Down syndrome (OMIM 

#190685), sharing common features with the SMS.86–91

Finally, it is worth mentioning that, besides the SMS, RAI1 

is associated with non-syndromic autism disorder, SCA2, and 

neuroleptic response in patients with schizophrenia.54
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