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Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the pheno-
typical landscape. With the advance of high throughput technologies, the detail of omics data has arrived
at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks
based on populations of single-cell data. Here, we present a new approach to generate populations of
gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits
the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time
to uncouple network reconstruction from a direct dependency on time series measurements. The gener-
ated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient
reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowl-
edge on time-related trajectories, it allows us to model heterogeneous processes such as aging.
Applying the approach to the aging-associated NF-jB signaling pathway-based scRNA-seq data of human
hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their
dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns.
Interaction graph-based features and dynamic investigations of our model ensembles provide a new per-
spective on the heterogeneity and mechanisms related to human HSCs aging.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Technologies that analyze regulatory dependencies in biological
high throughput data support the notion that cellular decisions
and aging are based on complex molecular networks [1]. Systems
biology addresses the understanding of these complex interactions
by proposing a holistic view of such complex regulatory processes.
Central problems in single-cell-omics analyses are the identifica-
tion of the underlying regulatory networks and modeling of their
dynamic behavior over time.

For modeling dynamic behaviors, multiple dynamic models
have been suggested, ranging from Boolean networks [2] to prob-
abilistic rule-based models [3], to differential equation-based mod-
els [4]. By describing regulatory interactions through binary
activity levels (0/FALSE/inactive, 1/TRUE/active), Boolean network
models do not require kinetic parameters, which are often not
available in biological studies [2]. Therefore, Boolean network
models are very versatile and frequently applied for inferring and
modeling gene regulatory networks.

Depending on the available type of data, Boolean networks can
be inferred either by intense literature search [5-8] or by recon-
struction from time series data [9-11]. The literature-based infer-
ence has the advantage of combining different levels of
information from expression, to protein interactions, to phenotypic
traits [12]. Nevertheless, the reproducibility of curated models has
been questioned due to the possibility of expert-biased knowledge
[13]. On the other hand, the reconstruction of regulatory networks
from expression data relies on algorithms able to reconstruct reg-
ulatory dependencies based on time series. These data-driven
approaches have generated more and more interest with the quick
evolution of omics data and sequencing technologies. In particular
single-cell RNA sequencing has given the unique possibility to
explore phenotypes at the individual cellular level. While the per-
spective of reconstructing regulatory networks from single-cell
data is appealing, these approaches have been limited so far to
the reconstruction of developmental or differentiation phenotypes
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[14]. This is due to the dependency of current reconstruction algo-
rithms on time-ordering [14]. Our new approach instead, by
assuming the cell populations’ś intrinsic heterogeneity, allows for
reconstruction of single-cell-derived networks without time-
ordering constraints, which we applied to the study of HSC aging.

HSCs form all blood cells in a process termed hematopoiesis
[15]. The isolation and in vitro maintenance of HSCs are still exper-
imentally very challenging approaches [16-19]. Therefore, results
from in silicomodeling are of particular interest in this field. To this
end, single-cell reconstruction approaches to study the differentia-
tion of HSCs have recently been proposed [20-22].

Upon aging, HSCs are increased in number, but their activity is
highly heterogeneous and impaired. This impaired function of aged
HSCs might influence the immune system (AAIR) and is likely to be
associated with leukemia [15]. Currently, the aging of human HSCs
is primarily described in phenotypic terminology, with a number of
molecular hallmarks of HSC aging being characterized [23,24].
These are metabolic activation, reactive oxygen species (ROS) pro-
duction, impaired autophagy, loss of polarity, cellular senescence,
telomere extension, and increased DNA damage [23]. All these
hallmarks are known to be connected to inflammation. Here, the
NF-jB pathway is known to play a crucial role, but the main play-
ers and mechanisms regulating this process are still not well char-
acterized [23]. In addition, most of the information on HSC
physiology and aging comes from pooled murine data, whereas
human data are still not widely explored (Table A1). Murine and
human HSCs share common regulatory mechanisms, still some dif-
ferences do exist [25]. Hence, the determination of underlying
mechanisms and regulatory networks of aging of HSCs is critical
to design approaches to attenuate the aging-related impaired func-
tion of HSCs and identify markers distinguishing between chrono-
logical and biological aging [1,26].

In the present work, we focus on developing and analyzing a
network reconstruction pipeline taking advantage of the emerging
single-cell sequencing techniques. The latter was applied to inves-
tigate the NF-jB pathway involved in human HSC aging. The net-
work reconstruction is based on data from the recently published
work from Ratliff and colleagues [27], analyzing HSCs from eight
healthy human beings of different ages separated into two groups
– young and aged. Based on the heterogeneity present in single-cell
data and especially HSCs, which are known to have varying levels
of activation [28,29] (Fig. A1-), we were able to reconstruct specific
regulatory networks for each individual. This was only possible by
implementing a new concept to retrieve pseudotime series within
a certain population of single-cell data. Next, we established a new
hybrid pipeline to reconstruct ensembles of regulatory networks to
boost the speed of reconstruction, which allowed us to reconstruct
large networks. Our new reconstruction strategy, which we named
‘‘filtered best-fit”, combines the detection of a filtered selection of
input candidates [30] which serves, then, as a preprocessing step
for the exact algorithm from Lähdesmäki and colleagues (Best-Fit
Extension algorithm) [31]. Interaction graph-based measures and
dynamic analyses of the resulting population of networks (ensem-
bles) representing different age states of human HSCs indicated
significant differences in terms of structural connections, hetero-
geneity, and activity levels in the populations of networks of aged
HSCs.
2. Materials and methods

2.1. Boolean network models

Boolean networks are dynamic mathematical models applied to
describe biological regulatory processes. These models are defined
as a set of n compounds X ¼ x1; x2; � � � ; xnf g; xi 2 B whose regula-
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tory dependencies are described in a set of Boolean transition func-
tions ff 1; � � � ; f ng; f i : Bn ! B. In these functions, regulatory
interactions are summarized by logical operators. The activity of
each compound xi is considered to be either active (1) or inactive
(0). The state of a network at a specific point in time t is therefore
determined by a vector x! tð Þ ¼ x1 tð Þ; . . . ; xn tð Þð Þ containing all
assigned activities for each compound at that time point. The study
of network dynamics over time can be performed based on differ-
ent updating schemes – synchronous [2], asynchronous [32], and
probabilistic [33] updating. Applying these updating schemes to
Boolean functions creates state transitions and, thus, edges from
vertex to vertex (each representing one particular state) in the
state transition graph [12]. Here, we consider synchronous updat-
ing, which requires the least assumptions [12]. Under synchronous
updates, the transitions from one state to the next one

x
!

tð Þ # x
!

t þ 1ð Þ are executed by updating all regulatory functions
fi at the same time. This transition is described as

xi t þ 1ð Þ ¼ f i x! tð Þ
� �

. Taking into account that each compound in

the network has only two possible assigned values, the total num-
ber of states scales to 2n, n being the total number of compounds in
the network [2]. Due to this deterministic nature of the state space,
under synchronous update schemes, the model will eventually
enter a recurrent sequence of states called an attractor. Each net-
work can have either single or multiple attractors, which in turn
can have single (fixed points) or multiple states (cyclic attractors).
Attractors depict the long-term behavior of the model, and they
have been connected to biological phenotypes [34-38]. Among
others, Boolean networks are frequently used to simulate biologi-
cal experiments and, thus, screen, for example, for potential drug
targets [39].

Boolean network models were simulated using the R-package
BoolNet [40] and synchronous update strategy. For attractor
search, the SAT-based search algorithm in the BoolNet package
was used.
2.2. Single-cell RNA-sequencing data set

Model reconstruction was performed on the publicly available
single-cell RNA sequencing data from Ratliff and colleagues [27]
(NCBI Gene Expression Omnibus GSE138544). This data set con-
tains 730 samples of isolated peripheral blood long-term HSCs
(LT-HSCs) (lin�CD34þCD38�CD45RA�CD49fþ) from four young
(ages 19, 21, 37, 40) and four aged (ages 61, 66, 68, 70) human indi-
viduals (two males and two females per group) as suggested by
Ratliff and colleagues [27]. The dataset contains 83 to 94 single-
cell measurements per individual. Sequencing was performed on
a NovaSeq6000. The available dataset shows log normalized counts
per million [27]. The presented dataset was selected among other
available datasets of single-cell RNA sequencing datasets
(Table A1). It is, to the best of our knowledge, the only dataset with
multiple non-pooled individuals currently publicly available.
2.3. Data preparation and expression analysis

To reconstruct Boolean network ensembles of the NF-jB path-
way, the gene symbols from the dataset were mapped to Entrez
IDs using the R-package biomaRt [41]. Based on the KEGG database
[42], 101 genes were extracted as belonging to the human NF-jB
signaling pathway (hsa04064). All selected genes were then bina-
rized using the BASCA algorithm from the R-package BiTrinA
[43,44]. We used the BASC significance test to evaluate which
genes were significantly binarized (FDR, p < 0.05). In accordance
with these results, we used 96 genes for the reconstruction of Boo-
lean network ensembles. Besides Boolean network reconstruction,
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we performed expression analysis to screen for clustering of
expression data according to the age of the individuals. Hierarchi-
cal clustering of the samples was performed using the Com-
plexHeatmap (Version 2.4.3, [45]). In addition to that, we plotted
the data t-Distributed Stochastic Neighbor Embedding (tSNE) using
the Seurat R-package (Version 4.0.1, [46,47]). Motif search was per-
formed using the igraph R-package (Version 1.2.6, [48]).
2.4. Generation of pseudo-time series

After binarization, time series for the 96 binarizable genes were
generated to proceed with the network reconstruction. Therefore,
the state of each single-cell measurement is assumed to be a
potential predecessor or successor of the state of each other
single-cell measurement coming from the same individual. Conse-
quently, it is possible to form a large number of tuples of predeces-
sor and successor time steps X(t) and X(t + 1) by a combination of
random single-cell measurements. Given a total amount of single-
cell measurements (s), the number of couples of predecessor and

successor states is s
2

� �
. This is multiplied by two as each state

in a given tuple can act either as a predecessor state or successor

state. Hence, the total number of possible tuples is s
2

� �
� 2.

From the binarized expression data, 1000 tuples of data points
were randomly drawn and used as time points (predecessor and
successor state) to generate pseudo-time series of length two for
reconstruction. This means, e.g. for individual young A (19 years
old) having 94 measurements, we receive 4371 couples of single-
cell measurements, resulting in 8742 possible tuples. Out of them,
1000 tuples are picked to reconstruct the Boolean functions. This
procedure was repeated 20 times.
2.5. Reconstruction of Boolean networks from binarized time series

Monotonicity is a dominant pattern in biological functions
[49]. The algorithm by Maucher et al. [30] infers regulatory
dependencies from binary time series of data based on this
monotonicity assumption. To infer these dependencies, the algo-
rithm measures Pearson correlation between the different genes
and the successive network states [30]. The algorithm identifies
the input variables with a chosen minimum influence for each
regulatory factor individually by measuring the Pearson correla-
tion of each variable and the corresponding output value of the
regulatory factor. If the correlation is above a specified threshold,
the interaction is considered to be relevant. This is repeatedly
done for each regulatory factor to infer the complete network
dependencies [30].

While the algorithm by Maucher et al. [30] returns regulatory
dependencies, the Best-Fit Extension algorithm by Lähdesmäki
et al. [31] allows for the reconstruction of Boolean networks from
time series of expression data. The best-fit approach tests all possi-
ble combinations of inputs for each Boolean function to fit the
dynamics of the given time series as correctly as possible. In more
detail, the algorithm screens for the subset X0 of all genes X , with
up to k inputs. To find Boolean functions which match the mea-
sured observations in the time series data corresponds to the con-
sistency problem [50]. Consequently, a Boolean function that best
separates true and false samples in the data is sought. In the
Best-Fit Extension from Lähdesmäki and colleagues [31], this is
done based on partially defined Boolean functions pdBFs(T,F), with

T; F 2 0;1f gk. These pdBFs describe the true and false observations
in the given time series of binary data. Each tuple of predecessor X
(t) and successor time point X(t + 1) is added to the pdBF(T,F) as fol-
lows [31]:
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T ¼ X 0 tð Þ 2 0;1f gk : Xi tþ 1ð Þ ¼ 1
n o

and

F ¼ X 0 tð Þ 2 0;1f gk : Xi tþ 1ð Þ ¼ 0
n o

:

Next, the number of inconsistencies in the pdBF is measured by
intersecting T and F e ¼ T \ Fj jð Þ. The algorithm then chooses the
input combinations X 0 with the least error e. In the final step, a
Boolean function based on these inputs is created using truth
tables. The truth table is filled by iterating through all examples
s ¼ T [ F at all time steps j as follows:

f ji ¼
0 if s 2 F ^ f j�1

i ¼ ?

1 if s 2 T ^ f j�1
i ¼ ?

� else

8><
>:

Here ? means undefined and * indicates a conflict. f0 is initial-

ized as f 0 ¼ ?; . . . ; ?ð Þ.
2.6. Inference of ensemble networks

Based on the binarized pseudo-time series and the filtered best-
fit approach, Boolean functions were reconstructed for each indi-
vidual independently. For each set of single-cell data obtained from
one individual, 1000 tuples of data points were randomly drawn
and used as time points (predecessor and successor state) to gen-
erate pseudo-time series for reconstruction. Next, Boolean net-
works were reconstructed from these pseudo-time series. For
each of the eight individuals, eight populations of networks
(ensembles), comprising all reconstructed Boolean functions for
each gene, were generated. For dynamic analysis, we sampled
100 Boolean networks from each ensemble by randomly choosing
one of the potential Boolean functions suggested by the recon-
struction algorithm. This procedure was repeated for 20 random
picks of the 1000 tuples of pseudo-time points per individual,
resulting in a total of 2000 networks per individual.
2.7. Comparison of the reconstruction new pipeline with the best-fit
approach

To evaluate the proposed reconstruction pipeline, we compared
its computation time and performance to the original Best-Fit
Extension approach. We created random networks of different
sizes (20, 40, 60 to 200 in steps of 20) with scale-free topology as
ground truth networks using the BoolNet R-package. Next, we cre-
ated time series of different lengths from each of the random net-
works. For the first measurements, the number of time steps was
fixed to 20 (for each of 100 networks per size 20 to 200). For the
second measurements, we created a time series of |V| + 10 time
points (where |V| is the number of nodes in the network, see Bere-
stovky and colleagues [9]). Based on these time series, we recon-
structed Boolean networks and measured the reconstruction
runtime. To assess the reconstruction quality, we compared the
interactions found in the reconstructed networks to the corre-
sponding original network and measured the sensitivity and speci-
ficity of this prediction.
2.8. Interaction graph-based analyses

To assess structural changes during aging, we compared the
reconstructed networks of the young and aged groups as well as
the structural changes of each individual on its own. Therefore,
we calculated different properties based on the suggested interac-
tions between the genes of the reconstructed Boolean networks by
measuring:
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1). The number (#) of compounds, which are unregulated and,
thus, set to a constant value (0/1) in the Boolean networks
(fixed genes),

2). The number (#) of compounds that have connectivity of 0
and are, consequently, disconnected from the rest of the
graph (isolated genes),

3). The mean number (#) of incoming edges across the ensem-
ble of networks (mean input), and

4). The mean number (#) of potential regulatory functions
which could be found for each compound in the recon-
structed process (mean functions).

In addition, network motifs were also investigated across all
individuals and by age groups (young vs aged). To this end, feed-
forward loops and bi-fan motifs (as defined in Alon [51]) were ana-
lyzed. These motifs were selected based on their biological impact
in regulating the stability of the protein-protein interaction net-
work [52,53].

We measured the differences between the two age groups using
the Wilcoxon signed-rank test. We further validated the inferred
regulatory interactions across age groups as well as for each indi-
vidual by comparing the existence of the found interactions in
the ensembles of Boolean networks also in the STRING-DB [54].
To do so, two matrices were combined: the first considering con-
sistency of regulatory interaction within the ensembles, the second
considering the existence of a given interaction in the STRING-DB
database [54]. Below, the establishment of both matrices and their
combination in a trinary match matrix is described.

The ensemble adjacency matrix has an entry of 1 at the position
(i,j) if the compound i is present in the regulatory function of the
compound j and 0 otherwise. In the case of multiple equally accu-
rate regulatory functions for the same compound, the union across
all present interactions is taken. Furthermore, a union of interac-
tions found across all 20 different reconstructions is taken. For ana-
lyzing each age group individually, all interactions occurring across
the four corresponding individuals are taken into account.

Similarly, a binary matrix has been constructed from the data
available in STRING-DB [54], with entries having a value of 1 if
there exists an interaction and 0 otherwise. A match was assigned
considering paths that are either direct or indirect via only one
additional node. This analysis has been performed both consider-
ing all possible sources of evidence (including, e.g., text mining
and co-expression of genes), as well as for a restriction to interac-
tions that were either present in curated databases or that were
experimentally validated.

These two binary matrices for the ensembles and the
STRING-DB were then compared to obtain a matching matrix.
Here, 1 indicates that there is a match between interactions pre-
sent both in the Boolean network as well as in STRING-DB. If there
is no interaction in the Boolean network, the match matrix has a 0
entry. An entry of �1 indicates a mismatch, meaning that the inter-
action in the Boolean network was not found in STRING-DB or only
exists via more than one indirect node.

2.9. Dynamic analyses

For further analysis of the reconstructed ensembles of Boolean
networks, we investigated its dynamic behavior by screening its
attractor landscape. To do so, we performed an exhaustive attrac-
tor search on each of the networks in the network population
(ensemble). All simulations were performed using the synchronous
update strategy as previously applied in other model simulations
describing complex pathway interactions [5,55-57].

First, we studied the mean number of attractors which could be
found across all networks in the different ensembles and the
repeated runs, and their number of states.
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Second, we investigated the distribution of gene activity
through the different attractor patterns. Here, the availability of
ensembles of networks allows analyzing probabilities of attractor
patterns. We summarized the binary states of the different attrac-
tors of each network and normalized them by the total number of
attractor states. This procedure yields the probabilities of each
gene to be active within the complete attractor landscape. Next,
we summed up these probabilities for all network simulations
within one ensemble and the repeated runs and normalized again
by ensemble size and the number of repeated runs. Finally, results
show an average probability of genes to be active in the long-term
behavior of the networks in each ensemble over the repeated
reconstruction runs.
3. Results and discussion

3.1. Fitting the heterogeneity of the aging process with a tailored
systems biology approach

The aging process of HSCs is suggested to be characterized by a
dynamic and heterogeneous behavior. While common effects of
aging-related dysfunctions have been identified, not all HSCs in
the elderly are thought to present this loss of function, which
results in a likely heterogeneity of individual aged HSCs in
single-cell expression data. Likely reflecting this heterogeneity,
hierarchical clustering and t-SNE procedures on single HSCs from
our selected dataset were not successful. In particular, analyzing
the expression data of the genes in the known aging-related path-
way as NF-jB [24,58] did not show relevant clustering between
young and aged cells (Figs. A1-A4). New tools and approaches
are warranted to depict this heterogeneity in the aging of HSCs.

For this reason, we reconstructed populations of Boolean mod-
els from single-cell RNA sequencing data. By studying the behavior
and characteristics of the ensemble of individual networks, we pro-
vide novel tools to capture the heterogeneity of the aging process
of HSCs. In the following, we will present in detail the rationale
of our approach, together with the major insights from the ensem-
bles of Boolean networks.
3.2. Filtered reconstruction of Boolean network ensembles from time
series of single-cell data

All data-based reconstruction algorithms largely depend on the
number of data and especially the time points which are available
for reconstruction. Typically, there is only a small number of time
points, and the reconstruction potential is limited. In this approach,
we take advantage of the emerging single-cell high-throughput
data and propose a new strategy to increase the amount of avail-
able time series within a population of cells.

In single-cell sequencing data, though, each sample is described
by a potentially large set of single-cell measurements. We group all
measurements which belong to the same individual. Within these
groups, we assume the state of each single-cell measurement is a
potential predecessor or successor of the state of each other
single-cell measurement in the same domain – each single-cell
sample is treated as a pseudo-time-point and heterogeneity con-
verted into pseudo-time-points. This assumption is based on
experimental results showing that LT-HSCs can depict inter-
changeable activity states, implying that a population of LT-HSCs
dynamically transits from one activity level to the other [28,29]
(Fig. 1A). Consequently, under this assumption, we can form a large
number of tuples of predecessor and successor time steps X(t) and
X(t + 1) by a combination of random single-cell measurements (see
Fig. 1B and methods section 2.5).



Fig. 1. Heterogeneity of activity levels in the LT-HSC population. (A) Biological concept. Within the LT-HSC population, stem cells can reversely transit between more dormant
or activated states without changing their stemness condition (no differentiation) [28,29]. The heterogeneity of this population is influenced by environmental stimulation.
(B) Generation of tuples from single-cell RNA sequencing data. Exploiting the heterogeneity of the LT-HSC population, pseudo-time-points assuming the possibility for each
cell of the pool to switch to any of the other cell expression profiles. This implies that trajectories can be randomly selected within the population. Tuples were built by sets of
randomly sampled trajectories from the expression data of each individual.

Fig. 2. Overview of the new Boolean network reconstruction pipeline. The Boolean networks reconstruction pipeline combines a correlation-based approach to predict
regulatory inputs by Maucher et al. [30] and the Best-Fit Extension algorithm by Lähdesmäki et al. [31]. The algorithm by Maucher et al. is used as preprocessing step to
reduce the number of inputs that will be tested for the succeeding est-it xtension algorithm. This combination decreases the reconstruction time without losing meaningful
results.
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Introducing this new concept for retrieving pseudo-time points
from single-cell experiments leads to an increased number of time
points compared to bulk sequencing experiments. This increase of
information challenges the currently available reconstruction algo-
rithms, impairing the efficient reconstruction of models.

Boolean network reconstruction approaches need to be adapted
to handle this data. We propose a new pipeline here that combines
the search for potential regulatory inputs by Maucher et al. [30]
and the Best-Fit-Extension algorithm [31] (Fig. 2). We use the
approach by Maucher et al. [30] as a pre-processing step for the
Best-Fit Extension by Lähdesmäki et al. [31]. In this reconstruction
pipeline approach, the most feasible regulatory inputs Xfi #X for
each regulatory input xi are determined using this approach [30].
In the next step, the Best-Fit Extension algorithm is used to
reconstruct the corresponding Boolean functions with an input
combination X 0

l #Xfl among the possible inputs Xfi as derived from
the pre-processing step (see Fig. 3). For the following reconstruc-
tion, we set the threshold for the preprocessing to 0.03 and the
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maximum number of inputs to five. Hence, instead of testing all
possible input combinations in the reconstruction of Boolean net-
works, we only considered the ones selected by our preprocessing
step. Based on the reconstruction results, we then create a popula-
tion of Boolean networks (ensemble) by randomly sampling one
regulatory function from the reconstructed set of potential
functions for each compound of the modeled system.

In a first analysis, we compared the new pipeline to the original
best-fit approach. To do so, we used randomly generated Boolean
networks of different sizes, generated time series of data, and used
those for the reconstruction of Boolean network ensembles. Recon-
struction results were then compared to the original networks.
Results showed, first, reducing the number of input combinations
to test using the est-it xtension and, thus, a speed up the algorithm
itself especially when considering noisy data (see Appendix
Figs. A5 and A8). With an increasing number of time steps this
effect becomes more prominent. Second, results also show an
increased sensitivity when recapitulating the original networks



Fig. 3. Schematic overview of the network reconstruction approach. In our approach, we first selected all single-cell samples from each group (red, blue, turquoise – here cell
samples taken from the same individual). Next, data points are randomly sampled and ordered sequentially to create a series of pseudo-time-points for each group. This time
series was then used for the reconstruction of Boolean network ensembles. The approach results in a set of Boolean network ensembles – one for each selected group. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Interaction graph of one example network drawn randomly from the ensemble of one random individual from the young group of networks (A) and the aged group of
networks (B).
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based on the noisy data (see Appendix Figs. A6 and A9) while
specificity of both approaches is in similar ranges (see Appendix
A7 and A10).
3.3. Network populations (ensembles) reconstruction and structural
properties in the process of aging

Using the described approach, we reconstructed ensembles of
Boolean networks modeling the NF-jB signaling pathway for each
of the eight individuals. This revealed eight ensembles of Boolean
networks – one representing each individual (exemplarily shown
in Fig. 4). The reconstructed networks comprise up to 950 potential
Boolean functions for one regulatory compound, depicted as a node
in the network. The mean number of reconstructed Boolean func-
tions per compound was between 1.06 and 16.50 across the differ-
ent individuals and the 20 repeated runs. Reconstructed Boolean
functions had between 1 and 5 regulatory inputs (Fig. 5 and
Fig. A11). By comparing the reconstructed functions among young
(19–40 years old) and aged (61–70 years old) individuals, we could
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show an increase in mean functions (p = 8�10�5) and regulatory
inputs (p = 2.8�10-10 in the young phenotype compared to the aged
individuals, while fixed genes (p = 1.1�10�9) and isolated ones (p =
1.6�10�5) were lower in the young reconstructed networks (for a
precise definition of investigated groups of nodes see methods, sec
tion 2.6). These findings hint that in aged HSCs, regulatory interac
tions are muted, which would be consistent with a reduced respo
nse to stimulation as described by Schwab et al. [11]. We observed
that the reconstructed networks of one individual (66 years old)
had similar interaction graph-based features as the networks from
the young group (Appendix Figs. A11 and A14), especially com
pared to the youngest individuals. This might indicate a younger
biological age compared to the chronological one since this individ
ual may rely on a network wiring with similar properties to the
younger ones.

For further validation of the reconstructed Boolean functions,
we compared the reconstructed interactions to interactions pre-
sent in the STRING-DB database [54] (see Appendix Fig. A12). Con-
sidering all interactions within this database, we were able to
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validate 94.1% of reconstructed regulations for the young pheno-
type and 94.0% for the aged phenotype across all individuals in
the respective group. Even applying stricter measures and only
considering experiments and databases (see Methods, Section 2.8),
we still found 66.1% of reconstructed regulations via direct interac-
tions or interactions with one intermediary step for the young phe-
notype and 65.1% for the aged phenotype. These results further
validate the reconstructed interactions. Some of the reconstructed
regulations were not listed as direct interactions in STRING-DB.
Our reconstruction approach might thus point to so far unknown
interactions, although these will require confirmation by addi-
tional experiments.

We performed screening of feed-forward loop and bi-fan motifs
for each of the reconstructed networks. The number of each of
5327
these motifs for each network was computed and then used for
comparison between the two age groups (see Fig. 6) and the eight
individuals (see Fig. A14). Results show that the number of both
motifs is significantly increased (Wilcoxon signed-rank test,
p < 0.05) in the young group compared to the aged one.
3.4. Altered dynamics affecting aging

The human HSC aging process is still a widely unexplored field.
In particular, still, a wide range of open questions are remaining on
heterogeneity and its effects on biological aging in contrast to
chronological aging. While being aware of the limited sample size
of eight individuals, the results of the study might be a first
attempt that justifies further exploration in this area in larger stud-
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ies. Hence, we analyzed the dynamics of the group of Boolean net-
works by computing the attractor landscape. The dynamic analysis
aims to get an initial understanding of general dynamics during
aging in the NF-jB pathway. Dynamic analyses have the potential
to identify new drivers of aging in humans. In the following, we
will deepen our analyses on the retrieved attractor landscape
focusing on gene activities attempting to match the model behav-
iors to literature-reported aging activities.

First, we studied the networks’ general long-term behavior. To
do so, we evaluated both the number of attractors retrieved and
their lengths (see Fig. A13). While a general tendency towards hav-
ing few attractors with only one state is observed among young
and aged networks, we observe an increase in the number of
attractors (p = 1.10�15) and length (p ¼ 1:5 � 10�32) for the young
ones. It is likely favorable for a regulatory network to have a major-
ity of only single state attractors since they are considered to be
more stable and less likely disturbed [12,59]. This observation is
consistent with a deep and stable quiescence of HSCs. In addition,
Ikonomi et al. also retrieved a single state attractor describing the
same HSC population in young physiological conditions [5]. The
increase in the number of attractors in the network reconstructed
for young HSCs might be linked to their ability to promptly
respond to stimulation and which is reduced in aged HSCs [60].
Together with our results from the structural analysis (Fig. 5),
our reconstructed networks in young HSCs show a larger number
of connections and, therefore, hint at potential responses to sudden
changes of external stimulations. Seeing these changes already in
the LT-HSC population (for the NF-jB pathway), which are consid-
ered to be majorly quiescent, also sustains the hypothesis that
major dysregulations in hematopoiesis during aging arise from dif-
ferentially prompted and reactive HSCs [23,24]. Following this idea
of a different intrinsic rewiring of the quiescent LT-HSCs, which
prompt differential responses without per se causing a direct acti-
vation of the HSC, we deepened our analysis on the retrieved
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attractor landscape. To do so, we first analyzed the general activity
tendencies between young and aged individuals and the inter-
individual heterogeneity (Fig. 7). Second, we matched the activity
of genes within the attractors to published phenotypes of young
and aged HSCs (Table 1). The dynamic analysis intends to give ini-
tial insights into the general dynamics during aging in the NF-jB
pathway and second to identify potential new drivers of aging in
humans. Together with these two points, literature validation of
both changing and fixed gene activities in the attractor patterns
aims at a first evaluation of the attractor patterns. To do so, we
matched activities in the attractor to expected changes during
HSCs aging or features expected from LT-HSCs. In this sense, our
literature search revealed that over the 96 genes in our attractor
patterns 78.73% could be matched with expected behaviors, while
12.5% of genes have no described function in HSCs (Tables A2 and
A3). Finally, only 6.25% of genes did not match behaviors expected
for HSCs from literature. As a general observation, most inactive
genes were either related to leukemic transformation or to blood
cell differentiation (see Table A3), which are indeed not likely to
influence the activity of healthy HSCs.

Next, in this use-case, we investigated the change of activities
by comparing gene activity of the different age groups. This analy-
sis aims to point out possible age-related activities which need to
be validated also on larger data sets once they become available.

We observed the tendency of a decrease in activity levels within
the attractors ranging from young to aged phenotypes (Fig. 7). This
tendency was observed in both the overall averaged young and
aged groups and for each individual. Interestingly, while this
decrease in activity levels is preserved during aging, still a certain
heterogeneity among individuals is observed (Fig. 7).

Along with the attractor patterns, we divided the gene activity
into three subgroups: 1) decreased, 2) remaining stable, and 3)
increased in aging (Table 1). IRAK4 and TNFRSSF13C, both down-
regulated in our attractors, were shown to be decreased in aged
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Table 1
Activity of genes in the aging process.

Activity levels during aging
young ? aged

Compounds with altering in the Boolean
network ensembles

Biological impact of altered activity References

BIRC3, IRAK4 Loss of rescue mechanisms for apoptosis causing impaired survival [68,69]
CARD14, IKBKB, CYLD Loss of quiescence [70-76]
TRAF5, LAT Myeloid skewing [77-80]
MALT1 Compensatory inhibition of NF-jB activation via induction of quiescence.

Loss of NF-jB direct inhibition
[61,62]

NFKBIA Propensity to increased inflammatory response via NF-jB activation [81]
LYN Impaired repopulation potential [82,83]
ERC1 Cellular polarity alteration causing reduced motility. Presence of ERC1

promotes the turnover of focal adhesions
[84-88]

TNFRSSF13C Impaired lymphoid specification [89,90]
TNFSF13B Stable immune response [63,64]
CSNK2A1 Resistance to senescence [65]

PIDD1 Control of balance between repair and apoptosis after DNA-damage [66,91]
TNFSF14 Loss of quiescence due to increased cycling [92]
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HSCs encouraging again the correctness of the ensembles retrieved
dynamics. Most of the remaining genes in the first subgroup are
studied in the context of loss of function of HSCs, but dysregulation
of their activity has not yet been linked to HSC aging. A non-trivial
example is MALT1 that was also observed to be decreased with
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aging in our attractors. This reduced activity would lead to a
double-edged effect. On the one side, loss of MALT1 promotes
HSC quiescence [61]. On the other side, it skews hematopoiesis
towards myeloid cells [61]. As MALT1 is an inhibitor of NF-jB, its
loss induces the increase of the latter. Nevertheless, MALT1 loss
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also has a positive effect on quiescence [61]. This might counteract
the increased stress-response induced by NF-jB that normally
leads to cell cycle entry [62].

Furthermore, few genes showed either a stable active behavior
or even an increase in activity throughout the aging process
(Table 1). The function of stably active genes could be linked to a
stable immune response [86,87] or resistance to senescence [65].

Finally, our results show that PIDD1 is only active in one aged
individual (Aged A, 66 y.o.). Interestingly, the reconstructed net-
works of this individual already showed more similarity to interac-
tion graph-based features and network motifs to the youngest
individuals (19 and 21 y.o.) compared to the remaining individuals
of the aged group (61, 68 and 70 y.o.). A potential explanation for
that might relate to a discrepancy between biological and chrono-
logical age for this individual. Notably, literature research revealed
that PIDD1 activity is connected to DNA damage response [66].

Following this hypothesis, we further deepened the literature
screening looking for an explanatory mechanism on the potential
implication of PIDD1 in delaying age-related processes. PIDD1 is
suggested to act as a switch between DNA damage response and
apoptosis by regulating the activation of first damage response
via NF-jB, and in a second moment apoptosis via Caspase-2 [66].
While PIDD1 activity has still not been investigated in HSCs, the
HSC phenotype of Caspase-2-deficient cells is known [67].
Caspase-2 deficient mice develop normally but show aging-
related dysfunctions. In addition, when challenged by oncogenic
stimuli or stress, Caspase-2 deficient mice show enhanced tumor
development [67]. Overall, this supports the idea that a reactiva-
tion of PIDD1 could contribute to a delayed aging process, leaving
these initial results open for further experimental validation.

Altogether our dynamic analyses indicate a certain level of
heterogeneity in the behavior of our ensembles of models. This
suggests that the description of aging does not follow the idea of
‘‘one fits all” but might come with different mechanisms and activ-
ities. This idea is reflected in the distinction between biological and
chronological aging [1]. Interestingly, the Boolean network
analyses of this dataset showed diverging properties among the
different individuals. Even though these results come from a pool
of eight human individuals, we found patterns in our network
analyses which match general mechanisms and hallmarks known
in LT-HSC maintenance and aging (Appendix Tables A2 and A3,
and Table 1). Considering the novelty of the approach, the results
point to interesting findings which encourage further studies and
experimental validations in this direction.
4. Conclusion

Here, we present a new method to reconstruct data-driven
ensembles of regulatory networks from single-cell RNA-
sequencing data potentially applicable to a wide variety of
sequencing data. Taking advantage of the intra-cell population
heterogeneity, the approach exploits the generation of
pseudo-time points of populations of the same cell type. These
pseudo-time points enable the reconstruction of Boolean network
ensembles. To handle such a potentially large (pseudo-) time ser-
ies, we furthermore developed a new Boolean network reconstruc-
tion pipeline by adding a correlation-based screening of potential
regulatory dependencies as a pre-processing step to the est-
it xtension algorithm. The pre-processing step not only decreases
computational time but also is more robust to noisy data.

Our use-case, the analysis of aging-related changes in NF-jB
signaling based on human HSCs single-cell data could successfully
capture the heterogeneity of the aging process. Using the network
reconstruction approach enabled us to analyze structural and
dynamic properties. By ordering the individuals along changes
5330
within these properties, we could find similar tendencies to their
order by age which are not evident in the expression data analyses.
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