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Abstract

Infectious diseases are considered major threats to biodiversity, however strategies to miti-

gate their impacts in the natural world are scarce and largely unsuccessful. Chytridiomyco-

sis is responsible for the decline of hundreds of amphibian species worldwide, but an

effective disease management strategy that could be applied across natural habitats is still

lacking. In general amphibian larvae can be easily captured, offering opportunities to ascer-

tain the impact of altering the abundance of hosts, considered to be a key parameter affect-

ing the severity of the disease. Here, we report the results of two experiments to investigate

how altering host abundance affects infection intensity in amphibian populations of a mon-

tane area of Central Spain suffering from lethal amphibian chytridiomycosis. Our laboratory-

based experiment supported the conclusion that varying density had a significant effect on

infection intensity when salamander larvae were housed at low densities. Our field experi-

ment showed that reducing the abundance of salamander larvae in the field also had a sig-

nificant, but weak, impact on infection the following year, but only when removals were

extreme. While this suggests adjusting host abundance as a mitigation strategy to reduce

infection intensity could be useful, our evidence suggests only heavy culling efforts will suc-

ceed, which may run contrary to objectives for conservation.

Introduction

Managing infectious diseases is one of the great challenges of the 21st Century. A growing

array of pathogens impair human health, threaten food security and pose a risk to biodiversity

conservation, however our efforts to control infections circulating in wildlife populations are

largely unsuccessful (but see [1–5]). Developing and testing strategies for controlling infectious

agents should therefore be a research priority, yet surprisingly few real-world trials of methods

for controlling infectious disease affecting wildlife have been undertaken and subsequently

published [1–4,6–9]. Among others, culling of hosts from a susceptible population is a
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fundamental approach in density-dependent disease mitigation based on the theory of disease

ecology and epidemiology [10–15]. Note, however, that while the term culling often denotes

euthanizing, it can simply be the removal of animals from the system as in this study (see

below).

Most studies for controlling infectious agents are performed in humans, livestock or com-

panion animals, whereas infections strictly affecting wildlife are largely overlooked, despite

overwhelming evidence that wildlife diseases are behind a significant proportion of recent and

ongoing biodiversity loss [16]. One exception is the case of the chytridiomycosis, a disease

responsible for the decline of hundreds of amphibian species, with new reports accruing [17].

An enormous body of literature bears witness to the research that has revealed the ecological

and evolutionary drivers of disease [18,19], but only a relatively sparse publication list provides

recommendations on how to respond to the threat chytrid fungi pose to amphibian biodiver-

sity [20–28]. Even more sparse is the collection of published studies reporting the outcomes of

attempts at mitigating infections and disease in nature, none of which presents a scalable and

transferable solution [5,29–31]. This is unfortunate: although a small proportion of species

affected by chytridiomycosis appear to be recovering without intervention, most of them con-

tinue to decline [17]. Without methods to combat the disease in situ, it seems clear that the

‘chytrid crisis’ will continue to impair global amphibian biodiversity.

We have argued elsewhere that research should focus on approaches that are transferrable

across host species and communities, easily implemented by nonspecialists and amenable to

combination with other techniques [22]. The list of possible actions is short, at least in part

due to the fact that techniques commonly used for controlling disease in mammals and birds,

like vaccines, simply cannot be applied to most amphibian communities due to their typically

large population sizes. Many species of amphibians can be easily captured or trapped, though,

even when local abundance may be in the tens of thousands, which offers opportunities to

ascertain the impact of altering the abundance of hosts. Several studies have argued for a

potential, but as yet uncertain, role of host abundance on the prevalence and amplification of

infection loads [32–34]. The latter is a key parameter affecting the severity of chytridiomycosis,

as there is a strong, positive relationship between the infection intensity of Batrachochytrium
dendrobatidis (Bd), one of the two pathogens causing chytridiomycosis, and the likelihood of

dying from the disease [35,36].

Chytridiomycosis was first described in Europe nearly 20 years ago in the Sierra de Guadar-

rama mountains of Spain [37] where this study took place. At this location, Alytes obstetricans
(midwife toads) were extirpated, and two other amphibian species were reported dying from

chytridiomycosis and potentially declining as a result: Salamandra salamandra (fire salaman-

ders) and Bufo spinosus (spiny common toads [38–40]). Alytes obstetricans is highly susceptible

to Bd infection and was historically the most abundant species and primary source of chytri-

diomycosis [37,38]. Salamandra salamandra has also historically experienced lethal chytridio-

mycosis and sharp declines when A. obstetricans was abundant in the area, even though it is

not considered to be as highly susceptible to infection and disease [39]. Larvae of both species

can overwinter and are thought to act as reservoirs transmitting infections to incoming young

of the year larvae [41]. The extirpation of A. obstetricans from the area means that overwinter-

ing S. salamandra larvae are considered the primary source of infection in the aquatic environ-

ment [39,42].

Because of their purported role in maintaining infections, we chose to investigate how alter-

ing host abundance of S. salamandra larvae in the most important amphibian breeding ponds

in the Sierra de Guadarrama mountains affects infection intensity the following breeding sea-

son, under the assumption that disease risk is reduced at lower infection loads. Pilot experi-

ments to establish drug concentrations to clear Bd infections of S. salamandra larvae indicated
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that most individuals lost infection when housed individually. Thus, our hypothesis was that,

at least for fire salamander larvae that play a key role in intraspecific transmission but are

weakly infected, significant alterations in host density could reduce strength of infections. We

tested this through a large-scale, 2-year larval removal field trial in the permanent ponds where

overwintering occurs. Additionally, we used an ex situ approach to examine how differing den-

sities of larvae affected the intensity of infection in groups of S. salamandra and A. obstetricans
larvae over time scales similar to those where infection dynamics change in the wild [41].

Materials and methods

Study area

The field experiment and the collection of salamander larvae for the lab experiment took place

in the protected area of Guadarrama Mountains National Park, central Spain (408500 N,

38570 W; Fig 1). The core of the park, the Peñalara Massif, is a wetland system of about 800 ha

composed of several small glacial valleys located 1800–2430 m a.s.l. The area holds around 250

fishless ponds, mostly temporary, and supports nine species of amphibian. The landscape of

this alpine area consists mainly of granitic outcrops, alpine meadows, heathlands dominated

by Cytissus oromediterraneus and Juniperus communis nana, and forests of Pinus sylvestris
below the timber line. Local climate is characterized by very cold winters, mild summers and

abundant precipitation, with snow falls usually from the end of November to the middle of

May. Batrachochytrium dendrobatidis has been present in the area for at least 20 years [37],

whereas neither B. salamandrivorans nor Ranavirus have not been found (Bosch, unpublished

results).

The field study took place from Summer 2015 to Spring 2018 in the four permanent ponds

that host the largest S. salamandra populations: Laguna Grande (elevation 2018 m, surface

6766 m2, maximum depth 2.7 m), Charca Larga (elevation 2111 m, surface 89 m2, maximum

depth 0.6 m), Charca Mariposa (elevation 2136 m, surface 660 m2, maximum depth 0.7 m)

and Laguna de los Pájaros (elevation 2170 m, surface 5175 m2, maximum depth 1.3 m). These

ponds freeze in December and thaw in March, and they are separated by at least 0.5 km. No

overwintering larvae of other amphibian species are present and only B. spinosus is relatively

abundant in those ponds.

Ex situ assessment of the impact of host density on infection intensity

Naturally Bd-infected overwintering larvae of Alytes obstetricans and S. salamandra at the

same stage of development were collected at the end of the winter, respectively, in the Teruel

province (Aragón, Northeastern Spain) and in Laguna Grande (Guadarrama Mountains

National Park). For both species, prevalence of Bd infection in larval stages is known to

approach 100% during colder months at both localities [41,43]. The experiment took place in

bio-secure conditions at the laboratories of the Research and Management Center ‘Puente del

Perdón’, a facility of the Guadarrama Mountains National Park located a few km away of the

Peñalara Massif, and where head-starting programs for A. obstetricans and Rana iberica are

hosted. The larvae we used were returned to their point of capture at the end of the ex situ
experiment. Initial Bd infections were confirmed following the qPCR protocol of Boyle et al.

[44]. We housed indoors groups of larvae of each species in separate 5 L plastic tanks at three

different densities (one, five and 15 individual each) on a 12:12-h light schedule. The densities

ranged from the absolute minimum (one) up to the maximum amount of salamander larvae

we could house in a single container without having them injuring each other, and while keep-

ing densities consistent across species. Density treatments were replicated respectively seven,

six and four times for S. salamandra and eight, six and four times for A. obstetricans (for
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Fig 1. Location of the 4 study ponds for fire salamander larvae located in the Peñalara Massif within the

Guadarrama National Park, Central Spain, summer 2015-spring 2018.

https://doi.org/10.1371/journal.pone.0242913.g001
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densities of one, five and 15 larvae, respectively). We fed animals ad libitum with tubifex

worms (salamanders) or commercial tadpole food (midwife toads), and renewed half of the

water in each tub weekly. Water temperature was recorded throughout every half hour with a

HOBO Water Temperature Pro v2 datalogger, and varied from 0.8 to 9.8˚C. We used average

water temperature during the three days prior to Bd sampling for analysis, following Fernán-

dez-Beaskoetxea et al. [43], who described short-term impacts of water-temperature on Bd
load. We tracked changes in infections in one animal per tank, repeatedly sampling the same

animal once at the start of the experiment and every month afterwards, for a total of five sam-

ples per animal and tank. Focal A. obstetricans tadpoles were identified using visual implant

elastomers and swabbed on their keratinized mouthparts, while focal S. salamandra were iden-

tified by unique dorsal spot patterns and swabbed across the entire body surface. We quanti-

fied load of Bd infections (referred to as load hereafter) following Boyle et al. [44] by using

cotton swabs (MW100 rayon tipped dry swabs from MWE Medical Wire). Swabs samples

were kept at 4˚C until analyses and the DNA was extracted with Prep-Man Ultra and amplified

using a BIO-RAD CFX96 Real-Time PCR Detection System. Each 96-well assay plate included

a negative control and four different standards containing DNA from 100, 10, 1 and 0.1 Bd
zoospore equivalents (ZE). We tested all the samples (diluted 1/10), as well as the negative con-

trol and the standards, in duplicate. We considered samples with greater than 0.1 ZE in both

replicates, and the expected sigmoidal shaped amplification curve, positive for Bd.

We used a general linear mixed models to analyze the within-subjects variation in Bd load.

Species was treated as a categorical fixed factor, the “sampling events” (date of sampling) and

the density treatment as ordered factors, and water temperature during the three days prior to

sampling as a covariate in the mixed models, with tadpole identity as a random effect. Three

different mixed random intercept models were built: (a) null model without any fixed effect,

(b) main fixed effects model, and (c) full model containing the main effects and their interac-

tions. Second-order Akaike’s AICc for finite sample sizes were used to compare these three

models, using maximum likelihood (ML) estimation; the model with the lowest AICc figure

was finally obtained by means of restricted maximum likelihood (REML) estimation, because

it renders unbiased variance covariance parameters. Bd load (including zero values) was log10

transformed (y’ = log10[y+1]) prior to data analyses. The mean square (MS) and degrees of

freedom (df) of the error terms were estimated following the Kenward-Roger method [45].

Homoscedasticity and normality of residuals of the final general linear mixed model were visu-

ally checked and did not show considerable deviations from the model assumptions. All analy-

ses were carried out using R version 3.1.2 (R Core Team 2014) and the packages lme4 [46],

lmerTest [47], lmtest [48], pbkrtest [49], car [50], MuMIn [51] and phia [52]. The proportion

of variance explained by the model was obtained using the r.squaredGLMM function of the

MuMIn package [53], while the estimations for different predictors were obtained using the SS

(sums of squares) provided by the function anova.lmer of the lmerTest package (Partial-eta2

according to the ratio SSeffect/[SSeffect+SSerror]).

Field trial experiment

Four permanent ponds within the Peñalara Massif support significant larval fire salamander

populations. The combination of lithology, scarcity of aquatic vegetation, low depth and crys-

tal-clear waters is extremely favorable for larval counts and captures [38]. We removed sala-

mander larvae from three ponds (Laguna de Pájaros, Charca Mariposa and Charca Larga) at

the end of the summers of 2015 and 2016, and early spring of 2017, when no larvae of other

species were present. We removed 1149 larvae from Laguna de Pájaros, 214 from Charca Mari-

posa and 32 from Charca Larga in 2015, 2057 larvae from Laguna de Pájaros in 2016 and 1701
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larvae across all three sites in 2017. We did not remove larvae from Laguna Grande, which

served as our control pond. The larvae we removed were reared in captivity in the facilities of

the National Park referred to above and returned as metamorphosed juveniles to the sur-

roundings of their pond of capture in early spring (2015 and 2016 collections) or late summer

(2017 collection). Ninety-five casualties occurred as the result of removal actions, while

approximately 5100 juveniles were released.

To estimate load of infection, we sampled a maximum of 20 larvae at each pond in early

spring and late summer (from summer 2015 to spring 2018). We selected a sample size of 20

because our previous work in the study area and on this species showed no significant differ-

ences of load of infection among ponds within a year [41]. By definition spring samples were

entirely composed of overwintering larvae, while summer samples were a mix of young of the

year and overwintered animals. Again, load was quantified using qPCR as described above

[44].

We estimated the removal effort (percent removed) for each removal event in each pond by

counting the number of larvae before starting the removal activity and the night after. How-

ever, for statistical analyses binary values for removal activity (0: no removals, 1: removals) pre-

ceding the breeding season were assigned to each pond for each year (e.g., removal activity at

the end of the summer of 2016 and at the early spring of 2017 were assigned to 2017 for analy-

ses). Bd load (including zero values) was log-transformed to achieve normality and homosce-

dasticity of residuals. We fitted a general linear mixed model using the same procedures

described above to detect differences in infection intensity between removal activity and

among ponds, years and seasons. ‘Pond’ was considered a random effect, whereas ‘year’, ‘sea-

son’ and ‘removal activity’ were considered as fixed, categorical effects, and no interactions

were entered into the model due to the lack of data involved in interactions among fixed

effects.

All applicable institutional and/or national guidelines for the collection, care and use of ani-

mals were followed. Field and laboratory procedures were carried out under the permission of

the competent authorities Consejería de Medio Ambiente de Madrid (permits 10/064263.9/15,

10/072229.9/16, 10/132950.9/17, 10/007480.9/18, 10/084888.9/18) and Instituto Aragonés de
Gestión Ambiental (500201/24/2015/226).

Results

Ex situ experiment

The within-subjects mixed model including the full set of interaction terms was the best model

(AICc = 425.0; main effects AICc = 461.6; null AICc = 592.0) and was significant (likelihood

ratio test of the model compared to the null model without fixed predictors: 184.2, P�0.001).

Fixed effects alone accounted for a high proportion of variance in Bd load (87.1%). Water tem-

perature was positively and significantly related to Bd load (Table 1) and one Celsius degree

increase in average water temperature led to a x1.29 increase in Bd load (regression coefficient

of temperature: 0.112, se = 0.023; 10^0.112 = 1.294). Interspecific differences in Bd load were

also significant (mean ± standard error in decimal logarithm: midwife toads 4.73 ± 0.089, fire

salamanders 0.79 ± 0.091). Larvae density had, on average, a subtle positive influence on Bd
infection (low figure of partial-eta2 in Table 1), as the experimental group of larvae containing

only one animal did generate weaker infection loads than those in the group with the greatest

density. The sequential timing of “sampling events”, on average, did have any influence on Bd
load. Nevertheless, the global effects of larvae density and “sampling events” were not general-

izable, as all the interaction terms containing these effects were significant, with a prominent

effect of the differences between species throughout the sequential sampling events. Thus, the
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main effects of density and time after the beginning of trials should be interpreted separately

for the two species (Fig 2).

Midwife toads maintained high Bd loads throughout the experiment, with some evidence of

increasing loads in some treatments (Fig 2). Fire salamander infections were weaker and

decreased from the first measurement in the one and five larvae density treatments, while Bd
load increased from the first to the fifth “sampling event” in the high density treatment (Fig 2).

Moreover, Bd load of individually housed fire salamanders decreased until infections were

almost undetectable in this treatment (Fig 2).

Field trial experiment

Bd loads of 392 salamander larvae were used to build the model (see Fig 3 for prevalence and

load values by site and season), where fixed factors explained 26.2% of variance and both

fixed and random effects explained 45.9%, yielding significant results for year (21.8% of the

variance accounted for year accounting for the total variance observed among larvae and

ponds, F3,391 = 44.8, P<<0.0001), season (5.9%, F1,395 = 36.4, P<<0.0001) and removal activ-

ity (4.0%, F1,340 = 24.3, P<<0.0001). As expected [43], Bd load was greater in spring than in

summer (Fig 3). Load was weaker in ponds where larvae were removed the previous year after

controlling for the other sources of variation, but only at Charca Larga and Charca Mariposa

where we removed more than 80% of larvae at each removal. Conversely, and again after con-

trolling for the other sources of variation, load of infection was even higher at Laguna de los

Pájaros after larvae were removed the previous year.

Discussion

A consistent role for temperature in B. dendrobatidis infection dynamics has been reported for

this study system and for both of our study species [38,43,54–56]. The result of our ex situ
experiment also suggests a significant effect of environmental temperature, albeit a weak one,

on increasing load. The relative weak impact of temperature on load can be attributed to the

low temperatures animals experienced over the 5 months of the experiment (< 10˚C): Bosch

et al. [54] showed that shifts in disease in A. obstetricans attributable to changes in infection

dynamics were associated with temperatures approximating optimal, ex situ growth conditions

for Bd (approx. 17–24˚C).

Reducing host density is frequently mentioned as a potential mitigation strategy for con-

trolling infectious diseases of wildlife. Long-term surveys indicated that when infection loads

are lower, survival and recruitment of susceptible species like S. salamandra are enough to

Table 1. Results of the within-subjects mixed model examining the influence of species identity (midwife toads vs fire salamanders), larval density (one, five and 15

animals per replicate), sampling events (five sampling dates) and water temperature on Bd infection intensity (in decimal logarithm). The same individual per tank

was sampled in five different occasions with a time lag of ca. 30 days. SS: sum of squares. partial-η: partial-eta2 estimating relative magnitude effects.

SS partial-η df F P

Temperature 14.19 0.129 1, 135 23.94 �0.001

Species (midwife toad) 11.24 0.105 1, 165 18.96 �0.001

Density 6.61 0.062 1, 165 11.15 0.001

Sampling events 0.09 0.002 1, 135 0.15 0.700

Species x Density 9.43 0.090 1, 165 15.92 �0.001

Species x Sampling events 18.84 0.165 1, 135 31.79 �0.001

Density x Sampling events 10.35 0.095 1, 135 17.46 �0.001

Species x Density x Sampling events 8.02 0.078 1, 135 13.54 �0.001

https://doi.org/10.1371/journal.pone.0242913.t001
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Fig 2. Bd loads of midwife toads (Alytes obstetricans) and fire salamanders (Salamandra salamandra) in the ex
situ experiment on infection of the impact of host density (one, five and fifteen larvae) and time elapsed (five

sequential events from 1 to 5 of repeated sampling during five months). Vertical bars depict mean ± one standard

error of Bd load in decimal logarithm.

https://doi.org/10.1371/journal.pone.0242913.g002
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Fig 3. Pond specific changes in prevalence (left, vertical lines are 95% confident intervals) and load (right, in log

transformed ZE values; horizontal lines depict medians, boxes represent interquartile ranges, whiskers extend to

minima-maxima and dots show potential outliers) of Bd in salamander larvae (numbers above each bar or box-plot

are sample sizes; n = 392 for both prevalence and infection intensity) within the Guadarrama National Park, Central

Spain, 2015–2018. Dashed vertical lines indicate date (the end of the summer of the previous year and/or the early spring

of the current year) and the approximate total proportion of larvae removed. Laguna Grande acted as control pond where

no larvae were removed.

https://doi.org/10.1371/journal.pone.0242913.g003
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allow population persistence [38]. Our ex situ experiment demonstrated a significant role of

reduced density in Bd infection intensity at very low densities, and our field experiment showed

that reducing the abundance of salamander larvae in the field had a significant impact on load

of infection the following season. Recent studies indicate [57,58], self-reinfection is more

important than contact with other infected hosts or the environment, however the ex situ com-

ponent of our study does not support this, as the animals in the treatment entirely reliant on re-

infection (individually housed animals) often were unable to maintain infections over the

course of the experiment. We are aware, however, that the focal species in our field study (S. sal-
amandra) may not play as significant role in maintaining infection than the previous reservoir

in the system (A. obstetricans) played [37–39], as supported by our ex situ comparisons across

species. Consequently, future research examining the effect of removals of species that function

more clearly as interspecific reservoirs and super-spreaders could yield other outcomes.

Most studies of culling programs for wildlife have found that removal rates often need to be

extremely high [59–62]. To control chronic wasting disease in reindeer, eradication was

required [63,64]. Our field trial experiment achieved removal rates of 80–100% in just one or

two sessions with less than 10 people involved and in relatively large ponds (>5000 m2). How-

ever, our results indicate that even significant reductions of host abundance produce weak

impacts on load of infections. This result aligns with some recent work that illustrate how culls

rarely achieved the goal of reduced prevalence, load or disease, especially for well-established

enzootic diseases or when disease can persist in the environment [65–67]. In our study site, chy-

tridiomycosis has been present for at least 20 years, whereas Bd persistence in the environment

has never been recorded in these oligotrophic glacial ponds (Bosch, unpublished results). Across

annual cycles, adult amphibians did not consistently sustain infections but instead gained and

lost infections from year to year [68]. We also note that the two ponds where removals had the

greatest impact were also the smallest in our system, and where we counted fewer than two indi-

viduals per shoreline meter during removals. In contrast counts of larvae at the larger ponds

were more than twice that (4.4 individual/m). Therefore removal effort, pond size and initial

density are confounded in our study and we cannot unambiguously ascribe cause to the effect

of infection reductions. What is less ambiguous are year effects, which were strongest and

affected all ponds, including our control pond, Laguna Grande, where larvae were not removed.

Although our ex situ experiment argues for a positive relationship between load and water

temperature below 10˚C, long-term monitoring data supports a negative relationship for fire

salamander infections when air temperatures exceed 20˚C [38]. The Peñalara Massif is

experiencing atypical patterns of warming and it is plausible that the year-on-year effects that

predominantly affected load in S. salamandra larvae during the course of this study were

driven by continued increases in average summer temperatures [38]. These effects may be

direct on the pathogen or may affect load estimates by accelerating larval development and

removing older, overwintering larvae that are predominantly responsible for detectable infec-

tions in Peñalara data sets as they move from the aquatic to the terrestrial environment. Addi-

tionally, stochastic variation can play an important role in disease dynamics of wildlife [69]

and may have played a role in our removal trials experiment. In conclusion, based on the weak

evidence that larval removal is a successful management strategy, artificial reductions in host

abundance may not be a recommendable option for mitigating chytridiomycosis in the field

unless extremely large reductions are possible.
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