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Abstract: Marine polysaccharides are part of the huge seaweeds resources and present many applica-
tions for several industries. In order to widen their potential as additives or bioactive compounds,
some structural modifications have been studied. Among them, simple hydrophobization reactions
have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and
alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physico-
chemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food
fields. This review covers the chemical structures of the main marine polysaccharides, and then
focuses on their structural modifications, and especially on hydrophobization reactions mainly esteri-
fication, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine,
or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable
processes around these structural modulations of marine polysaccharides is addressed, considering
the development of greener technologies applied to traditional polysaccharides.

Keywords: marine polysaccharides; structural modifications; acylation; alkylation; amidation; sus-
tainable processes

1. Introduction

Major polysaccharides studied from marine resources are extracted from several
sources: red, brown, green algae, or seafood wastes. In 2018, the Food and Agriculture
Organization (FAO) Globefish Research Program has estimated the global seaweeds market
to USD 6 billion per year (approximately 12 million tons per annum in volume). Indeed,
around 221 species of seaweed are commercially available and cultivated for human needs.
In order to add value to these widely available resources, many structural modulations
were proposed so that the resulting application domains are widened. The reactions per-
formed range from depolymerization to total, partial, or selective modifications, comprising
acylation, alkylation, and sulfation, to cite the most common opportunities. All these com-
pounds were then studied for instance for their potential in food, detergency, energy,
human and plant health, and materials science. The challenges to be overcome are linked to
the polymeric nature of the resources and to its variability. Indeed, a unique polysaccharide
structure and dispersion is highly dependent on harvest, extraction procedures and also
their biosourcing [1,2], resulting in (1) a continuing requirement for adaptation of reaction
conditions and, to some extent, (2) properties with some variability. Nevertheless, some
simple reactions have been consolidated and will be described here. After a first chap-
ter dedicated to the chemical structures of the main marine polysaccharides, this review
focuses on their structural modifications, and especially on hydrophobization reactions
which afford products made from those major bioresources, with an emphasis on how
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the related processes can be improved considering the growing requirement of lowering
negative environmental impacts.

2. Classes of the Most Common Marine Polysaccharides
2.1. Red Algae Polysaccharides

Red algae polysaccharides represent the most important part of the seaweed market.
Among them, carrageenans and agar are largely used in food industry and, in a lesser
way, extend to the pharmaceutical and cosmeceutical industries. The major red algae
species cultivated are Porphyra, Euchema, Gracilaria species, and Kappaphycus alvarezii [3].
Polysaccharides extracted are mainly carrageenans and agarans.

Carrageenans are present in red algae cell walls [4] and characterized as sulfated
polysaccharides presenting an alternance of β-(1,3)-linked-D-galactopyranosyl (G) and
α-(1,4)-linked (3,6)-anhydro-D-galactopyranosyl (DA) units (Figure 1). Several types of
carrageenans have been identified regarding their sulfation pattern and the number of
3,6-anhydro units. It is worth noting that λ-carrageenan does not present any DA units [5].
Those structural parameters, as well as the presence of sodium and potassium ions in the
solution, control the solubility and gelation properties of carrageenans [6–9].

Agarans differ from carrageenans by the configuration of their 3,6-anhydrogalactopyranosyl
entity and the absence of sulfate ester on their backbone. They are made of alterna-
tive units of β-(1,3)-linked-D-galactopyranosyl (G) and α-(1,4)-linked (3,6)-anhydro-L-
galactopyranosyl units (LA) (Figure 1) [10].
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2.2. Brown Algae Polysaccharides

Saccharina japonica, Undaria pinnatifida and Sargassum fusiforme are the major brown
algae cultivated for commercial uses [3]. They represent, with green species algae, an
important food resource in Asia, but they are also used for their biological properties in
medical research [11–15]. Among the brown algae polysaccharides, fucoidans, laminarans,
and alginic acids are the most notable components. Laminarans and fucoidans are main-
water soluble polysaccharides while alginic acids are an alkali-soluble one [16].

The latter are linear block-copolymer of β-D-mannuronic (M unit) and α-L-guluronic
acid (G unit), linked by (1,4) glycosidic bonds (Figure 2) [17]. They are arranged in ho-
mopolymeric MM, GG blocks, or alternating MG blocks [18]. Alginate (Alg) refers to the
sodium alkali form of alginic acid, such as carrageenan and agar polysaccharides, and is a
water-gel forming polysaccharide in the presence of multivalent cations, such as Ca2+ [19].
Moreover, the M/G ratio and the presence of divalent cations govern the gelling properties
of alginate. Thus, higher proportion of G blocks in alginate structure leads to soft and
elastic gels [20,21].

Fucoidans are highly sulfated polysaccharides mainly built up of (1,3) and (1,4)-linked
α-L-fucose residues (Figure 2) [16]. They also contain other branched structures such as
mannose, glucose, galactose, and xylose [11,22]. This variety leads to complex composition
and structure elaboration of fucoidans.

Finally, laminarans are composed of β-(1,3)-D-glucopyranosyl units branched with
possible β-(1,6)-linked-D-glucopyranose (Figure 2). This last unit determines the water
solubility of the polysaccharide. Indeed, increase branching is associated with elevated
solubility in water [22]. Among laminarins, two types of polysaccharides are considered
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regarding their reducing end in the polymer chain. The glucose type only contains glucopy-
ranosyl residues while the mannitol type is ending with 1-O-linked D-mannitol [23–25].

Molecules 2021, 26, x FOR PEER REVIEW 2 of 23 
 

 

with an emphasis on how the related processes can be improved considering the growing 

requirement of lowering negative environmental impacts. 

2. Classes of the Most Common Marine Polysaccharides 

2.1. Red Algae Polysaccharides 

Red algae polysaccharides represent the most important part of the seaweed market. 

Among them, carrageenans and agar are largely used in food industry and, in a lesser 

way, extend to the pharmaceutical and cosmeceutical industries. The major red algae spe-

cies cultivated are Porphyra, Euchema, Gracilaria species, and Kappaphycus alvarezii.[3]. Pol-

ysaccharides extracted are mainly carrageenans and agarans. 

Carrageenans are present in red algae cell walls [4] and characterized as sulfated pol-

ysaccharides presenting an alternance of β-(1,3)-linked-D-galactopyranosyl (G) and α-

(1,4)-linked (3,6)-anhydro-D-galactopyranosyl (DA) units (Error! Reference source not 

found.). Several types of carrageenans have been identified regarding their sulfation pat-

tern and the number of 3,6-anhydro units. It is worth noting that λ-carrageenan does not 

present any DA units [5]. Those structural parameters, as well as the presence of sodium 

and potassium ions in the solution, control the solubility and gelation properties of carra-

geenans [6–9]. 

Agarans differ from carrageenans by the configuration of their 3,6-anhydrogalacto-

pyranosyl entity and the absence of sulfate ester on their backbone. They are made of 

alternative units of β-(1,3)-linked-D-galactopyranosyl (G) and α-(1,4)-linked (3,6)-anhy-

dro-L-galactopyranosyl units (LA) (Error! Reference source not found.) [10]. 

 

Figure 1. Red algae most representative units. 

2.2. Brown Algae Polysaccharides 

Saccharina japonica, Undaria pinnatifida and Sargassum fusiforme are the major brown 

algae cultivated for commercial uses [3]. They represent, with green species algae, an im-

portant food resource in Asia, but they are also used for their biological properties in med-

ical research [11–15]. Among the brown algae polysaccharides, fucoidans, laminarans, 

and alginic acids are the most notable components. Laminarans and fucoidans are main-

water soluble polysaccharides while alginic acids are an alkali-soluble one [16]. 

The latter are linear block-copolymer of β-D-mannuronic (M unit) and α-L-guluronic 

acid (G unit), linked by (1,4) glycosidic bonds (Error! Reference source not found.) [17]. 

They are arranged in homopolymeric MM, GG blocks, or alternating MG blocks [18]. Al-

ginate (Alg) refers to the sodium alkali form of alginic acid, such as carrageenan and agar 

polysaccharides, and is a water-gel forming polysaccharide in the presence of multivalent 

cations, such as Ca2+ [19]. Moreover, the M/G ratio and the presence of divalent cations 

govern the gelling properties of alginate. Thus, higher proportion of G blocks in alginate 

structure leads to soft and elastic gels [20,21]. 

 

Figure 2. Brown algae most representative units.

2.3. Green Algae Polysaccharides

Enteromorpha chlatrata, now renamed Ulva chlathrata, Monostroma nitidum, and Caulerpa
spp., are the major culti1vated green algae species, according to the FAO Globefish Research
Program report of 2018 [3]. Polysaccharides extracted from green algae are less researched
than others for their industrial applications. They also present a more varying structure
than brown or red algae, which make a general structure more difficult to present. However,
it is assumed that green algae polysaccharides are classified under two families: uronic
acid rich and uronic acid limited polysaccharides [4].

Ulvans are part of the uronic rich sulfated polysaccharides, and are the most known of
green algae polysaccharides. They are usually found and characterized from Ulva, Gayralia,
and Monostroma species. However, in 2007, Lahaye and Robic reported that the two main
disaccharides units found in ulvans are type A ulvanobiuronic acid 3-sulfate (A3S) and type
B ulvanobiuronic acid 3-sulfate (B3S) (Figure 3) [26]. Those two units differ by the presence
of D-glucuronic acid (A3S) or L-iduronic acid (B3S) linked to the L-rhamnose-3-sulfate.
Moreover, different monosaccharides have been found in their composition: glucuronic
acid, rhamnose, xylose, and iduronic acid [27,28]. Those monosaccharides are part of the
backbone and glucuronic acid is also present in the side chains compositions.
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2.4. Seafood Wastes’ Polysaccharides

Seafood wastes, such as crustacean shell and shellfish wastes, are sources of chitin
polysaccharides. Those polysaccharides are almost as abundant as cellulose, making them
an economical raw material of choice. For several decades now, chitin and its derivative
have been used, especially in the biomaterial field [29–31].

Chitin is a linear polysaccharide composed of β-(1,4)-linked-N-acetyl-2-amino-2-
deoxy-D-glucosyl (AcAG) units. It presents a poor solubility in water and a high crys-
tallinity [32]. This last parameter induces the differentiation of several type of chitin, the
major ones being α- and β-chitin [33]. α-Chitin is the most abundant form and can be
found in crustacean; while β-chitin can be found in squid [34]. Those two types of chitin
differ from their structures. α-Chitin presents an antiparallel arrangement of the chains,
which makes it a more densely packed material. By contrast, β-chitin presents a parallel
arrangement [32,34,35]. This last parameter is the reason why β-chitin swells considerably
in organic solvents such as methanol, compared to α-chitin (Figure 4) [36–38].
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Figure 4. Chemical and crystallinity structures of chitin.

Chitosan derives from chitin after a deacetylation reaction under basic conditions,
and therefore is built up with β-(1,4)-linked-2-amino-2-deoxy-D-glucosyl (AG) (Scheme 1).
Chitosan is only soluble in acidic aqueous media as it exhibits the cationic characteristic of
the amino groups.
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Scheme 1. Synthesis of chitosan from chitin.

Because of the various sources of chitosan, it is important to characterize it in terms
of deacetylation degree (DD) and acetylation degree (DA) [39]. DD and DA measure the
fraction of AG and AcAG residues and are evaluated as following (Equation (1)) [40,41].
Most of commercial chitosan presents an average DD value between 70–90%.

DD% = nAG
nAG+nAcAG

× 100
DA% = 100−DD

(1)

Calculation of acetylation and deacetylation degree of chitosan.

3. Amphiphilic Modifications of Polysaccharides

Chemical modifications of those marine polysaccharides obviously impact their
physicochemical and/or biological properties. The major properties of these native polysac-
charides are summarized in the Table 1. As an illustration, some interesting chemical mod-
ulations as well as the application field of the obtained derivatives are presented for each
case. Most of the time, determination of the degree of derivatization was performed using
NMR spectroscopy [42], Raman spectroscopy [43], conductimetry titration method [44],
and/or elemental analysis [45].

Table 1. Physicochemical properties of modified polysaccharides.

Polysaccharides
(Seaweed Sources) Physicochemical Properties Chemical Modifications Applications of Modified

Polysaccharides Reference

Carrageenans (Red Algae) Gelling properties (Depending on
Na+/K+ Concentration) O-acylation HIV treatment [42,46–49]

Agarans (Red Algae) Gelling properties O-alkylation
O-acylation

Modulation of rheological
and thermal

properties/HPLC
applications

[50–52]

Fucoidans (Brown Algae) Highly sulfated Non-gelling
polysaccharides

O-acylation Antioxidants [53]
Aminated fucoidans Cancer treatment [54,55]
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Table 1. Cont.

Polysaccharides
(Seaweed Sources) Physicochemical Properties Chemical Modifications Applications of Modified

Polysaccharides Reference

Laminarans (Brown
Algae) Non-gelling polysaccharides O-acylation Antimicrobial activity [56]

Alginates (Brown Algae) Gelling properties (depending on
Ca2+ concentration)

Amidation of carboxylic
functions

Resistance towards alginate
lyases [57]

Ulvans (Green Algae) Gelling properties O-acylation Surfactants, emulsifier
agents, hydrogels [58–61]

Chitosan (Crustacean
Shell and Shellfish Wastes)

High crystallinity only soluble in
acidic aqueous media

Quaternization of amine
functions

Carriers for hydrophobic
bioactive molecules [62]

N-acylation Micellar delivery system [63]

3.1. Uronic Rich Polysaccharides
3.1.1. Modification of Carboxylic Groups on Uronic Rich Polysaccharides

Carboxylic acids present on uronic acid rich polysaccharides, such as alginate or
ulvans, can be targeted for amphiphilic modifications of polysaccharides. Those modifica-
tions can be classified under three sections: esterification, amidation, or modulation by an
Ugi reaction.

• Esterification

The standard Fisher esterification reaction requires acidic conditions in order to pro-
tonate the carboxyl group, promoting the grafting of chosen alcohols. Thus, reaction
conditions could also promote partial depolymerisation through acido-catalyzed breaking
of glycosidic linkages. Usually, the catalysts used for this modification are sulfuric acid [64]
or para-toluenesulfonic acid (pTSA) [65]. In 2006, Broderick et al. modified the carboxylic
function of alginate using sulfuric acid as catalyst and butanol as reactant and solvent [64].
The advantages of this pathway were the mild conditions and the minimization of the
number of reactants. In 2013, Wu et al. have formed cross-linked alginate using 1,10-
dodecanediol in a pTSA/dimethylformamide (DMF) media (Scheme 2A) [65]. However,
most esterifications of alginates occurred after a first step of protonation of sodium alginate
to obtain the alginic acid. For that, sodium alginate was stirred in a mixture of formamide
(FA)/DMF (typically 10/9 v/v) in presence of p-TSA. After the protonation step, the alginic
acid was reacted with the chosen alcohol in presence of 4-dimethylaminopyridine (DMAP)
and carbodiimide (dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC)). Such a procedure was used to graft dodecanol [19], hexanol, oc-
tanol [66] and cholesterol [67] on alginates (Scheme 2B). A last possibility for esterification
is to perform a SN2 nucleophilic substitution reaction, with alkyl halides. This was per-
formed using tetrabutylammonium (TBA)-alginate. The use of TBA as counter-cation of the
carboxylate group allowed a better solubility of polysaccharide in organic solvent thanks
to the aliphatic residues. This artifice was firstly described by Della Valle et al. in 1990, for
hyaluronic acid modification, using a cation exchange resin loaded with TBA [68]. A few
years later, Babak et al. adjusted that protocol by replacing the direct ion exchange by an
heterogeneous acidification with HCl of Na-Alg followed by neutralization with tetrabuty-
lammonium hydroxide (TBAOH) [69]. Some other groups chose to acidify alginate with
formic acid, before neutralization with TBAOH [70]. When performing a SN2 reaction,
the use of anhydrous conditions is an important parameter as water could also act as the
nucleophile. Such an SN2 procedure was performed to graft dodecyl [69], octadecyl [71],
ethyl [72], and butyl [72] chains on alginate (Scheme 2C). The choice of the solvent for this
procedure was also important. Indeed, DMSO has been shown to react with alkyl halides,
leading to alkyloxydimethylsulfonium halide formation. Because of that side reaction,
DMF was established as more suitable while using halide alkyl donors [72].
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Scheme 2. Esterification procedure on alginate carboxylic groups.

• Amidation

Amidation on the carboxylic group is another way to obtain hydrophobized com-
pounds from uronic acid-containing polysaccharides. This reaction is performed in acidic
aqueous media (pH 3–4) to ensure the presence of the carboxylic acid. The carboxylic
acid is then activated by adding a carbodiimide coupling agent. This modification was
firstly developed for alginates [73–76] and further adapted by Sari et al. for ulvans to graft
octylamine, using the EDC.HCl coupling agent (Scheme 3A). Conjugated alginate was also
grafted with an aminopropyl vinyl ether (APVE) using EDC.NHS (N-hydroxysuccinimide)
as coupling agent [77] (Scheme 3B). Other aminoalkylchains were used to modify algi-
nate, such as dodecylamine [78] or methylamine [79]. Those later modifications were
performed using TBA-Alg form. The amidation was then performed using CPMI (1-chloro-
1-methylpyridinium iodide) and triethylamine (Scheme 3C).
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Scheme 3. Amidation procedures on ulvans and alginates.

In a very interesting approach, Fort et al. introduced lipophilic amino acids through
amidation of the carboxylic functions of oligoalginates [57]. The grafting reactions were
conducted with the 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
(DMTMM) coupling agent which is compatible with non-protected hydroxyl groups and is
less prone to formation of by-products. The amidation reactions were performed starting
with the methyl esters of alanine or leucine, followed by a saponification to afford the
desired conjugates in 70–93% yields. The authors demonstrated that such a structural
modulation gave more resistant or non-affected oligosaccharides toward the hydrolytic
activity of alginate lyases.

• Ugi reaction

Finally, carboxylic acids of alginates and ulvans can undergo a multi-component Ugi
reaction. An imine, obtained by condensation of a primary amine with an aldehyde or a
ketone, is protonated by the carboxylic acid. Then, a cascade of two additions followed by
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an intramolecular rearrangement yield a bis-amide compound. This kind of modification,
at the best of our knowledge, has only been performed on alginates. To perform this
condensation reaction, one of the important parameters is the pH of the reaction, which
should be set at 3.6. The advantages of this reaction are the high yield obtained and the fact
that almost all of the atoms involved in the reaction are used to obtain the final compound,
thus addressing the question of atom economy. However, the components, except for the
alkylamine, are usually added with 40% excess. In 2004, Bu et al. performed Ugi condensation
on alginate to obtain a cross-linked alginate with a pentyl spacer (Scheme 4A) [80]. More
recently, in 2016 and 2018, Yan et al. [81] and Zhao et al. [82] synthetized an Ugi modified
alginate in presence of formaldehyde, cyclohexyl isocyanide, and octylamine (Scheme 4B).
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3.1.2. Modification of Hydroxyl Groups on Uronic Acids Rich Polysaccharides

Alginic acids and ulvans present two hydroxyl functions on C-2 and C-3. Those
positions have been subjected to modification via esterification reactions. Moreover, con-
sidering the ability of these polysaccharides to form various gels, the reactivity on those
hydroxyl groups is highly dependent on the polysaccharide solubility and thus on the
hydroxyl groups availability. Finally, specific modifications of either hydroxyl on C-2 or
C-3 positions were difficult to control as their reactivities were very similar.

Hydroxyl modifications of alginates were inspired from protocols of modifications
of starch, amylose, and amylopectins published in 1951 by Wolff et al. and adjusted by
Phillips et al. in 2000 [43,83]. As alginic acids were only alkali-water soluble, the hydroxyl
modifications were usually performed in an aqueous media, using Na-alginate salts. Thus,
for esterification of alginate, the pH of the reaction media played an important role in
the esterification reaction and was kept between 7 and 8 by addition of NaOH solution.
Examples found in literature explored the grafting of short succinyl-like chain using suc-
cinic anhydride [84] and 2-dodecenyl succinic anhydride [85–87]. Compared to carboxylic
modifications, those works open pathways for greener synthetic alternatives of amphiphilic
alginates as they occurred in aqueous media (Scheme 5A). Nevertheless, some reactions
were performed in polar aprotic solvent, such as DMSO or DMF. To achieve solubilization
of alginate, TBA (tetrabutylammonium)-alginate was used. Then, a dissolution promoter,
such as tetrabutylammonium fluoride (TBAF) could also be added to perform a total solu-
bilisation of the TBA-alginate form. Such an example is found in the work of Pawar et al.
who modified the hydroxyl groups of alginates using a similar procedure as for carboxylic
acid modifications. They showed that addition of TBAF (10% w/v) allowed a complete
solubility of the polysaccharide in polar aprotic solvent while it is only partially dissolved
without TBAF [88]. As a consequence, substitution degrees were higher in homogeneous
solutions where TBAF was added. However, this workers’ group only grafted short car-
boxylic acid chains, such as acetic or propionic, and the use of hexanoic anhydride showed
no grafting. They explained this last result by the competition between the hydrophobic
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nature of hexanoic anhydride and the polycharged nature of the TBA-alginate [88]. In their
study, mixture of TBAF with solvent such as DMSO, DMF, DMAc (dimethylacetamide), and
DMI (1,3-dimethyl-2-imidazolidinone) were also studied and allowed a total solubilization
of TBA-alginate salts (Scheme 5B). In the same register, in 2015, Kapishon et al. grafted bro-
moisobutyryl chain using TBA-alginate salts dissolved in 2% w/v TBAF containing DMSO,
in the presence of 1,1’-carbonyldiimidazole/α-bromoisobutyric acid (CDI/BriBA) [89]. CDI
was used as an esterification activator for grafting of α-bromoisobutyryl chain (Scheme 5C).
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Direct-nhj jkugiu-iyoi modifications of ulvans with fatty acid chains varying from
C8 to C28 was patented by Ranson et al., in 2006 [61]. For that, hydroxyl modifications
were usually performed by esterification or transesterification reactions. For esterification,
ulvans were modified in pyridine, using fatty acid chlorides at 130 ◦C during 2 h. Ulvan
esters were isolated by precipitation and different steps of washing. Transesterifications
were mostly performed without solvent, using fatty acid esters, and especially methyl fatty
acid esters at 150 ◦C for 6 h. Final products were recovered by dissolving the reaction media
in butanone followed by a neutralization with lactic acid to obtain a gel product. During
that procedure, degradation of ulvan chains was observed, resulting in a coloration of the
final product. (Scheme 6A). In 2012, Qi et al. acetylated ulvans [60] adapting the protocol
developed by Tosh et al. for the acetylation of cellulose [90]. Ulvan polysaccharides were
thus firstly dissolved overnight in DMAc using LiCl. Then, the mixture was diluted to
1 wt%, p-TsCl was added with acetic anhydride and the reaction was performed at 60 ◦C
for 10 h to give acetylated ulvans (Scheme 6B). Finally, in 2019, Morelli et al. extended their
protocol from acrylated ulvan synthesis [58] to prepare ulvan esters with butyryl and oleyl
acid chains [59]. They carried out the modification in a biphasic mixture of water and toluene
and added a compatibilizer solvent: 2-butanone which was firstly pre-activated by addition
of NaOH. Acyl halide was added in a large excess to compensate the loss due to its hydrolysis
in aqueous media. The reaction was performed at 4 ◦C, pH 7–8 for 3 h (Scheme 6C).
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3.2. Aminated Polysaccharides

Aminated polysaccharides include chitin and its derivative chitosan, which are a
resource of choice as they are non-toxic and biodegradable polymers [45]. However, most
of the modifications listed from literature are carried out on chitosan, which, in addition to
the C-3 and C-6 hydroxyl groups, also presents a C-2 primary amino-group, unlike chitin.
Hence, it is an advantageous polymer for long acyl chain grafting to yield new amphiphilic
structures. Moreover, chitosan is insoluble in most of the common organic solvents used
for hydrophobization reactions, but it exists partially as a quaternary ammonium salt
in aqueous acidic solution of acetic, formic, propionic, butyric acid, etc, allowing its
solubility [91].

3.2.1. Amino-Modifications

Since an amine function is significantly more nucleophilic than a hydroxyl group,
modifications of chitosan are mostly performed via this function. N-alkylations, reductive
amination and N-acylations are the main ways to obtain amphiphilic molecules. Moreover,
amino groups can also be modified to quaternary amino chains leading to amphiphilic
polymeric chitosan derivatives, as carriers for hydrophobic bioactive molecules [62].

• N-Alkylation;

At the beginning, N-alkylation of chitosan was performed by reductive amination.
This procedure was previously described by Yalpani and Hall in 1984 [92] and Holme et al.
in 1986 [93]. They used NaBH3CN as reductive agent in a methanolic solution containing
1 v% of aqueous acetic acid. Later on, similar procedures were described using different
reductive agents. One example was described by Huo et al. in 2010, to introduce an octyl
graft from octaldehyde and using NaBH4 in aqueous solution as reductive agent under hy-
drogen (Scheme 7A) [94]. N-isopropyl chitosan was described in Cok and coworkers’ work
using acetone and picolidine-borane complex as reductive agent in a methanol/aqueous
acetic acid solvent [95]. By varying the molar ratio of acetone, they managed to obtain
different isopropyl derivatives. Direct alkylation was also described, for example, by
Zhou et al. in 2011. In this work, they described a two-step alkylation, addition of NaH in
DMSO followed by nucleophilic substitution of n-alkyl bromide (Scheme 7B) [96]. In 2012,
Kurita and coworkers described alkylation performed in acidic aqueous solution using
sodium hydrogen carbonate and a mixture of alkyl halide/Tween 50 during a 24 h reaction
at 80 ◦C [45]. Tween 50 was added to disperse homogeneously the alkyl halide in the
media. The use of NaHCO3 instead of NaH brought the modification to an environmentally
friendly process as it was a less toxic reagent (Scheme 7C).
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• N-Acylation;

Like N-alkylations, most N-acylations were performed using aqueous acetic acid
solution mixed with methanol or ethanol for a better solubility of chitosan. Several ex-
amples can be identified from literature, such as grafting of acyl chain from linoleic acid,
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oleic acid [44,97,98], myristoyl anhydride [99], or caproic acid [100]. While using the car-
boxylic acid, EDC.HCl, sometimes coupled with N-hydroxysuccinimide (NHS), was used
as a coupling agent. However, the use of the corresponding anhydrides prevented the
addition of further catalysts (Scheme 8A). While using fatty acyl chloride, the acylation
was performed in aqueous solution at pH 6–7 without the addition of any catalyst or
co-solvent, simplifying the procedure. Such procedure was described in 2003 by Le Tien
and co-workers, who grafted fatty acid chains from C6 to C16 on chitosan (Scheme 8B) [84].
DMF was sometimes used as co-solvent in water to homogenize the reaction medium.
This procedure was described in the work of Liang and co-workers where α-tocopherol
succinate-modified chitosan was synthetized. The resulting conjugated polysaccharide
found application as micellar delivery system for paclitaxel (Scheme 8C) [63]. Fewer works
have described N-acylations in organic solvents monophasic systems. In 2006, Vasnev
and co-workers prepared acylated chitosan using different conditions. One of them was
the use of DMAc as solvent and a pre-treatment of chitosan in an aqueous solution of
trifluoroacetic acid. After water removal, myristoylation with the acyl chloride was per-
formed in the presence of pyridine and triethylamine (TEA).The authors also described a
procedure using DMAc-LiCl solution using p-nitrobenzoyl chloride [101]. More recently,
the emergence of ionic liquids (IL) allowed N-acylations of chitosan. Argüelles-Monal
et al. compiled those works in a review in 2018 [102]. In brief, imidazolium-based ionic
liquid was described as one of the most efficient IL as it also acts as an excellent catalytic
medium [103]. For example, linoleic acid chain was grafted on chitosan using linoleic acid,
EDC as coupling agent, DMAP as nucleophilic catalyst and 1-butyl-3-methylimidazolium
acetate ([BMIM]Ac) or DMSO as solvent [104]. As a result, they showed that the use of
[BMIM]Ac gave better yield and DS value compared to the same reaction performed in
DMSO (Scheme 8D). Moreover, they also showed that the IL could be reused for at least
eight cycles without any change in its structure.
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• Quaternization of Chitosan

Quaternization of chitosan is another modification that can be performed on their
amino-group. Formation of such amphiphilic molecule allowed chitosan to have a densi-
fied positive charge and thus increased its solubility at higher pH [105]. Those modifica-
tions were usually performed in NaOH aqueous solutions using quaternary ammonium
bromides (Scheme 9A) [105–107]. The obtained compounds were further modified by
reductive amination using alkyl aldehydes and NaBH3CN (Scheme 9B) in order to mask
the remaining free amino groups.
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3.2.2. Hydroxyl Modifications

Besides the amino function, two hydroxyls groups at C-6 and C-3 offer subsequent
opportunities for chemical modulations. Theoretically, N-protection is required before
O-acylation or alkylation. Nevertheless, inversion of reactivity was interestingly and effi-
ciently performed under acidic conditions which generate non-nucleophilic ammonium
salts. Trifluoroacetic acid (TFA), methanesulfonic acid, or sulfuric acid were usually pro-
posed to meet this reactivity [108]. In this context, Feng and co-workers described in 2011
a specific O-acylation of chitosan by fumaric acid in presence of H2SO4 during 4 h at
80 ◦C (Scheme 10A) [109]. Later on, in 2017, Zhang and co-workers described a two-step
procedure which began with a pre-treatment of chitosan with TFA in dichloromethane
and an electrospinning treatment to form chitosan nanofiber membranes. The latter were
subsequently O-acylated in a pyridine/carboxylic acid anhydride solution for 2 h at 80 ◦C
(Scheme 10B) [110].
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3.3. Sulfated Polysaccharides

Fucoidans and carrageenans are sulfated polysaccharides which can be modified
on their different hydroxyl groups to obtain amphiphilic molecules [111]. However, to
our knowledge, those polysaccharides were the object of only few studies which mostly
concerned the grafting of acyl chains on hydroxyl positions. In their review published in
2009, Campo and coworkers listed the different procedures to esterify carrageenans [5].
Since then, no recent work has been found on grafted carrageenan or fucoidan procedures.

Such as for alginates and ulvans, carrageenans modifications were performed using
the sulfate-TBA salts which triggered the solubility in the most commonly used organic
solvent, such as DMF. Thus, conditions of acylation were classical and inspired from
Petitou et al. [112], where heparin sulfate was O-acylated using TBA salts.

Another issue with the modification of carrageenans was the presence of the (3,6)-
anhydrogalactopyranosyl units which narrowed the range of conditions because of its
acid-labile sensibility [113]. Then, acylation reactions were performed using DMAP as
catalyst, tributylamine as base for pH control, and carboxylic acid anhydride as acylating
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agent. Nowadays, only two major groups have been working on commercially available κ-,
ι- and λ- poly- and oligocarrageenans for modifications by grafting fatty acid with length
chain varying from C4 to C12 (Scheme 11) [42,46–49]. It is noteworthy that the degree of
substitution could reach 90% under these conditions.
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Even if the hydrophobization of fucoidans is still underexplored, a procedure in-
volving acetic anhydride, formamide, and 1% of N-bromosuccinimide (NBS) yielded the
desired acetylated fucoidan (Scheme 12A) [53]. An alternative to make this marine resource
less polar was introduced by Soeda and coworkers [54,55]. It relied on first introducing a
spacer ended with an amino group (Scheme 12B).
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3.4. Hydroxyl Only Polysaccharides
3.4.1. Agarans’ Modifications

The modification of agarans into hydrophobic compounds is inspired from modi-
fications of starch [50]. However, the difference in the availability of hydroxyl groups
between glucose and galactose units makes agarose less reactive than starch, and its gelling
properties also complicate its handling. In decreasing order of reactivity, hydroxyl groups
of agarans react in the following order: C6-OH > C2-OH > C4-OH [114,115].

• O-Alkylation of agarans

Most of the works found in the literature describing alkylation of agarans are based
on opening of epoxides and aimed to modulate the absorption and desorption properties
of agarose for applications on HPLC. The first study was reported at the end of the 19th
century [116,117] using epoxy derivatives as coupling agent in two-step-reactions. More
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recently, a single-step synthesis has been reported in order to modulate the rheological and
thermal properties of agarans under milder reaction conditions [51,52].

The principle of the two-step method is based on the reaction of a bifunctional epoxy
precursor (epichlorohydrin [117] or alkyl diglycidyl ether derivatives [116,117]) in the presence
of NaOH and NaBH4. Then, the remaining epoxy function reacted with an alkyl mercaptan.
This procedure was firstly described by Maisano et al. in 1985 for the synthesis of alkyl
sulphide derivatives of agarose resin (Sepharose 6B). They used 1,4-butanediol diglycidyl ether
as coupling agent and alkyl mercaptan as hydrophobic reagent (Scheme 13A) [116]. A few
years later, the synthesis proposed by Oscarsson et al. in 1989 relied on epichlorohydrin as
coupling and cross-linking agent, and phenol as hydrophobic reagent (Scheme 13B) [117].

Other methods with different conditions have been reported, including the one of
Hjertén et al., which consisted first on an activation of agarose resin (Sepharose 4B) in
water with γ-glycidoxypropyltrimethoxysilane followed by the grafting of a fatty alcohol
in the presence of boron trifluoride diethyl etherate. This modification is particular by
grafting the siloxane group onto two agarose chains, conducting to the reticulation of
the polysaccharide (Scheme 13C) [118]. The process was simplified in 2015 and 2018
by Zhang et al. who reported a one-step synthesis of amphiphilic agarose derivatives.
The reaction involved epoxides (ethylene oxide, 1,2-propylene oxide, or 1,2-epoxybutane)
with agarose in aqueous basic conditions [52]. For the substituted epoxides, the reactions
occurred only in the presence of sodium borohydride [51]. However, they reported that the
reactivity of those epoxides towards the agarose decreased with the length of the side chain,
which then limited the hydrophilic lipophilic balance (HLB) modulation (Scheme 13D).
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• O-Acylation

Surprisingly, the chemical processes developed for conventional polysaccharides such
as cellulose and starch [119], have been only very recently taken up for modifications of
agars, as acetylation [120], and later on as acylation with anhydrides and acyl chlorides for
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the preparation of amphiphilic agarose based molecules [121,122]. This was particularly
the work of Xiao et al. in 2019, who first synthesized agarose grafted with octenyl or
dodecyl succinic acid. The process consisted of mixing an aqueous solution of agarose
(7 wt%, pH 8.5) with a solution of 5% alkenyl succinic anhydride in isopropyl alcohol or in
DMF (Scheme 14A). Since the degree of substitution (DS) was low (≈5%), another process
was developed using fatty acyl chlorides in pyridine. Those last processes allowed the
synthesis of higher substituted fatty esters of agarose with lauroyl, stearoyl, or palmitoyl
chains and a DS of about 30% (Scheme 14B).
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Although the reactivity of carboxylic acids is lower compared to that of anhydrides
and acyl chlorides, their use is a key point for development of a green process. Indeed,
unsaturated as well as saturated fatty acids are directly extracted from biomass, and do not
require any harsh pretreatment, unlike other conventional acyl donors. In 2005, Prasad et al.
began research in this direction and proposed a protocol to access to amphiphilic agars [50].
They used fatty acids such as lauric, myristic, stearic, palmitic, and oleic acids, in methanol
without any catalyst. However, even if they showed some interesting variations in the
rheological properties of agar gels, the DS were either minor or null. In fact, fatty acids
acted as chelating agents between two hydroxyl functions of agars backbones, forming a
fatty acid-agar complex but without covalent modification of the polysaccharide.

3.4.2. Laminarans

Laminarans are, like agarans, hydroxyl only polysaccharides but do not have any
gelling properties. This last parameter facilitates the handling of the polysaccharide and
the availability and reactivity of the hydroxyl groups. As at this day, Paris et al. is the only
group who have been interested in the hydrophobic modulation of laminarans. The latter
were partially grafted with lauroyl chains on the primary OH groups to improve the
antimicrobial activity of laminarans against Plasmorata viticola. As for O-acylation of
agarans or ulvans, laminarans were grafted using fatty acyl chloride in a polar aprotic
solvent (DMAc) and in the presence of DMAP as catalyst and TEA as acid-scavenger
(Scheme 15) [56].
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4. Tools and Techniques to Develop More Sustainable Processes

Amphiphilic polysaccharides are generally used for applications in the pharmaceu-
tical, cosmetics, or food industries. At present, most of the previous synthesis pathway
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presented above could not reach the “green label”. However, over a few decades, interests
have emerged to work on the improvement of the environmental impact of processes
around the structural modulations of natural polysaccharides. Indeed, sustainable and
cost-effective pre-treatment, extraction, and purification methods are still needed for indus-
trial applications. This attention firstly focused on improving the environmental impact
of polysaccharide extraction and purification, using for example supercritical fluids, ul-
trasounds, or microwaves assisted systems (Figure 5) [123,124]. Moreover, because of the
field of application of such molecules, industries have been sensitized to reduce the use of
compounds presenting toxic, environmental, or health hazards, by choosing alternative
solvents and reagents. So far, most of the attention to this environmental impact focused
on modifying traditional polysaccharides, such as hyaluronic acid, cellulose, or starch.
Examples of starch modification are presented in Table 2. The application of innovative
modification processes to marine polysaccharides through the use of greener technologies
(such as ILs, solvent-free systems, etc.) remain rare. A few of them are presented herein.
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Table 2. Starch modification with different processes.

Process Acylating
Reagent

Solvent and
Reagent Conditions DS (%) Reference

Ionic liquid Acetic
anhydride

1-N-alkyl-3-
methylimidazolium

chlorides

130 ◦C,
4–24 h 20–98 [125]

scCO2 Vinyl laurate

Densified CO2 +
NaOAc

100 ◦C,
8 MPa, 1.5 h 67 [126]

Densified CO2 +
Na2SO4

100 ◦C,
8 MPa, 1.5 h 81 [126]

Ball milling Lauric acid K2CO3
80–40 ◦C,
2–0.5 h 1.48–4.12 [127]

Enzymatic lauric acid NaOH (pH 6) + 1%
lipase 60 ◦C, 24 h 3.3–15.1 [128]

Microwaves Maleic
anhydride - 450 W,

1–5 min 0.2–9.8 [129]

Since the solvent is the major waste in a process, its choice, if its presence is required,
has to be considered very early in the design of a greener process. Structural modifications
of marine polysaccharides are already green in some cases. For example, the N-alkylation of
amino-polysaccharides or O-alkylation of agarans already occurred in aqueous media [117].
Moreover, the use of ionic liquids has been tested for N-acylation of chitosan. However,
several chemical routes remain to be improved, especially the ones where organic solvents
such as dichloromethane, DMF, DMAc, or pyridine are used.
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An alternative to standard solvents relies on the use of ionic liquids (ILs). The latter
are salts with low melting points composed of an organic cation and either an organic or
an inorganic anion characterized by a smaller size than the cationic one. They are well
known for their low volatility, low inflammability, good thermal and chemical stability, as
well as their high ionic conductivity and recyclability. Considering the aforementioned
characteristics, ILs can be seen as green solvents. Among them, it is noteworthy that 1-
ethyl-3-methyl-imidazolium acetate ([EMIM]OAc) presents a remarkable ability to dissolve
crystalline polysaccharides. For example, it was used to dissolve cellulose for hetero-
geneous [125] or homogeneous [130] modifications while 1-butyl-3-methyl-imidazolium
acetate ([BMIM]OAc) was used for N-acylation of chitosan [84].

Interests in biocatalysis emerged in the 1990s and were first undertaken for modi-
fication of small saccharides [131], such as glucose [132], lactose [133], saccharose [134],
maltose, or maltotriose [135]. For a few years, they were also used for modification of
conventional polysaccharides, such as cellulose or starch [136–139]. Aside from replacing
the conventional catalyst with a more environmentally friendly one, the use of biocatalysts
also allows the development of processes with milder conditions and target modifica-
tion of polysaccharides with a lower substitution degree leading to different properties
for those amphiphilic molecules. Moreover, as biocatalysts are mostly used under mild
conditions of temperature or pressure, polymer degradation is less likely to happen, as
opposed to other chemical processes. Their regioselectivity also allows a modification at a
specific position without any upstream protection steps. Usually, proteases and esterases
are used for enzymatic modification of carbohydrate with short fatty acid chains while
lipases are favoured for long fatty acid chains. This topic has been discussed in a variety of
reviews [128,138,140]. It has been demonstrated that acetylase is part of a protein complex
including four proteins encoded in the alginate biosynthetic gene cluster, necessary for
alginate acetylation [141]. It belongs to the alginate-modifying enzymes used as tools for
alginate characterization. However, engineered enzymes from these natural ones may then
be used alone or in chemoenzymatic approaches to create modified polysaccharides with
new and desired functionalities.

5. Conclusions and Future Outlooks

Many applications are available thanks to hydrophobization of marine polysaccha-
rides. Most of them concern acylation, mainly acetylation, reactions increasing hydropho-
bicity of polymers likely to modify their physicochemical properties, such as gelling,
thickening, and emulsifying. For instance, it has been demonstrated that the degree of
acetylation affects the water-binding properties and increases the viscosity of the algi-
nate [141]. These modifications are likely to apply to bioactive compounds with interesting
health promoting effects on human or animals. However, likely to the native polysac-
charides, the physicochemical properties of the modified ones could be affected by the
complex chemical structure, the type and concentration of cations and other compounds
(salts, proteins, etc.). Their bioactive properties are susceptible to be modulated by the
molecular weight, constituent sugar linkages, and degree of branching. Consequently,
the generation of smaller units with better defined molecules could be of interest and
more suitable for applications requiring sustainable depolymerization processes. However,
considering the rare examples described in the literature, the biocatalyzed esterification of
algal polysaccharides remains to be challenged.

The recent developments that meet more and more issues of the 12 rules of the
green chemistry, resulted in innovative products and substantial financial savings. Some
limitations, however, remain to be overcome in order for marine resources to be structurally
modified through more environmentally friendly procedures. Some technologies already
applied to the modulation of terrestrial or animal polysaccharides are still to be challenged
for the marine counterparts. Moreover, thanks to tremendous increases in basic knowledge
in marine enzymes, essentially hydrolases, lyases, (de)sulfatases, and (de)acetylases, in
combination with new media and techniques, one can predict great advances for the
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synthesis of complex but structurally well mastered polysaccharides, for their degradation,
and for original structural modulations for obtaining products with very high added value.
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14. Szekalska, M.; Puciłowska, A.; Szymańska, E.; Ciosek, P.; Winnicka, K. Alginate: Current Use and Future Perspectives in

Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016, 2016, 7697031. [CrossRef]
15. Basu, S.; Pacelli, S.; Paul, A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug

delivery. Acta Biomater. 2020, 105, 159–169. [CrossRef]
16. Skriptsova, A.V.; Shevchenko, N.M.; Tarbeeva, D.V.; Zvyagintseva, T.N. Comparative Study of Polysaccharides from Reproductive

and Sterile Tissues of Five Brown Seaweeds. Mar. Biotechnol. 2012, 14, 304–311. [CrossRef]
17. Indergaard, M.; Skjåk-Bræk, G.; Jensen, A. Studies on the Influence of Nutrients on the Composition and Structure of Alginate in

Laminaria saccharina (L.) Lamour. (Laminariales, Phaeophyceae). Bot. Mar. 1990, 33, 277–288. [CrossRef]
18. Yu, Y.; Leng, C.; Liu, Z.; Jia, F.; Zheng, Y.; Yuan, K.; Yan, S. Preparation and characterization of biosurfactant based on

hydrophobically modified alginate. Colloid J. 2014, 76, 622–627. [CrossRef]
19. Yang, J.; He, W. Synthesis of lauryl grafted sodium alginate and optimization of the reaction conditions. Int. J. Biol. Macromol.

2012, 50, 428–431. [CrossRef] [PubMed]
20. Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C.; Thom, D. Biological interactions between polysaccharides and divalent cations:

The egg-box model. FEBS Lett. 1973, 32, 195–198. [CrossRef]

http://doi.org/10.3390/molecules25040930
http://www.ncbi.nlm.nih.gov/pubmed/32093097
http://doi.org/10.1016/j.carbpol.2009.01.020
http://doi.org/10.1007/s10811-007-9229-9
http://doi.org/10.1007/s10811-009-9425-x
http://doi.org/10.1016/j.ijbiomac.2017.05.175
http://doi.org/10.1016/j.carbpol.2011.11.018
http://www.ncbi.nlm.nih.gov/pubmed/22408280
http://doi.org/10.1016/S0268-005X(98)00018-6
http://doi.org/10.3390/molecules13081671
http://doi.org/10.1016/j.carbpol.2019.115774
http://doi.org/10.1155/2016/7697031
http://doi.org/10.1016/j.actbio.2020.01.021
http://doi.org/10.1007/s10126-011-9413-4
http://doi.org/10.1515/botm.1990.33.3.277
http://doi.org/10.1134/S1061933X14050160
http://doi.org/10.1016/j.ijbiomac.2011.12.027
http://www.ncbi.nlm.nih.gov/pubmed/22234295
http://doi.org/10.1016/0014-5793(73)80770-7


Molecules 2021, 26, 4445 18 of 22

21. Deniaud-Bouët, E.; Hardouin, K.; Potin, P.; Kloareg, B.; Hervé, C. A review about brown algal cell walls and fucose-containing
sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr. Polym. 2017, 175,
395–408. [CrossRef]

22. Fernando, I.P.S.; Sanjeewa, K.K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.S.; Kang, N.; Ranasinghe, P.; Lee, H.S.; Jeon, Y.J. A
fucoidan fraction purified from Chnoospora minima; a potential inhibitor of LPS-induced inflammatory responses. Int. J. Biol.
Macromol. 2017, 104, 1185–1193. [CrossRef]

23. Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J.
Food Sci. Technol. 2015, 50, 24–31. [CrossRef]

24. Descroix, K.; Ferrières, V.; Jamois, F.; Yvin, J.-C.; Plusquellec, D. Recent progress in the field of β-(1,3)-glucans and new applications.
Mini-Rev. Med. Chem. 2006, 6, 1341–1349. [CrossRef]

25. Legentil, L.; Paris, F.; Ballet, C.; Trouvelot, S.; Daire, X.; Vetvicka, V.; Ferrières, V. Molecular interactions of β-(1→3)-glucans with
their receptors. Molecules 2015, 20, 9745–9766. [CrossRef]

26. Lahaye, M.; Robic, A. Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007,
8, 1765–1774. [CrossRef]

27. Brading, J.W.E.; Georg-Plant, M.M.T.; Hardy, D.M. The polysaccharide from the alga Ulva lactuca. Purification, hydrolysis, and
methylation of the polysaccharide. J. Chem. Soc. 1954, 319–324. [CrossRef]

28. Quemener, B.; Lahaye, M.; Bobin-Dubigeon, C. Sugar determination in ulvans by a chemical-enzymatic method coupled to high
performance anion exchange chromatography. J. Appl. Phycol. 1997, 9, 179–188. [CrossRef]

29. Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469.
[CrossRef] [PubMed]

30. Francis Suh, J.K.; Matthew, H.W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering:
A review. Biomaterials 2000, 21, 2589–2598. [CrossRef]

31. Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its
derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–188. [CrossRef]

32. Jang, M.K.; Kong, B.G.; Jeong, Y.I.; Lee, C.H.; Nah, J.W. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin
separated from natural resources. J. Polym. Sci. Pol. Chem. 2004, 42, 3423–3432. [CrossRef]

33. Blackwell, J. Structure of a-chitin or parallel chain systems of poly-b-(1,4)-N-acetyl-D-glucosamine. Biopolymers 1969, 7, 281–298.
[CrossRef] [PubMed]

34. Santos, V.P.; Marques, S.S.; Maia, C.S.V.; Antonio, M.; Lima, B.D.; Franco, L.D.O. Seafood Waste as Attractive Source of Chitin and
Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. [CrossRef] [PubMed]

35. Sugiyama, J.; Boisset, C.; Hashimoto, M.; Watanabe, T. Molecular directionality of β-chitin biosynthesis. J. Mol. Biol. 1999, 286,
247–255. [CrossRef] [PubMed]

36. Kurita, K.; Ishii, S.; Tomita, K.; Nishimura, S.I.I.; Shimoda, K. Reactivity characteristics of squid β-chitin as compared with those
of shrimp chitin: High potentials of squid chitin as a starting material for facile chemical modifications. J. Polym. Sci. Pol. Chem.
1994, 32, 1027–1032. [CrossRef]

37. Kurita, K.; Tomita, K.; Ishii, S.; Nishimura, S.I.I.; Shimoda, K. β-chitin as a convenient starting material for acetolysis for efficient
preparation of N-acetylchitooligosaccharides. J. Polym. Sci. Pol. Chem. 1993, 31, 2393–2395. [CrossRef]

38. Kurita, K.; Tomita, K.; Tada, T.; Ishii, S.; Nishimura, S.I.I.; Shimoda, K. Squid chitin as a potential alternative chitin source:
Deacetylation behavior and characteristic properties. J. Polym. Sci. Pol. Chem. 1993, 31, 485–491. [CrossRef]

39. Yaneva, Z.; Ivanova, D.; Nikolova, N.; Tzanova, M. The 21st century revival of chitosan in service to bio-organic chemistry.
Biotechnol. Biotech. Eq. 2020, 34, 221–237. [CrossRef]
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