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Abstract

Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across
the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated
area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel
replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani
MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively
nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of
replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S
phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in
eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S
phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as
well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4 - perhaps as an
integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box
mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is
important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role
assigned to MCM10 in other eukaryotes.
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Introduction

Eukaryotic DNA replication involves the licensing and activa-

tion of multiple origins. Origins are licensed by the assembly of

pre-replication complexes (pre-RCs) in G1 phase [1–3], a process

involving the ordered loading of ORCs 1-6, Cdc6, Cdt1, MCM2-

7, and MCM10. At the G1/S transition, Cdc7/Dbf4 and Cdk2/

cyclin E kinase activity transform pre-RCs into pre-initiation

complexes. GINS, Sld2, Dpb11 and Cdc45 associate with the

complexes to trigger origin activation, and with the recruitment of

the elongation machinery, DNA synthesis commences [4,5]. While

replication has been extensively examined in higher eukaryotes

and yeasts, the pre-replication and replication apparatus of

protozoans remains largely uninvestigated, with most reports

being from studies in Plasmodium falciparum [6-9] and Tetrahymena

thermophila [10–12].

The trypanosomatid Leishmania causes the group of diseases

collectively called Leishmaniasis. Leishmaniasis occurs in three

main forms – cutaneous, subcutaneous and visceral, and different

Leishmania species cause different forms of the disease. Leishman-

iasis is prevalent in 88 countries across the globe, and inflicts

mostly people of the economically weaker sections of society.

Every year ,1.6 million new cases are reported, of which about

500,000 are cases of visceral leishmaniasis (VL). Around 90% of

the cases of VL occur in South Asia and East Africa. VL can be

fatal if not treated early and appropriately, and several research

groups are engaged in investigating the biology of the causative

pathogens of VL, with the aim of developing more effective means

of therapeutic intervention. Leishmania donovani is one of the

causative agents of VL, prevalent in Sudan and the Indian

subcontinent.

Leishmania species cycle between two hosts – the insect sandfly,

and the mammalian host. In the insect host they exist as flagellate

promastigotes. The promastigotes remain attached to the wall of

the anterior region of the midgut, as non-infective procyclic forms

in the early stages. As the parasites further develop, they detach

from the midgut and migrate to the salivary glands. These

metacyclic forms are infective. When the insect bites the

mammalian host the promastigotes are released into the

mammalian host’s bloodstream where they are taken up by host

macrophages. Within the macrophages they transform into

aflagellate amastigotes, and propagate. The amastigotes are

transferred to the insect host with a bloodmeal where they

transform into promastigotes again. Microarray analysis reveals

the absence of stage-specific putative DNA replication proteins in

Leishmania promastigotes and amastigotes [13], not unexpectedly,

as both forms of the parasite reproduce asexually by binary fission.

The components of pre-RCs are conserved from yeast to
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mammals, with the basic mechanisms of DNA replication being

similar. However, based on their annotated genome sequences

[14–17], while the replication machinery of trypanosomatid

nuclear DNA appears to largely resemble that of higher

eukaryotes, several key players are absent. Only one ORC

ortholog – ORC1- is present; no orthologs of Cdt1, Dbf4 or

Cdc7 are apparent. Orthologs of MCM2-7 and Cdc45 have been

annotated. Investigations in the area of trypanosomatid nuclear

DNA replication have thus far largely centered around the ORC1

protein. The ORC1 in Leishmania major is nuclear throughout the

cell cycle [18], and knockdown of ORC1 in T.brucei results in

anucleate cells [19]. The presence of replication foci has been

demonstrated in Leishmania donovani, and PCNA serves as a marker

for these factories [20].

MCM2-7, originally identified as Saccharomyces cerevisiae mutants

defective in minichromosome maintenance [21], are grouped

together based on sequence similarity, being defined by a 200

amino acid MCM box domain. MCM2-7 loading at origins is

promoted by ORC-Cdc6 mediated ATP hydrolysis in S. cerevisiae

[22]. As replication transitions from initiation to elongation phase

the MCM2-7 are believed to play the role of replicative helicase.

The core complex of MCM4/6/7 from S. cerevisiae, S. pombe,

mouse and human cells, exhibits helicase activity in vitro [23,24],

and the heterohexamer MCM2-7 from S. cerevisiae has been

demonstrated to display helicase activity in vitro as well [25]. The

role of other accessory proteins in mediating the complex’s

helicase activity in vivo has been implicated in Xenopus, with Cdc45

one of the favourite candidates [26].

This study is the first report characterizing MCM4 in any of the

trypanosomatids. The Leishmania donovani gene has been cloned

and the expression patterns of the protein examined at different

stages of the Leishmania parasite as well as at different phases of the

cell cycle. Unlike in Saccharomyces cerevisiae, LdMCM4 remains

nuclear throughout the cell cycle, ruling out nuclear export in mid

to late S phase as a mode of replication regulation. Overexpression

of MCM4 in Leishmania promastigotes results in cells reaching G2/

M phase faster than usual, implicating a possible role in DNA

replication and cell cycle progression. The protein interacts with

PCNA in vitro, and co-localizes with PCNA in S phase cells. The

interaction occurs via the PIP box motif of MCM4, and the

importance of the MCM4 PIP box motif is underlined by the fact

that cells overexpressing mutated MCM4 protein that cannot

interact with PCNA, display decreased viability. These data signify

that while the mechanism of DNA replication in Leishmania is

generally conserved with that of higher eukaryotes, there are

significant novel features in the process as well, pointing to the

importance of studying replication not only in model eukaryote

systems, but in non-conventional organisms as well.

Materials and Methods

Leishmania cultures and cell synchronization
Leishmania donovani 1S promastigotes were cultured as described

[18]. L. donovani cultures were synchronized by treating exponen-

tially growing cultures (2–36107 cells/ml) with 5 mM hydroxy-

urea for 8 h, and released into drug-free M199 medium, as

described [27].

Flow cytometry analysis
1–26107 promastigotes were harvested, washed with PBS, fixed

in 30% PBS/70% methanol overnight at 4uC, collected by

centrifugation, washed with PBS, and stained in PBS containing

propidium iodide (100 mg/ml) and RNase (100 mg/ml) at 37uC for

30 min. Flow cytometry analysis was carried out using a BD

FACSCalibur flow cytometer and the CellQuest Pro software (BD

Biosciences). G1, S and G2/M phases are indicated on the

histograms by the gates M1, M2 and M3 respectively, which were

derived from the data using the CellQuest Pro software.

Genomic DNA isolation and cloning
Genomic DNA was isolated as described [20]. The MCM4

gene product amplified from L.donovani genomic DNA using Phu

DNA polymerase (Finnzymes) and primers MCM4-F and MCM4-

R (Table S1), was cloned into pENTR/D-TOPO (Invitrogen) for

sequencing, and subcloned for expression in E.coli as detailed in

Supporting Information S1. The amplicon was cloned into pXG-/

GFP+ (a kind gift from Prof. Beverley) and pXG-/GFP+/FLAG

(described in Supporting Information S1), creating plasmids pXG/

MCM4 - GFP and pXG/MCM4-FLAG, for expression in

Leishmania.

Site-directed mutagenesis
MCM4/PIP box mutant was made by overlap PCR. MCM4-

GFP-F and MCM4-PIP-R primers amplified the N-terminal part

of the mutant gene, and MCM4-PIP-F and MCM4-GFP-R (Table

S1) amplified the C-terminal part. The products of these two

PCRs were used as template for amplification of the full length

MCM4/PIP mutant gene using MCM4-GFP-F and MCM4-GFP-

R primers. The amplicon was cloned into pXG-/GFP+ and

pXG-/GFP+/FLAG to create plasmids pXG/MCM4/PIP-GFP

and pXG/MCM4/PIP-FLAG for expression in Leishmania.

Recombinant protein expression and purification
MCM4 expression was induced from pASK-MCM4 in BL21

Codon Plus (Stratagene) cells, at 16uC for 16–18 hours. The

expressed LdMCM4 was insoluble. MCM4 was solubilized using

8 M urea in 100 mM Tris.Cl (pH 8.0), 150 mM NaCl, 1 mM

EDTA and dialyzed step-wise to 0 M urea. The protein was

purified by Strep-Tactin II resin affinity chromatography (IBA

BioTAGnology) according to the manufacturer’s instructions.

Preparation of Leishmania extracts
Leishmania whole cell extracts were prepared using the M-PER

kit (Pierce Biotechnology) according to the manufacturer’s

instructions. Leishmania cytosolic and nuclear extracts were made

as described in Supporting Information S1. Leishmania procyclics

and metacyclics were separated as described in Supporting

Information S1.

Treatment of Leishmania with hydroxyurea, aphidicolin
and UV radiation

Logarithmically growing Leishmania promastigote cultures at a

cell density of 36107 cells/ml were incubated with 5 mM

hydroxyurea for 8 h. Cells were then harvested and extracts

made for Western blot analysis. Logarithmically growing promas-

tigote cultures at a cell density of 26107 cells/ml were treated with

2 mM aphidicolin for 24 h prior to harvesting for Western blot

analysis of whole cell lysates. For treatment with UV radiation,

promastigotes at a cell density of 46107 cells/ml were irradiated in

a six-well cluster dish, with a hand held UV lamp (254 nm) for

20 min. Cells were then harvested for analysis.

Leishmania transfections
Leishmania promastigotes were transfected as described [28].

G418 (100 mg/ml) was added 42 h after transfection. MCM4-GFP

expression was analyzed 6–8 days after drug-induced selection

pressure. At this stage, more than 80–85% of the surviving cells
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were MCM4-GFP positive. Flow cytometry analyses were carried

out two weeks after transfections or later, by which time more than

95% of the cells were MCM4-GFP positive. Pulldown experiments

with MCM4-FLAG were performed two weeks (or later) after

transfections. For making clonal lines, immediately after electro-

poration (16108 cells) the cells were transferred into 10 ml M199

for recovery, and after 42 h, the cell aggregates were removed by

centrifugation and the rest of the cells plated on semi-solid M199

medium containing G418 (50 mg/ml). Isolated colonies were

apparent after 10–12 days, and these were expanded step-wise in

M199 medium containing G418 (100 mg/ml). Clonal lines were

maintained in the presence of drug.

Pull-down assays and immunoprecipitations
30–40 mg His-PCNA (overexpressed and purified from pASK-

PCNA by Strep-Tactin chromatography) was incubated with

Talon metal affinity resin beads (BD Biosciences) equilibrated with

50 mM Tris.Cl (pH 8.0) containing 300 mM NaCl, using a

nutator mixer, at 4uC for 1 h. After removing unbound PCNA by

two successive washes, whole cell extract from 16109 exponen-

tially growing promastigotes [that had been treated with 20 U of

DNase I (New England Biolabs, USA) for 15 min with mixing

using a nutator mixer during isolation of extract], was added in the

presence or absence of 500 mM ATPcS. The mix was incubated at

4uC for 2 h using a nutator mixer. In identical control binding

reactions, equivalent amount of extract was added to resin beads

not carrying bound His-PCNA. Unbound extract was removed by

5–6 successive washes with 50 mM Tris.Cl (pH 8.0) containing

1 M NaCl. The immobilized PCNA (along with any interacting

proteins) was eluted with 200 mM imidazole by incubation using a

nutator mixer for 5 min at 4uC. One-sixth of the eluate was

analyzed by Western blotting.

For immunoprecipitation of FLAG-tagged proteins, DNase I-

treated whole cell lysates (prepared as described above) made from

26109 cells that were transfected with MCM4-FLAG plasmid

constructs (wild type or PIP mutant), were incubated with FLAG

M2 agarose beads (Sigma Aldrich, USA) equilibrated with 1X

PBS, at 4uC using a nutator mixer, for 2 h. The beads were

washed extensively with 1X PBS containing 0.2% Triton X-100,

to remove unbound and non-specifically bound proteins. The

beads were then boiled in 3X SDS sample loading buffer, and

analyzed by SDS-PAGE followed by Western blotting.

Analysis for phosphorylation status
MCM4-FLAG (wild type) was immunoprecipitated from 26108

cells using FLAG M2 agarose beads, washed extensively, and the

beads boiled in 3X SDS sample loading buffer, as described above.

The sample was divided into three equal parts, and each part was

resolved along with recombinant MCM4 on a 10% SDS-PAGE,

followed by Western blotting. All three parts along with

recombinant protein, were resolved on the same gel along with

protein marker, so as to be able to align the different bands with

respect to each other after Western blot analysis using the different

antibodies. One part was analyzed for MCM4-FLAG expression

with anti-FLAG antibody (Sigma Aldrich, 1:5000 dilution), the

second part for phoshorylated serine residues with anti-phospho-

serine antibody (Sigma Aldrich; 1:2000 dilution), and the third

part for MCM4 with anti-MCM4 antibody (1:1000 dilution).

The experiment was similarly performed for analysis of

phosphorylated threonine residues (anti-phosphothreonine anti-

bodies from Cell Signaling Technology; 1:2000 dilution) and

phosphorylated tyrosine residues (anti-phosphotyrosine antibodies

from Cell Signaling Technology; 1:1000 dilution).

Immunofluorescence analysis
MCM4-GFP expression was studied by examining direct

fluorescence of promastigotes harboring MCM4-GFP as described

[18]. Expression of PCNA was examined as described [20]. For

examining co-localization of MCM4-GFP with PCNA, exponen-

tially growing promastigotes harboring MCM4-GFP were syn-

chronized by an 8 h hydroxyurea block and analyzed 3 hours

after release. Imaging of nuclei was done with an inverted

motorized confocal microscope (LSM 510; Carl Zeiss MicroIma-

ging, Inc.) (100X objective). For colocalization examinations, Z

stack images of cells were collected.

Results

MCM4 is expressed in actively proliferating Leishmania
promastigotes

The MCM4 gene was amplified from Leishmania donovani

genomic DNA using primers that were designed based on the

Leishmania major genome sequence [16] as sequence information

from Leishmania donovani was not available at the time. The 2.6 kb

amplicon was cloned and sequenced (GenBank Accession number

GQ249892). A comparative analysis of the MCM4 amino acid

sequence with those of other eukaryotes (Figure S1) revealed that

LdMCM4 shares 29–33% identity and 42–45% homology with

MCM4 from other species. A stretch of approximately 80 amino

acids towards the C-terminal end of LdMCM4 is absent in the

other eukaryotes. Conversely, at the N-terminal region a sequence

of about 85 amino acids in length that is present in other

eukaryotes, is absent in LdMCM4. Like all the members of the

MCM family, LdMCM4 carries the ,200 amino acid MCM box

(Figure 1A), although within this domain there is a short region of

sequence insertion (13 amino acids in length) in comparison with

other eukaryotes. Together, there are seven regions of sequence

insertions/deletions in LdMCM4, when compared to the other

eukaryotes. The MCMs are helicases belonging to the AAA+
family (ATPases Associated with various cellular Activities) and

have been classified as members of the Superfamily 6 of helicases

[29]. LdMCM4 carries all the signature motifs of this superfamily

of helicases – the Walker A, Walker B, arginine finger, sensor 1,

sensor 2 and zinc finger motifs (Figure 1A). The Walker A, Walker

B and arginine finger motifs are universal structural elements

involved in the binding and hydrolysis of NTPs. The MCM2/3/5

family domain of this protein spans the entire AAA module.

To evaluate the expression of MCM4 in Leishmania, antibodies

were raised against the purified recombinant protein. The

,97 kDa protein was expressed in E.coli and purified by Strep

Tactin chromatography (Figure 1B). Polyclonal antibodies were

raised in mice, and the specificity and sensitivity of the antibodies

determined by Western blotting using recombinant LdMCM4.

Anti-MCM4 antiserum detected as little as 1 ng LdMCM4

(Figure 1C) at a dilution of 1:5000. MCM4 expression in

exponentially growing Leishmania promastigotes was examined in

whole cell extracts by Western blotting. Two bands were detected

on Western blot analysis; both bands were near the expected size

(Figure 1D). Neither pre-immune serum nor secondary antibody

alone interacted with any proteins in whole cell extract (data not

shown). The relative intensities of the two bands were somewhat

variable, with some preparations having both bands of equal

intensity, and other preparations having predominantly the upper

band. These data suggested that MCM4 was well expressed in

Leishmania promastigotes, and perhaps existed in two different

states related to post-translational modification. Possibly, the post-

translational modification(s) were partially lost during isolation,

thus accounting for variabilities in the relative distribution of the

Characterization of Leishmania donovani MCM4
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two species from preparation to preparation. Analyses of MCM4

expression in logarithmically growing and stationary phase

promastigotes, as well as in amastigotes, revealed that the protein

was robustly expressed in all three stages, though comparatively

less so in amastigotes (Figure 1D). MCM4 expression was analyzed

in procyclics and metacyclics as well, and was found to be similarly

expressed in both stages of promastigotes (Figure 1E).

Analysis of possible phosphorylation of MCM4
To investigate the possibility of one or both forms of MCM4

being phosphorylated, we expressed MCM4 in fusion with a

FLAG tag which allowed us to use FLAG M2 agarose beads to

immunoprecipitate the expressed protein from transfected pro-

mastigotes. For this, promastigotes were transfected with plasmid

pXG/MCM4-FLAG, and whole cell lysates of transfectant cells

were first analyzed by Western blotting using anti-FLAG antibody

to ascertain expression of MCM4-FLAG (Figure 2A; left panel).

Thereafter, MCM4-FLAG was immunoprecipitated from the

lysates and analyzed for phosphorylation status of MCM4 as

described in Methods. Our analysis using phospho-antibodies

revealed that MCM4 was phosphorylated on serine, threonine and

tyrosine residues (Figure 2A; right panel). Interestingly, while the

phosphothreonine antibodies reacted with both band species of

MCM4, the phosphoserine and phosphotyrosine antibodies only

Figure 1. MCM4 expression in Leishmania. A. Schematic representation of the conserved domains in LdMCM4. PIP box - PCNA interacting
protein motif; A – Walker A motif; B – Walker B motif; R – arginine finger; Z – zinc finger; S1 – sensor 1; S2 – sensor 2. B. SDS-PAGE (10% PAGE) analysis
of overexpressed and purified recombinant LdMCM4 (2 ug; ,97.2 kDa). C. Western blot analysis of recombinant LdMCM4 with mouse anti-MCM4
antibody (1:5000 dilution). D. Western blot analysis (10% SDS-PAGE) using anti-MCM4 antibodies (dilution of 1:1000). First panel - lane 1, recombinant
MCM4; lane 2, L. donovani whole cell extracts. Second panel - Whole cell extracts from Leishmania promastigotes and amastigotes (46107 cell
equivalents) probed with anti-MCM4 antibodies and anti-tubulin antibodies (Zymed Laboratories; 1:2000 dilution; loading control). E. Western blot
analysis (10% SDS-PAGE) of whole cell extracts from Leishmania procyclics and metacyclics (46107 cell equivalents) probed with anti-MCM4
antibodies and anti-tubulin antibodies (loading control).
doi:10.1371/journal.pone.0023107.g001
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interacted with the upper band of the two forms of MCM4,

indicating the upper band species to be the predominantly

phosphorylated form.

The expression of endogenous MCM4 in promastigotes in the

presence of DNA replication inhibitors hydroxyurea and aphidi-

colin, as well as MCM4 expression in response to UV irradiation,

was analyzed by Western blot analysis of whole cell lysates made

from promastigotes that had been treated as described in Methods.

We found that the expression of MCM4 did not change in

response to the treatments (Figure 2B). The relative distribution

pattern of both MCM4 band species also remained unaffected by

the treatments. This is contrary to what is seen in mammalian

cells, where MCM4 is hyperphosphorylated in the presence of

DNA synthesis inhibitors or in response to UV irradiation [30],

perhaps reflecting the fact that cell cycle checkpoints operating in

trypanosomatids are different from other eukaryotes.

MCM4 is expressed at more or less equivalent levels
throughout the cell cycle

As the MCM2-7 complex is an essential component of the pre-

RCs, we investigated the possibility of MCM4 expression being

regulated through the different phases of the cell cycle, by

synchronizing cells. Leishmania promastigotes were blocked at G1/

early S by hydroxyurea treatment and then released into S phase

in drug free medium. Cells harvested at different time intervals

after release were analyzed for cell cycle progression by flow

cytometry. Whole cell extracts were made (66107 promastigotes

per time-point), and analyzed for endogenous MCM4 expression.

The cells progressed through S phase and reached G2/M fairly

synchronously, and MCM4 was robustly expressed throughout the

cell cycle at more or less equivalent levels (Figure 2C). The

phosphorylated form was expressed throughout the cell cycle

(Figure 2C).

MCM4 is constitutively located in the nucleus
In S. cerevisiae the MCMs enter the nucleus in late mitosis and

remain nuclear through G1. Although detected in the nucleus to

some extent in S phase, they are predominantly cytoplasmic in S

phase, G2 and early mitosis [31,32]. This nuclear exclusion is

believed to prevent re-replication occurring in the same cycle. To

examine the possibility of this mode of regulation operating in

Leishmania we analyzed MCM4 expression through different stages

of the cell cycle by immunofluorescence, using the kinetoplast

morphology as a marker for cell cycle progression [27,33]. We

were unable to use the anti-MCM4 antibodies that we raised as

they did not work in immunoprecipitations or immunofluores-

cence experiments. Therefore, Leishmania donovani promastigotes

were transfected with pXG/MCM4-GFP (see Supporting Infor-

mation S1) and examined for direct fluorescence of MCM4-GFP.

Western blotting of whole cell lysates made from transfected cells

(Figure 3A) revealed that the full length MCM4-GFP was

expressed. To resolve the GFP tagged protein from the native

endogenous protein, lysates were analyzed on 8% PAGE. Anti-

GFP antibodies interacted mainly with MCM4-GFP protein

(Figure 3A; first panel). Anti-MCM4 antibodies interacted with

both MCM4-GFP and endogenous MCM4 (Figure 3A; second

panel). As apparent from Figure 3A (second panel), MCM4-GFP

was present at considerably higher levels than the endogenous

protein.

We staged the parasites at different stages of the cell cycle using

the kinetoplast shape and morphology as a marker, based on both,

work published with Trypanosoma [33], as well as studies in our

laboratory where we have microscopically compared kinetoplast

morphology at different cell cycle stages using synchronized cells

[27]. We found that MCM4 remains nuclear throughout the cell

cycle and is not detected in the cytoplasm at any stage (Figure 3B;

details of kinetoplast morphology related to cell cycle stage are in

the figure legend). The expression of MCM4 was assessed in

actively dividing as well as stationary phase Leishmania donovani

promastigotes by immunofluorescence analysis of MCM4-GFP

transfected cells. Rosette formation is a hallmark of stationary

phase, and as is seen in Figure 3C, MCM4-GFP was well

expressed in both, logarithmically growing as well as stationary

phase promastigotes, and remained nuclear in both stages.

The localization of MCM4 was also checked by Western blot

analysis of cytosolic and nuclear extracts of logarithmically

growing promastigotes, using anti-MCM4 antibodies. The protein

was primarily nuclear in nature (Figure 4A). To reinforce the

results from our immunofluorescence studies we examined

synchronized cells. Leishmania promastigotes were synchronized

using hydroxyurea, and cells harvested for flow cytometry analysis

as well as preparation of nuclear extracts, at different time

intervals. Extracts were prepared from equal numbers of cells

(46107), and equivalent amounts of extracts were analyzed. The

protein was nuclear at all times corresponding to the different

stages of the cell cycle (Figure 4B), and the phosphorylated species

remained in the nucleus throughout. These data indicate that

subcellular localization of MCM4 is not a mode of replication

regulation in Leishmania. In this, Leishmania resembles higher

eukaryotes where the bulk of the MCM2-7 proteins have been

reported to be nuclear throughout the cell cycle (reviewed in [34]).

Overexpression of MCM4 in Leishmania promastigotes
accelerates S phase progression

The impact of MCM4 overexpression on the Leishmania cell

cycle was examined by synchronizing promastigotes and moni-

toring their navigation through S phase. Leishmania donovani

promastigotes and Leishmania donovani promastigotes overexpress-

ing MCM4-GFP were simultaneously blocked at G1/early S by

hydroxyurea treatment and then released into S phase. Cells were

harvested every hour for 6 hours and analyzed for cell cycle

progression by flow cytometry. The experiment was done thrice,

and histograms from one experiment are shown in Figure 5A. No

significant differences in cell cycle progression were apparent in

the early time-points after release; thus, MCM4 overexpression did

not lead to early entry into S phase. However, cells overexpressing

Figure 2. MCM4 is phosphorylated at serine, threonine and tyrosine residues, and its expression is not regulated by replication
inhibitors or damage inducing agents. A. Analysis of phosphorylation status of immunoprecipitated MCM4-FLAG by Western blot. Left panel –
Whole cell lysates made from 46107cell equivalents probed with anti-FLAG antibody (1:5000). Right panel – Upper row: analysis for phosphoserine
residues; middle row: analysis for phosphothreonine residues; lower row: analysis for phosphotyrosine residues. Antibodies and dilutions are detailed
in Methods. Arrowheads indicate MCM4-FLAG. B. Effect of aphidicolin and UV irradiation on MCM4 expression. Western blot analysis of extracts from
46107 cell equivalents (10% SDS-PAGE), analyzed using anti-MCM4 antibody (1:1000 dilution) or anti-tubulin antibody (Zymed Laboratories; 1:5000
dilution; loading control). Arrowheads – MCM4. C. MCM4 expression in synchronized cells. Upper panel – Flow cytometry analyses of cells harvested
at different times. Lower panel - Western blot analysis (10% PAGE) of whole cell extracts (66107 cell equivalents) using anti-MCM4 antibody (1:1000
dilution). Bar chart represents expression of MCM4 relative to tubulin. Arrows/arrowheads indicate MCM4.
doi:10.1371/journal.pone.0023107.g002
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MCM4-GFP moved through S phase significantly faster than non-

transfected Ld1S, as detected 4 h, 5 h and 6 h after release

(Figure 5A; overlays of Ld1S and Ld1S/MCM4-GFP). While

some variability in cell cycle progression does occur from

experiment to experiment, in all three experiments performed

we consistently observed that MCM4-GFP expressing cells moved

,60 min faster than non-transfected cells.

Analysis of the cell cycle profiles of Ld1S and Ld1S/MCM4-

GFP by CellQuest Pro software (Figure 5B; 4 h, 5 h and 6 h

timepoints) revealed that cells reached G2/M phase earlier in the

case of Ld1S/MCM4-GFP as compared to Ld1S, suggesting that

Leishmania MCM4 regulates S phase of cell cycle. To investigate

the possibility of the presence of G418 drug in the medium

impacting cell cycle progression in case of MCM4-GFP transfect-

ed cells, and to rule out alterations in cell cycle progression due to

GFP tag on MCM4, we transfected promastigotes with pXG-/

GFP+ (vector carrying G418 selection marker and expressing GFP

protein), and analysed them for cell cycle progression in

comparison with Ld1S. As seen in Figure 5C, in fact, the cells

expressing GFP under G418 selection pressure moved through S

phase a little slower, signifying that in the case of MCM4-GFP

transfected promastigotes, the presence of drug G418 in the

medium or the presence of GFP tag is not responsible for

acceleration through S phase.

MCM4 interacts with PCNA
While DNA repair proteins, as well as many components of the

replication machinery, interact with PCNA [35], none of the

ORCs1-6 or MCM2-7 have been demonstrated to bind to PCNA

in higher eukaryotes. Plasmodium ORC1 interacts with PCNA, and

this interaction appears to be essential for cell viability [6,7]. This

was demonstrated in cross-species complementation experiments

using a S. cerevisiae ORC1 swapper strain, where a yeast/

Plasmodium chimeric ORC1 construct (wild type) could comple-

ment the mutant yeast strain, while yeast/Plasmodium chimeric

ORC1 construct harboring PIP domain mutations of Plasmodium

ORC1, failed to carry out complementation [6]. Several proteins

that interact with PCNA are typified by the presence of the PIP

box motif (QxxL/M/IxxF/YF/Y) [35]. PCNA, which recruits

several vital components of the replication machinery, interacts

with these proteins through the same interaction domain,

indicating that the interactions occur at different points in time

during DNA replication. Analysis of the LdMCM4 sequence

uncovered the presence of a putative PIP box at position 231–237

(QHNLSLY; Figure 1A; Figure S1). Upon analyzing the

sequences of the other MCM2-7 proteins in the Leishmania major

whole genome database we found that other than MCM4, MCM2

and MCM7 also harbor putative PIP boxes. Analysis of MCM4 in

other eukaryotes revealed the presence of PIP box in MCM4 of S.

pombe, D. melanogaster, X. laevis and H. sapiens (Figure S1). No PIP

box was apparent in S. cerevisiae MCM4. We investigated the

possibility of a direct interaction between MCM4 and PCNA in

GST pulldown experiments, with immobilized GST-PCNA and

recombinant His-tagged MCM4, in a Tris-based buffer containing

either ATP, or ATPcS, or no ATP. No direct interaction was

detectable (data not shown). This was not surprising as, in vivo,

MCM4 does not act by itself, but rather, as part of the hexameric

MCM2-7 complex. Also, the possible requirement of specific post-

translational modification(s) (PTMs) in MCM4 for an interaction

with PCNA, could not be ruled out. We therefore explored the

prospect of PCNA interacting with MCM4 from Leishmania lysates,

where it would be likely to complex with the other members of

MCM2-7, and would carry PTMs as well.

Immobilized His-tagged PCNA was exposed to Leishmania whole

cell extracts, to allow for binding of native MCM2-7 complex in a

Figure 4. Analysis of endogenous MCM4 expression in
Leishmania promastigotes. A. Western blot analysis of extracts from
proliferating promastigotes. Extracts (10% SDS-PAGE) probed with anti-
MCM4 antibody (1:1000 dilution), anti-PCNA antibody (1:5000 dilution;
loading control for nuclear extracts), anti-tubulin antibody (1:2000
dilution; loading control for cytosolic extracts). CE- cytosolic extract; NE-
nuclear extract. B. MCM4 expression at different stages of the cell cycle.
Upper panel – Flow cytometry profiles of cells harvested at different
timepoints. Lower panel - Western blot analysis of nuclear extracts
(46107 cell equivalents) using anti-MCM4 antibody (1:1000 dilution)
and anti-PCNA antibody (1:5000 dilution; loading control). 1- log; 2- HU
block; 3- S phase; 4- late S phase; 5- G2/M phase. Bar chart represents
expression of MCM4 relative to PCNA. Arrowheads indicate MCM4.
doi:10.1371/journal.pone.0023107.g004

Figure 3. Analysis of MCM4-GFP expression in Leishmania promastigotes. A. Western blot analysis of extracts from 56107 cell equivalents
(8% SDS-PAGE), analyzed using anti-GFP (1:1000 dilution; Invitrogen) or anti-MCM4 antibody (1:1000 dilution). Filled arrowheads – MCM4-GFP; open
arrowheads – endogenous MCM4. B. Immunofluorescence analysis. G1/early S phase cells – one nucleus, one short kinetoplast. Late S phase/early
G2/M cells – one nucleus, one elongated kinetoplast. Late G2/M phase cells - two nuclei, one kinetoplast or one nucleus, two kinetoplasts. Post-
mitosis – two nuclei, two kinetoplasts. Cells were analyzed by collecting Z stack images using a confocal microscope. Magnification bar represents
2 mm. N-nucleus; K- kinetoplast. C. Immunofluorescence analysis of MCM4-GFP expression in logarithmically growing and stationary phase
promastigotes. Magnification bar represents 5 mm.
doi:10.1371/journal.pone.0023107.g003
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Tris-based buffer. The binding was carried out both, in the

absence of ATP, and in the presence of ATPcS. As seen in

Figure 6A, MCM4 was pulled down by PCNA. The interaction

detected, though weak, was seen in the absence of ATP, as well as

in the presence of ATPcS. This data suggests the possibility that

MCM4 interacts with PCNA when it is part of the entire MCM2-7

Figure 5. Analysis of cell cycle progression in Leishmania promastigotes. A. Flow cytometry analysis of Ld1S and Ld1S/MCM4-GFP. Data from
25000 events was collected for each time-point. In overlay histogram panels, solidly filled histograms - Ld1S/MCM4-GFP; green line - Ld1S histogram. B. The
percent of cells at 4 h, 5 h and 6 h after release, that display the different stages of cell cycle (no significant differences were seen at earlier time-points),
determined using the CellQuest Pro software. C. Flow cytometry analysis of Ld1S and Ld1S/GFP – overlay histograms. Solidly filled histograms - Ld1S/GFP;
green line - histogram of Ld1S. G1, S and G2/M phases are indicated on the histograms by the gates M1, M2 and M3 respectively.
doi:10.1371/journal.pone.0023107.g005
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complex, although we cannot further explore this possibility

because of the lack of suitable antibodies. The interaction does not

appear to be ATP-dependent, and as is apparent from the data in

Figure 6A, the detected interaction is not stoichiometric, as PCNA

is far in excess of the detected MCM4. A possible reason for this

could be that in the absence of post-translational modifications

(PTMs), the recombinant PCNA does not adopt an appropriate

conformation for stable MCM4-PCNA interaction.

MCM4 colocalizes with PCNA in S phase nuclei
Having established the existence of foci as the sites of active

DNA replication in Leishmania cells, and demonstrating the use of

PCNA as a marker for these foci [20], we investigated whether

MCM4 localized to these sites in immunocolocalization studies of

PCNA and MCM4-GFP. The possible colocalization of MCM4-

GFP and PCNA in logarithmically growing MCM4-GFP

transfectant promastigotes was examined. Most cells in such a

population are in G1 phase, and results obtained clearly indicated

that MCM4-GFP does not colocalize with PCNA in G1 cells (data

not shown). We then synchronized MCM4-GFP transfectant

Leishmania promastigotes by hydroxyurea treatment followed by

release into drug-free medium, and sampled cells at different time

intervals. Both, MCM4-GFP and PCNA localized to the nucleus

at all timepoints sampled (Figure 6B), re-inforcing the fact that

both these proteins are nuclear throughout the cell cycle.

We examined cells in S phase for colocalization of MCM4 and

PCNA (three hours after release) by collecting Z stack images of

the cells. Cells released into S phase after an eight hour

hydroxyurea treatment did not have as distinct foci as do S phase

cells in an asynchronous population. Hydroxyurea treatment

results in a diminution of dNTP pools and this may possibly

negatively impact the formation of replication foci, a feature that

has been reported earlier [7]. We found that MCM4-GFP

colocalized with PCNA (Figure 6C). However, to ascertain that

this is not due to overexpression of MCM4-GFP, the immuno-

localization pattern of the endogenous MCM4 with respect to

PCNA will have to be investigated. We have been unable to do so

as the anti-MCM4 antibodies do not interact with MCM4 in

immunofluorescence experiments.

The PIP box domain is important for cell viability and
mediates the interaction of MCM4 with PCNA

Most proteins that interact with PCNA do so via the PIP box

motif (QxxL/M/IxxF/YF/Y) [35]. The importance of the PIP

box motif of MCM4 in mediating the MCM4-PCNA interaction,

as well any possible in vivo role of this motif, was investigated by

creating an MCM4 mutant and overexpressing it in Leishmania

promastigotes. The PIP box in LdMCM4 (QHNLSLY) was

mutated to AHNASLA to create MCM4/PIP (Figure 7A). The

mutant gene was cloned into the pXG vector, and the resultant

plasmid pXG/MCM4/PIP-GFP was transfected into Leishmania

promastigotes, along with control pXG/MCM4-GFP transfection.

We found the pXG/MCM4/PIP-GFP transfected cultures to

behave quite differently from (wild type) pXG/MCM4-GFP-

transfected cultures.

The number of survivors in pXG/MCM4/PIP-GFP transfec-

tions after 6-8 days of drug induced selection pressure was 4–5 fold

lower than in pXG/MCM4-GFP transfections (Figure 7B). Four

separate transfection experiments of the wild type and PIP mutant

constructs yielded similar results. Microscopic analysis revealed

that unlike pXG/MCM4-GFP transfections, where after 6–8 days

of drug-induced selection pressure more than 80–85% surviving

promastigotes are MCM4-GFP positive, 90% of the few survivors

detected in pXG/MCM4/PIP-GFP transfections after 6–8 days of

drug induced selection pressure were MCM4-GFP negative. The

decreased number of viable cells seen in case of MCM4/PIP-GFP

transfectant cultures in comparison with MCM4-GFP (wild type)

transfectant cultures underlines the importance of the MCM4 PIP

domain in modulating cell survival and viability. After 12–14 days

of selection pressure, whole cell lysates made from transfectant

cultures were analyzed by Western blotting using anti-GFP as well

as anti-MCM4 antibodies. We found that the full length mutant

protein was being expressed in surviving cells, similar to the wild

type MCM4-GFP (Figure 7C), although we have no way to find

out if MCM4/PIP-GFP can form part of the MCM2-7

holocomplex due to non-availability of suitable antibodies.

The surviving transfectants were examined microscopically

along with MCM4-GFP transfectants also sampled 12–14 days

after selection pressure. While almost all MCM4-GFP transfec-

tants displayed nuclear expression of MCM4-GFP, about 1 in

3000 cells displayed robust MCM4-GFP expression throughout

the cell. The reason for this is unclear, but it is possible that these

cells comprise a small population where MCM4-GFP for some

reason does not associate as part of the MCM2-7 holocomplex and

therefore localizes differently than is usual. In MCM4/PIP-GFP

transfectants that survived after 12–14 days, in sharp contrast to

MCM4-GFP transfectants, almost 80% cells exhibited expression

of the protein throughout the cell (Figure 7D). These cells could

belong to the 1 in 3000 category seen in MCM4-GFP

transfectants. 20% of the cells sampled 12–14 days after drug

induced selection pressure still displayed nuclear expression of the

mutant protein. As two of the other MCMs that are part of the

MCM2-7 holocomplex also have PIP boxes (MCM2 and MCM7)

there may be some amount of functional redundancy. Hence, even

though mutant MCM4 can no longer interact with PCNA, the

holocomplex may be able to, via MCM2 and MCM7. To

determine if the dual distribution patterns of MCM4/PIP-GFP

(cytosolic in 80% cells; nuclear in 20% cells) could be segregated,

we generated MCM4-GFP and MCM4/PIP-GFP clonal lines. All

MCM4-GFP clonal lines displayed constitutive nuclear expression

of MCM4-GFP as is seen in Figure 2B & 6C (data of clonals

available on request). All MCM4/PIP-GFP clonal lines (14 clonals

were analyzed) displayed the dual phenotype seen in Figure 7D

(data of clonals available on request). Thus, there was phenotypic

heterogeneity even within clonals. Repeated transfections with

Figure 6. Leishmania MCM4 interacts with PCNA and colocalizes with it in S phase. A. MCM4 - PCNA interaction in pull-down experiments.
Lanes 1–3 – without ATPcS; lanes 4–6 – with ATPcS. Lanes 1 & 4 – dummy metal affinity beads exposed to Leishmania whole cell extracts and elution
carried out with imidazole. Lanes 2 & 5 – recombinant immobilized His-PCNA eluted with imidazole. Lanes 3 & 6 – recombinant immobilized His-
PCNA exposed to Leishmania whole cell extracts, and eluted with imidazole. WCE- whole cell extracts. The PCNA band detected in lanes 1 and 4 is
probably due to background PCNA from the Leishmania whole cell extracts poured on the beads. B. Immunofluorescence analysis of MCM4-GFP and
PCNA expression in synchronized cells. MCM4-GFP expression was analyzed by direct fluorescence. PCNA expression was analyzed by indirect
fluorescence using anti-PCNA antibodies. Magnification bar represents 5 mm. C. MCM4 colocalizes with PCNA in S phase cells. MCM4-GFP transfectant
Leishmania promastigotes synchronized with hydroxyurea and harvested three hours after release were labeled for PCNA immunofluorescence as
described. Cells were analyzed by collecting Z stack images using a confocal microscope. Magnification bar represents 2 mm.
doi:10.1371/journal.pone.0023107.g006
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pXG/MCM4/PIP-GFP yielded similar results. These data

suggested that possibly, most cells where MCM4/PIP-GFP was

overexpressed did not survive, which may be the reason for the

overall decrease in viability of the MCM4/PIP-GFP transfected

cultures.

To assess any possible role of the PIP box motif in mediating the

MCM4-PCNA interaction, the wild type MCM4 as well as

MCM4/PIP mutant proteins tagged with FLAG sequence (see

Supporting Information S1) were used in pulldown experiments.

Leishmania promastigotes were transfected with the pXG/MCM4-

FLAG and pXG/MCM4/PIP-FLAG plasmids. The same poor

viability of transfectant cells was detected with MCM4/PIP-FLAG

transfectants as was evident with MCM4/PIP-GFP transfectants.

Equivalent amounts of lysates made 2 to 3 weeks after transfection

from both transfectant cultures, were analyzed for MCM4-FLAG

and MCM4/PIP-FLAG expression, by Western blotting using

anti-FLAG antibodies. Both proteins were well expressed

(Figure 8A), and therefore these lysates were used in pulldown

experiments with immobilized recombinant His-PCNA. As seen in

Figure 8B, MCM4-FLAG interacted with His-PCNA, behaving

like the endogenous MCM4. In sharp contrast, MCM4/PIP-

FLAG did not interact with His-PCNA (Figure 8B; compare

MCM4-FLAG with MCM4/PIP-FLAG). The MCM4-PCNA

interaction we detected was reproducible over several experi-

ments, but not stoichiometric, in keeping with the possibility of

recombinant His-PCNA conformation being non-conducive to

stable MCM4-PCNA interactions, perhaps due to lack of PCNA

post-translational modifications. Importantly, PCNA appears to

interact only with the phosphorylated form of MCM4. This could

also be the reason we were unable to detect an interaction between

Figure 7. Analysis of the importance of the PIP box domain. A. Creation of MCM4 PIP-box mutant. The mutated residues are indicated in red.
B. Growth analysis of strains expressing MCM4-GFP and MCM4/PIP-GFP. Closed circles – MCM4-GFP; closed squares – MCM4/PIP-GFP. Cells were
counted every 24 hours. Error bars indicate standard deviation. C. Western blot analysis of whole cell extracts made from MCM4/PIP-GFP transfectant
cultures. Extracts were analyzed on 8% SDS-PAGE by probing with anti-GFP (1:1000; Invitrogen) or anti-MCM4 (1:1000) antibody. 1- MCM4-GFP (wild
type); 2- MCM4/PIP-GFP mutant. Filled arrowheads - MCM4-GFP, open arrowheads - endogenous MCM4. D. Immunofluorescence analysis of
promastigotes overexpressing MCM4-GFP and MCM4/PIP-GFP. Cells were examined for direct fluorescence of the protein, 12-14 days after drug-
induced selection pressure. Magnification bar represents 5 mm.
doi:10.1371/journal.pone.0023107.g007
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the two proteins, in direct pulldowns between the two recombinant

proteins expressed in E.coli.

As the MCM4 antibodies did not work in immunoprecipitation

reactions and the PCNA antibody cross-reacts with MCM4 when

large amounts of extracts are used, to further investigate the

MCM4-PCNA interaction we carried out immunoprecipitation of

MCM4-FLAG proteins from transfected Leishmania cells, using

FLAG M2 agarose beads, and examined if endogenous PCNA co-

immunoprecipitated along with the MCM4-FLAG proteins.

Initially, whole cell lysates made from Leishmania promastigotes

harboring pXG-/GFP+/FLAG vector, as well as lysates made

from Leishmania promastigotes harboring pXG/MCM4-FLAG

plasmid, were used in immunoprecipitations with FLAG M2

agarose beads. Analysis of the immunoprecipitates by Western blot

with anti-PCNA antibody revealed that endogenous PCNA co-

immunoprecipitated with MCM4-FLAG (Figure 8C, lane 2). No

PCNA was detected in beads only control (Figure 8C, lane 3) or

empty vector transfectant control (Figure 8C, lane 1). The role of

the PIP box domain in mediating the detected MCM4-PCNA

interaction, was investigated by carrying out immunoprecipita-

tions of both, MCM4-FLAG and MCM4/PIP-FLAG proteins,

from lysates of transfectant cultures. As seen in Figure 8D, we

found that while wild type MCM4-FLAG interacted with

endogenous PCNA, the MCM4/PIP-FLAG mutant did not.

These data reinforce our findings that Leishmania MCM4 interacts

with PCNA, and indicate that the interaction is mediated by the

PIP box motif of MCM4.

Discussion

While a substantial body of literature bears testimony to the fact

that DNA replication in eukaryotes is a highly conserved process,

replication of the genomes of trypanosomatids has remained

largely unexamined. We have endeavoured to investigate one of

the replication proteins in Leishmania donovani, the causative agent

of the deadly disease visceral Leishmaniasis. In our study we find

noteworthy differences with other eukaryotes. This is not

surprising as several orthologs of eukaryotic replication proteins

are missing in Leishmania, as determined from annotation of the

Leishmania genome sequences [16,17]. It is possible that novel

Leishmania proteins regulate the process in this organism.

Functional data has revealed that all six components of MCM2-

7 contribute to the same activity. Immunodepletion experiments in

Xenopus extracts indicate that depleting any single MCM protein is

sufficient to negatively impact DNA replication [36–38]. We have

cloned and characterized one of the six MCM2-7 proteins,

MCM4. LdMCM4 has the conserved motifs associated with this

protein (Figure 1A). The MCM2-7 belong to the family of AAA+
ATPases and LdMCM4 has the P-loop NTPase domain that

characterizes members of this family (residues 437 to 589). While

all the MCM2-7 belong to the AAA+ ATPase family and have

ATP binding sites, individual MCM subunits do not display

ATPase activity [39]. Analysis of MCM4 expression in Leishmania

promastigote extracts revealed the presence of two bands near the

expected size, and probing of MCM4-FLAG with phospho-

antibodies suggests that the upper band corresponds to phosphor-

ylated form (Figure 2A). MCM4 has been shown to be variably

phosphorylated through the cell cycle in S. cerevisiae, Xenopus, and

mammalian cells [40,41], with chromatin-bound MCM4 under-

going specific phosphorylation in S phase. MCM4 phosphoryla-

tion in S phase in mammalian cells promotes the association of

Cdc45 with chromatin as well [42]. We found the phosphorylated

form to be dominant throughout the cell cycle (Figure 2C), and it

remains nuclear throughout the cell cycle (Figure 4B). However,

Figure 8. Mutations in the MCM4 PIP box domain abolish
interaction of MCM4 with PCNA. A. Western blot analysis of MCM4-
FLAG and MCM4/PIP-FLAG. Whole cell lysates from transfectant cultures
(Day 14) were analyzed on 10% SDS-PAGE by probing with anti-FLAG
antibody (1:5000 dilution). Lane 1 - MCM4-FLAG (wild type); lane 2 -
MCM4/PIP-FLAG mutant. Arrows indicate MCM4-FLAG proteins. B.
Analysis of the interaction of PCNA with MCM4-FLAG and MCM4/PIP-
FLAG, in pull-down experiments using recombinant His-PCNA. Left
panel – Western blot analysis of input lysates with anti-FLAG antibody
(1:5000 dilution) and anti-PCNA antibody (1:5000 dilution) to assess
expression of MCM4-FLAG (,97.2 kDa) and endogenous PCNA
(,32.4 kDa). Right panel - Western blot analysis of pulldown reactions.
Lanes 1 and 5 - dummy metal affinity beads exposed to Leishmania
whole cell extracts (MCM4-FLAG and MCM4/PIP-FLAG respectively) and
elution carried out with imidazole; lanes 2 and 4 - recombinant
immobilized His-PCNA exposed to Leishmania whole cell extracts
(MCM4-FLAG and MCM4/PIP-FLAG respectively), and eluted with
imidazole. Lane 3- immobilized His-PCNA only. Upper panels –
immunoblot with anti-FLAG antibody to detect MCM4-FLAG proteins,
lower panels- immunoblot with anti-PCNA antibody to detect His-
PCNA. (Input lysates shown in left panel and pulldowns shown in right
panel, were resolved on the same gel and probed with antibodies to
allow alignments of bands). Arrows indicate MCM4-FLAG proteins. C.
Analysis of MCM4-FLAG immunoprecipitates for interacting PCNA.
Upper panels – analysis of immunoprecipitates with anti-FLAG antibody
(1:5000 dilution) and anti-PCNA antibody (1:5000 dilution). Lane 1- Ld1S
transfected with vector only; lane 2 – MCM4-FLAG transfectants; lane 3
– beads only control. Lower panels – Western blot analysis of input
lysates for MCM4-FLAG (,97.2 kDa) and endogenous PCNA (,
32.4 kDa) expression. Arrows indicate endogenous PCNA and MCM4-
FLAG proteins. D. Analysis of the interactions of PCNA with MCM4-FLAG
and MCM4/PIP-FLAG, in immunoprecipitations of MCM4-FLAG proteins
using FLAG M2 agarose beads. Upper panels – immunoprecipitations of
MCM4-FLAG proteins analyzed with anti-PCNA (1:5000 dilution) and
anti-FLAG antibody (1:5000 dilution). Arrows indicate endogenous
PCNA and MCM4-FLAG proteins. Lower panels – Western blot analysis
of input lysates for endogenous PCNA (,32.4 kDa) and MCM4-FLAG
(,97.2 kDa) expression. Arrows indicate endogenous PCNA and MCM4-
FLAG proteins.
doi:10.1371/journal.pone.0023107.g008
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site-specific phosphorylation events may be modulated in cell cycle

dependent manner. Site-specific phosphorylations may also

modulate MCM4 activity. Much more detailed investigations

need to be carried out to address these issues.

The subcellular localization of MCM4 has been demonstrated to

be a mode of replication regulation in S. cerevisiae [31,32], where

nuclear export in S phase is believed to prevent re-replication from

occurring. We found Leishmania to be different in that MCM4

remained in the nucleus throughout the cell cycle (Figures 3B, 4B). In

this, it resembles mammalian cells, where cell cycle progression does

not affect MCM4 localization. Interestingly, the overexpression of

MCM4 in Leishmania resulted in a shortened nuclear S phase, with

cells reaching G2/M faster than usual (Figure 5). This suggests the

possibility that cellular MCM4 levels may be limiting, an attribute of

the protein that may play a role in modulating cell cycle progression.

Investigating possible interactions between MCM4 and PCNA

revealed that while purified recombinant MCM4 expressed in

E.coli by itself does not bind to PCNA (data not shown), MCM4 in

whole cell lysates interacts with PCNA (albeit somewhat weakly)

(Figure 6 and Figure 8). PCNA interacts only with the

phosphorylated form of MCM4 (Figure 8B), indicating this as

the likely reason why we were unable to detect the interaction in

direct pulldowns between the two recombinant proteins expressed

in E.coli. It is also possible that MCM4 needs to be part of the

MCM2-7 complex for the interaction to occur, although we have

no experimental evidence of this. The MCM4-PCNA interaction

appears to be ATP-independent, and while it is possible that the

MCM4-PCNA interaction is mediated through other protein(s),

we find that mutating a sequence in MCM4 that has been shown

to be directly responsible for protein-PCNA interactions in other

proteins (PIP box), results in the loss of the MCM4-PCNA

interaction. As no other role has been assigned to this motif to

date, this data suggests that the interaction is between MCM4 and

PCNA (perhaps as part of the MCM2-7 holocomplex, though

there is no direct evidence that the MCM4-PIP box mutant can

still form a functional complex with the other members of the

MCM2-7 proteins). The PIP domain is important for cell viability,

as overexpression of MCM4-PIP box mutant that cannot interact

with PCNA (Figure 8) results in overall decreased viability of

Leishmania cultures (Figure7). One interesting feature we observed

was that the MCM4/PIP-FLAG protein seems to have a partial

phosphorylation defect. As one of the residues mutated in the PIP

box is a tyrosine residue, and tyrosine phosphorylation is detected

in MCM4 (Figure 2A), it is possible that this residue is a site of

phosphorylation in the protein. However, much more needs to be

done to ascertain this. While PCNA in other eukaryotes has been

shown to interact with several proteins involved in DNA repair

and replication [6,7,35], to date no interactions with any of the

MCM2-7 have been detected in any eukaryote. In S. cerevisiae,

MCM10 has been shown to interact with PCNA [43]. This

interaction is through the MCM10 PIP box, and an MCM10 PIP

box mutant displays a severely defective cell growth and

proliferation phenotype. MCM10 also interacts with MCM2-7

[44–47], ORC [44,46,48–49] and DNA polymerase a/primase

complexes [50–53], and promotes initiation of replication as well

as elongation. The loading of PCNA onto chromatin is believed to

be facilitated via its interaction with MCM10, which is loaded

onto pre-RCs after MCM2-7 [43]. In Leishmania, the role of

facilitation of chromatin loading of PCNA may be played by the

MCM2-7 complex itself. Alternatively, the MCM2-7 complex and

PCNA may be associated during elongation, as both proteins

move along with the replication fork, MCM2-7 being the

replicative helicase, and PCNA being the DNA polymerase d

processivity factor. Studies carried out by several research groups

have shown that the MCM2-7 do not colocalize with PCNA in

other eukaryotes [54–57]. However, during Drosophila chorion

gene amplification, MCM2-7 immunocolocalized with PCNA at

all stages of amplification [58] indicating that these MCMs are

present at chorion amplicons through replication initiation as well

as elongation of replication forks. The observation that MCM4-

GFP in Leishmania promastigotes immunocolocalizes with PCNA

in cells that are in S phase (Figure 6C), is suggestive of the

possibility that the MCM2-7 move along with the elongating

replication forks in Leishmania. A role for MCM2-7 in replication

fork elongation has been demonstrated in higher eukaryotes.

Chromatin immunoprecipitation experiments demonstrate that

the MCMs are displaced from origins and, along with Cdc45,

move ahead of the replication fork, in contrast to the ORC

proteins which do not [59]. Experiments where the MCMs were

destroyed after replication initiation indicated the continued

necessity of MCMs in DNA replication even post-initiation [60].

The colocalization of MCM4 and PCNA in Leishmania is an aspect

that needs to be further investigated by examining the behavior of

endogenous MCM4, to rule out the possibility of our observations

being the result of overexpression.

The data presented here describe the findings of an investiga-

tion of one of the key players of eukaryotic DNA replication in the

protozoan Leishmania donovani, and lay the foundation for future

studies directed at addressing the role of the MCM4-PCNA

interaction in DNA replication. The results of our study underline

the importance of studying DNA replication in non-conventional

organisms as much as in model systems, and uncover facets of

emerging diversities in modes of replication among eukaryotes.

Supporting Information

Figure S1 Sequence analysis of Leishmania donovani
MCM4. ClustalW analysis of LdMCM4 with MCM4 from other

eukaryotes viewed using Jalview multiple alignment editor (Water-

house AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009.

Jalview Version 2—a multiple sequence alignment editor and

analysis workbench. Bioinformatics. 25:1189-1191). H. sapiens,

Homo sapiens; X. laevis, Xenopus laevis; D. melanogaster, Drosophila

melanogaster; S. pombe, Schizosaccharomyces pombe; S. cerevisiae, Saccha-

romyces cerevisiae; L. donovani, Leishmania donovani. PIP boxes are

indicated with black boxes.

(EPS)

Table S1 Sequences of oligonucleotides used in this
study.
(DOC)

Supporting Information S1 Cloning details and prepa-
ration of Leishmania extracts,
(DOC)
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